6.5310: Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Spring 2025)

Prof. Erik Demaine       TAs Josh Brunner, Jenny Diomidova


[Home] [Lectures] [Problem Sets] [Project] [Coauthor] [GitHub] [Accessibility]

Lecture 7 Video     [previous] [next]

[+] Universal hinge patterns: box pleating, polycubes; orthogonal maze folding.
NP-hardness: introduction, reductions; simple foldability; crease pattern flat foldability; disk packing (for tree method).
This lecture covers two main topics:

First, continuing our theme from Lecture 3 on efficient origami design, we'll see how subsets of a single hinge pattern are enough to fold any orthogonal shape made up of cubes, whereas other approaches use a completely different set of creases for each origami model you want. In general, we can fold n cubes from an O(n) × O(n) square of paper. In the special case of “orthogonal mazes”, we can waste almost no paper, with the folding only a small constant factor smaller than the original piece of paper. You can try out this yourself.

Second, we'll see a few ways in which origami is hard. Specifically, I'll give a brief, practical introduction to NP-hardness, and prove three origami problems NP-hard:

  • folding a given crease pattern via a sequence of simple folds;
  • flat folding a given crease pattern (using any folded state);
  • optimal design of a uniaxial base, even when the tree is just a star.

Download Video: 360p, 720p

Handwritten notes, page 1/7[previous page][next page][PDF]

Handwritten notes, page 1/7[previous page][next page][PDF]

Slides, page 1/20[previous page][next page][PDF]

http://www.pnas.org/content/107/28/12441 / http://www.pnas.org/content/suppl/2010/06/25/0914069107.DCSupplemental / http://erikdemaine.org/papers/Matter_PNAS/ (covered under the MIT Faculty Open-Access Policy)

Slides, page 1/20[previous page][next page][PDF]