MIT Class 6.S080 (AUS) Mechanical Invention through Computation

3-dimensional Expanding Structures

Mechanism – relation to base geometry

Linkages orthogonal to 3D surface

Linkages tangential to 3D surface

Transformable Typology: Expanding Shapes

Kinematic mode

Icosahedron

Radial expansion

Points on expanding shape move radially outwards.

Turning surfaces into mechanisms

Surface terminology

Original patent: angulated scissor

U.S. Patent

June 18, 1991

Sheet 1 of 12 5,024,031

Original patent: expanding polygon

Original patent: 3d loop linkage (3-sided)

Hubs create out of plane connections between linkages

Original patent: 3d loop linkage (4-sided)

Sheet 5 of 12

Original patent: 3d loop linkage (6-sided)

Original patent: expanding icosahedron

Fig. 20

Mini Sphere

Mini sphere works with double scissor between hubs

Angulated scissor construction - review

Scissor frequency (between hubs)

As additional scissors are added, ratio of folded to unfolded size decreases

Hub and link assemblies (4-sided)

Hub and link assembly (3-sided)

Base geometry

Core polyhedron Dual figure gives location of scissors

For structures with single scissors between adjacent hubs, circle tangency is required.

Surface made up of tangential circles

Link construction from base geometry

Construct links as shown

Wireframe

Scissors shown without hubs

Need to allow space for hubs to avoid interferences

Method to set hub geometry

Hub construction (alternate method)

Double scissor construction

Mini sphere construction with double scissor

Wireframe

Product

• Surface Shape

- Surface Shape
- Tessellation

- Surface Shape
- Tessellation
- Normal Vectors

- Surface Shape
- Tessellation
- Normal Vectors
- Intersections

Korean Aerospace Institute

Korean Aerospace Institute

Expanding Sphere, CBIT Conference, Hanover, 2010

Expanding Sphere, CBIT Conference, Hanover, 2010

Expanding

Expanding Helicoid

Museo Interactivo Mirador, Chile

Smith Haut Lafitte Bordeaux, France

Detroit Auto Show 2012

Hyperbolic parabaloid

Hyperbolic parabaloid

