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Problem 6 – Solution

Upper Bound. The idea is that every message divides the size of the integers by n1/t. Say Alice
must speak next. She breaks her integer into n1/t chunks. Then, she computes a hash function
from every chunk to lg n bits, and outputs the hash codes, taking O(n1/t lg n) bits. Bob also breaks
his integer into n1/t chunks, and applies the same hash function to every chunk. He then compares
his own hash codes with what he received. Up to some point, Alice’s code for chunk i is equal
to Bob’s code for chunk i, so with good probability the original integers were also equal in chunk
i. Then, hash codes for some chunk differ, meaning that the integers diverged somewhere in that
chunk. From now on, the players only need to worry about comparing their integers restricted to
that chunk. So the size of the integers was reduced by n1/t. Of course, only Bob knows i, because
Alice never sees Bob’s hash codes. But Bob can include i in his next message, taking an additional
O(lg n) bits, which is a lower order term.

After t−1 messages, we are down to n/(n1/t)t−1 = n1/t bits. In the last message, the player who
should speak just output his remaining integer. The other player can now announce the result of the
comparison, because he has the relevant part of both inputs. The probability that the announced
value is wrong is upper bounded by the sum of the probabilities of an error in each comparison of
hash codes. We have n1/t · (t−1) = o(n) hash codes which are compared in total. For any pair, the
probability that different integers look equal through the hash function is 1

n , so the probability of
an error is upper-bounded by o(1) < 1

3 . Observe that a more careful analysis shows we only need
hash functions to O(lg t) bits, which improves the upper bound to O(n1/t lg t).

Lower Bound. The proof is parallel to the upper bound. We must identify a k-fold problem
hidden in the greater-than problem. Say Alice speaks next. We break her integer into x1, . . . , xk

equal-sized chunks (this is conceptual; Alice only sees a big integer). For arbitrary i and y, we
make Bob’s integer be the concatenation of (x1, . . . , xi−1, y, 0, . . . , 0). Clearly, comparing these two
integers is equivalent to comparing xi and y. But this is a k-fold problem.

Now assume there is a solution for the GT problem on n-bit numbers with error probability
δ. Then, this solution must also be solving the problem we created above. In other words, we
considered some restricted class of inputs, but if there’s a general solution, it also works for the
particular inputs that we decided to consider. But the round elimination lemma assures us that if
there exists a solution for the k-fold problem we considered, there exists a solution for comparing xi

to y in which there’s one fewer message. The error probability increases to δ + O(
√

m/k) = δ + 1
9t ,

for some appropriate choice of k = Θ(mt2). Thus, we have a solution for integers which are k times
smaller, but which uses one fewer message.

Now assume n ≥ 2kt. Then, we can apply round elimination t times, and we’re left with
nontrivial integers (at least two bits), but no messages. Without communication, the problem
cannot be solved with error probability better than 1

2 (if the player to announce the outcome is
Alice, the adversary can give her the integer 1, and give Bob either 0 or 2 randomly, so Alice cannot
do better than random guessing). But we obtained a protocol with error probability ≤ 1

3 + 1
9t ·t = 4

9 ,
which is a contradiciton. This shows that n < kt, which means (Θ(mt2))t > n, or m = Ω(n1/t/t2).
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