MIT Class 6.S080 (AUS)

Mechanical Invention through Computation

Expanding Structures – 2D

Hardware / Construction Terms

- Slip fit
- Press fit
- Knurl
- Tolerances
- Bearing
- Bushing
- Radial and pivotal forces
- Clearances
- Chamfers
- Sliding friction
- Rolling friction

Bearing types

Ball bearing (sealed)

Ball bearing (unsealed)

Needle bearing

Spherical bearing

Sleeve bearing (bushing)

Flanged Sleeve bearing

Angled roller bearing

Shaft hardware

Binding post

Cam follower

Collar clamp

Other motion hardware

http://www.mcmaster.com/

Pivot construction

Binding post connection

Pivot construction

Shoulder screw connection

Flanged Sleeve bearing

Shoulder screw

circular linkage with fixed center (four spokes)

Irregular polygon – geometric construction

Center link for asymmetric polygon linkages

scissor element

Scissor/spoke element

Remove every other scissor / spoke element Orange rotates clockwise As wheel expands purple rotates counter-clockwise

Wheel

Extended expanding wheels

Extended wheel geometry

Extended wheel geometry

Extended wheel geometry

Extended wheel (doubled construction)

Extended wheel (doubled construction)

Expanding polygon arrays

4-way grid made of angulated scissors

4-way grid made of angulated scissors

4-way grid made of angulated links (not doubled)

3-way scissor (doubled triangle)

3-way scissor (doubled triangle)

3-way scissor (doubled triangle)

Expandagon construction system

Dynamic envelope

Expandagon assembly

Expandagon assembly

Expandagon assembly

General method for expanding triangle (edges preserved)

Draw lines orthogonal to edges that connect to center of tangent circle

General method for expanding quadrilateral (edges preserved)

Alternate method for expanding triangle (edges preserved)

Draw lines orthogonal to edges to find center point

Construct link from Original triangle

Kinematic units

Constant angle perimeter linkages

Geometric construction - wheel

scissor element

Scissor/spoke element

Tong linkage with points forming constant angle

Tong linkage with points forming constant angle

Scissor with perimeter of constant angle

Scissor with perimeter of constant angle

Building Programmable Matter

Daniela Rus CSAIL, MIT

B. An, E. Demaine, C. Detweiler, K. Gilpin, K. Kotay,

M. Schwager, M. Vona, R. Wood, S-K. Yun

Convergence of Materials and Machines

- Great progress in materials
- Machines are increasingly more powerful and smaller
 - Convergence of machines and material

Self-reconfiguring machines **Self-reconfiguring machines** **Sinky** **Sinky** **The image of the image

- •Multiple modules
- Physically connected
- Autonomous structural change
- Multiple functionalities -- reusable
- •Robots with variable architecture
- Self-assembly
- •Self-reconfiguration
- •Self-repair

Actuation by Scaling: Crystal Module (1999)

CSAIL

- Unit-compressible
- Self-contained units
 - Computation
 - Communication
 - Power
- 28 built
- Local comm
- $\sim 200 g$

module relocation O(1)

Computing Challenges:

- •Self-reconfiguration (SR) planning when modules can travel through the volume of the structure (not just on the surface)
- Defining the class of achievable structures, défining force/torque requirements
- Scalability: Parallelism and Decentralization

Group Locomotion

Distributed Reconfiguration Planning

- Provably correct
- Distributed matching on difference between start and goal
- No deadlock
- Maximal parallelism
- Relies on actuation by scaling

The Umbrella Project

Crystalline Theory [Aloupis, Collette, Damian,

Demaine, El-Khechen, Flatland, Langerman, O'Rourke, Pinciu, Ramaswami, Sacristán, Wuhrer 2007–2009]

- Algorithms to morph n modules in 2D or 3D from one configuration to any other (up to constant resolution) using
 - O(n) moves
 - $O(\log n)$ time (rounds)*
- With constant-strength robots:
 - $O(n^2)$ moves
 - O(n) time (rounds)

simulation

simulation

*currently only in 2D, $O(n \lg n)$ moves, not in place