6.849: Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Spring 2017)

Prof. Erik Demaine; Martin Demaine; Dr. Jason Ku; TAs Adam Hesterberg & Jayson Lynch


[Home] [Problem Sets] [Project] [Lectures] [Coauthor] [Accessibility]

Lecture 17 Video     [previous] [next] [completion form]

[+] Polyhedron folding: Combinatorial type of gluing, exponential upper and lower bounds for combinatorially distinct gluings, polynomial upper bound for polygons of bounded sharpness, dynamic program for edge-to-edge gluing, including polynomial-time decision, exponential-time dynamic program for general gluing; case studies of Latin cross, equilateral triangle, and square.
This lecture continues our discussion of gluing polygons up and folding them into convex polyhedra, namely, via Alexandrov gluings. Now we'll see algorithms to actually find Alexandrov gluings, as well as give good bounds on how many there can be. Then I'll describe a few case studies: the Latin cross, the equilateral triangle, and the square.

Jason Ku will give a lecture on how to fabricate folded structures using thick materials, and how to design crease patterns that satisfy boundary conditions. You can find both his academic and artistic folding work at http://jasonku.mit.edu/.

Then we'll work problems about boundary conditions, common unfolding, and protein folding.

Download Video: 360p, 720p

Handwritten notes, page 1/8[previous page][next page][PDF]

Handwritten notes, page 1/8[previous page][next page][PDF]

Slides, page 1/15[previous page][next page][PDF]

Figure 25.17 of GFALOP

Slides, page 1/15[previous page][next page][PDF]

The video above should play if your web browser supports either modern Flash or HTML5 video with H.264 or WebM codec. The handwritten notes and slides should advance automatically. If you have any trouble with playback, email Erik.