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Set Similarity Business

Set similarity: D(A, B) = Iﬁggi

o H=1{h;:hz(A) = max,can(a)}
e Priculh(A) = h(B)] = D(A, B)

Questions:

e How to deal with 7 7

e Can we extend D(-) to multisets ?



Permuting The Universe

e Hash all words to U = {0...u}
(u large enough to make collisions unlikely)

e To permute U we can apply:

— Linear permutation: w(x) = axz + b mod w,
a and b random.
x Easy to implement
x Not random enough! E.g.,

Prih({0}) = h({0. .. k})] ~ lolf i

— Polynomials: 7(x) = ag+a1z1+...arz® mod u
x Not permutations
(but can bound the probability of collision)

* For any € > 0, setting k = O(log 1/¢) gives

Prih(A) = h(B)] = D(A, B) + ¢|AU B|



Extension to Multisets

Fuzzy logic:

e An occurence of z in A has a multiplicity. l.e.,
the characteristic function p4(x) is a non-negative
Integer.

e paup(z) = max(ua(z), pp(z))

e panp(r) =min(ua(z), ps(r))

Can extend similarity measure, and the min hashing to
multisets.



Near Neighbor

(Dynamic) Approximate Near Neighbor:

e insertions/deletions

e if there is a point within distance r from ¢, return
some point within distance (1 + ¢)r from ¢

(r fixed)



Locality-Sensitive Hashing

A family H = {h : U — S} is called
for D if forany q,p e U

o if D(p,q) < ry then Prylh(q) = h(p)| > P,

o if D(p,q) > ro then Prylh(q) = h(p)] < Ps.

We assume P; > P> and 1 < 7.



Examples

e Hamming metric {0, 1}¢:

— H=1h(by...bg) =b;,i =1...d}
(i.e., sample one bit at random)

— Pry[h(q) = h(p)] =1 - D(p,q)/d

e Set similarity: D(A,B) = Ijggi

— H=Ahz:h:(A) = max,cam(a)}

= Pruenlh(A) = h(B)] = D(4A, B)



Multi-index Hashing

To solve NN with parameters €¢,7: set ri = r,
ro = (14 ¢€)r

Define G = {g|g(p) = h1(p).h2(p) ... ht(p)}

(for Hamming metric - sample k& random bits)

Preprocessing: prepare indices for g1, ..., g

Add p: store p in buckets g1(p), ..., g(p)
Delete p: remove p from buckets g1(p), ..., g/(p)

Query: check ¢1(q)...¢gi(q) and report the closest
among first (say) 3l points

Time: O(dl)
Storage: O(dn + nl)






LSH: analysis

Question: How many indices | do we need ?

Theorem: Setting [ = n” for p = }22 }ﬁ; is sufficient

with constant probability.

(Hamming metric = p=1/(1 + ¢))



“Proof”
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LSH: Proof

Define:
e p* -apoints.t. D(qg,p*) <r
e FAR(q) - all ps.t. D(q,p) > (1 +€)r

e BUCKET,(q) - all p s.t. g;(p) = g,(q)

Events:

o E1: Y._, [FAR(q) N BUCKET (q)| < 3I
o Iy gi(p*) = g,(q) for some g;, 1 < j <1

Will show: Pr[F1] < 1/3 and Pr[Es] < 1/e < 1/2
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Proof: Bad collisions

Let p € FAR(q). Then
Pr[p € BUCKET;(q)] < Py
For k =logy,p,n
lo n
Prlp € BUCKET (¢)] < P, /™" =1/n
Thus

E[|[FAR(¢) NBUCKET(g)|| <n-1/n=1

l
E[Z IFAR(¢q) N BUCKET;(q)|] <
j=1
By

l
Pr[» _|FAR(q) N BUCKET;(q)| > 31] = Pr[Ey] < 1/3
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Proof: Good collisions

For any g;:

logl/P1 n

1 _
Pr(g;(p*) = gi(q)] > PF =P, /72" =p ®BR" = pop

For [ = n” we have

Pr[E;] < (1—Pr[g;(p*) = g;(q)])’
< (1-n)"
< 1/e
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Web clustering

Goal: similarity search/clustering of the Web.
Problem: Huge data set !

Known approaches:

e detecting near-replicas [Broder-Glassman-Manasse-
Zweig'97]

e link-based methods [Dean-Henzinger'99, Clever]

Would like to find pages with similar content based
on text information (e.g., containing similar words).
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Approach

e web page P — a set A of tuples of words:

P = “This is an example web page”

A = {"this is an”, “is an example”, . ..

e compare A and B by using

_|AnB]
- |AU B|

D(A, B)

e clustering (=~ S-LINK):

— take all pairs of similar documents
— compute connected components
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Algorithms

e [BGMZ'97]:

— consistent sampling of tuples
— finding all intersecting pairs < A, B >
— filtering
— performance (for 30 M pages) :
% 10-tuples: ~ 2-10'°B
% 1-tuples: ~ 10'°B*

e LSH (for 25 M pages):

— 67 indices, 300 MB per index
— essentially same time for 10-tuples
— most important: same for 1-tuples
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Syntactic Approach: Algorithm

e tuple size =10

e 10-tuples of words

e algorithm:

sample (consistently) 1:25 tuples
list all

< DOCy,DOC5, TUPLE >

s.t. TUPLFE appears in both DOC7 and DOC,

group <,,> according to < DOC,DOCs, - >
compute the intersections
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A bonus “war story”

The aforementioned project did not proceed
without problems.

Problem: the home page of colleague’'s advisor got
clustered with:

e assorted pornography

e web pages on alcohol abuse

Problem Il: our algorithm was provably correct, i.e.,
probability of failure was one in a million (we calculated
it exactly).
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What happened ?

x a word (really, word’'s “signature”, but ignore
that)

We used hash function h(z) = (ax mod P) mod 2°
— P =251 — 57 (more or less)

— a randomly chosen

For various reasons, x divisible by 8 always (we were
sampling 1 in 8 words)

Implementation bug: forgot to use long long int =
ax was computed modulo 2%* (rounding)

mod P had almost always no effect, since P ~ 264

z divisible by 8 = (ax) divisible by 8 = (ax) mod 2°
divisible by 8
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e 3 lowest bits of h(x) were almost always 0, so the
actual range size was 2°, not 2°

e Enough for unexpected word collisions to occur...

Moral: do your hashing well, or you might never
graduate.
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