6.5310: Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Spring 2025)

Prof. Erik Demaine       TAs Josh Brunner, Jenny Diomidova


[Home] [Lectures] [Problem Sets] [Project] [Coauthor] [GitHub] [Accessibility]

Lecture 3 Video     [previous] [next]

[+] Efficient origami design: Tree method, TreeMaker, uniaxial base, active path, rabbit-ear molecule, universal molecule, Margulis Napkin Problem; cube folding, checkerboard folding; Origamizer, watertight, tuck proxy.
This lecture is all about efficient origami design. We saw in Lecture 1 how to fold anything impractically. Now we'll see how to fold many shapes practically.

First up is the tree method, whose software implementation TreeMaker I demoed at the end of Lecture 2. I'll describe how it lets us fold an optimum stick-figure (tree) origami base, although computing that optimum is actually NP-complete (as we'll see in Lecture 6). This algorithm is used throughout modern complex origami design; I'll show some examples by Robert Lang and our own Jason Ku.

Second we'll look at a simple, fully understood case: the smallest square to fold a cube.

Third we'll look at a classic problem that we made progress on recently: folding an n × n checkerboard from the smallest bicolor square.

Finally we'll look at the latest and most general method, Origamizer, for folding any polyhedron reasonably efficiently. Here we don't have a nice theoretical guarantee on optimality, but the method works well in practice, provably always works, and has other nice features such as watertightness.

Download Video: 360p, 720p

Handwritten notes, page 1/7[previous page][next page][PDF]

Handwritten notes, page 1/7[previous page][next page][PDF]

Slides, page 1/17[previous page][next page][PDF]

Images and design by Robert Lang. http://langorigami.com/art/gallery/gallery.php4?name=snack_time & http://langorigami.com/art/insects/snack_time_cp.pdf

Slides, page 1/17[previous page][next page][PDF]