Nearest Neighbor via Locality Sensitive Hashing

Piotr Indyk

Set Similarity Business

Set similarity: $D(A, B) = \frac{|A \cap B|}{|A \cup B|}$

•
$$\mathcal{H} = \{ h_{\pi} : h_{\pi}(A) = \max_{a \in A} \pi(a) \}$$

•
$$\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = D(A, B)$$

Questions:

- How to deal with π ?
- \bullet Can we extend $D(\cdot)$ to multisets ?

Permuting The Universe

- Hash all words to $U = \{0 \dots u\}$ (u large enough to make collisions unlikely)
- ullet To permute U we can apply:
 - Linear permutation: $\pi(x) = ax + b \mod u$, a and b random.
 - * Easy to implement
 - * Not random enough! E.g.,

$$Pr[h(\lbrace 0 \rbrace) = h(\lbrace 0 \dots k \rbrace)] \approx \frac{\log k}{k}$$

- Polynomials: $\pi(x) = a_0 + a_1 x_1 + \dots a_k x^k \mod u$
 - * Not permutations (but can bound the probability of collision)
 - * For any $\epsilon > 0$, setting $k = O(\log 1/\epsilon)$ gives

$$Pr[h(A) = h(B)] = D(A, B) \pm \epsilon |A \cup B|$$

Extension to Multisets

Fuzzy logic:

• An occurrence of x in A has a multiplicity. I.e., the characteristic function $\mu_A(x)$ is a non-negative integer.

$$\bullet \ \mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$$

•
$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

Can extend similarity measure, and the min hashing to multisets.

Near Neighbor

(Dynamic) Approximate Near Neighbor:

- insertions/deletions
- ullet if there is a point within distance r from q, return some point within distance $(1+\epsilon)r$ from q (r fixed)

Locality-Sensitive Hashing

A family $\mathcal{H}=\{h:U o S\}$ is called (r_1,r_2,P_1,P_2) -sensitive for D if for any $q,p\in U$

- if $D(p,q) \leq r_1$ then $\Pr_{\mathcal{H}}[h(q) = h(p)] \geq P_1$,
- if $D(p,q) > r_2$ then $Pr_{\mathcal{H}}[h(q) = h(p)] \leq P_2$.

We assume $P_1 > P_2$ and $r_1 < r_2$.

Examples

- Hamming metric $\{0,1\}^d$:
 - $\mathcal{H} = \{h(b_1 \dots b_d) = b_i, i = 1 \dots d\}$ (i.e., sample one bit at random)

-
$$\Pr_{\mathcal{H}}[h(q) = h(p)] = 1 - D(p,q)/d$$

- Set similarity: $D(A,B) = \frac{|A \cap B|}{|A \cup B|}$
 - $\mathcal{H} = \{ h_{\pi} : h_{\pi}(A) = \max_{a \in A} \pi(a) \}$
 - $\Pr_{h \in \mathcal{H}}[h(A) = h(B)] = D(A, B)$

Multi-index Hashing

To solve NN with parameters ϵ, r : set $r_1 = r$, $r_2 = (1+\epsilon)r$

Define
$$G = \{g | g(p) = h_1(p).h_2(p)...h_k(p)\}$$

(for Hamming metric - sample k random bits)

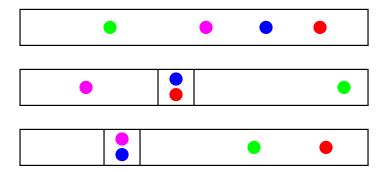
Preprocessing: prepare indices for g_1, \ldots, g_l

Add p: store p in buckets $g_1(p), \ldots, g_l(p)$ Delete p: remove p from buckets $g_1(p), \ldots, g_l(p)$

Query: check $g_1(q) \dots g_l(q)$ and report the closest among first (say) 3l points

Time: O(dl)

Storage: O(dn + nl)



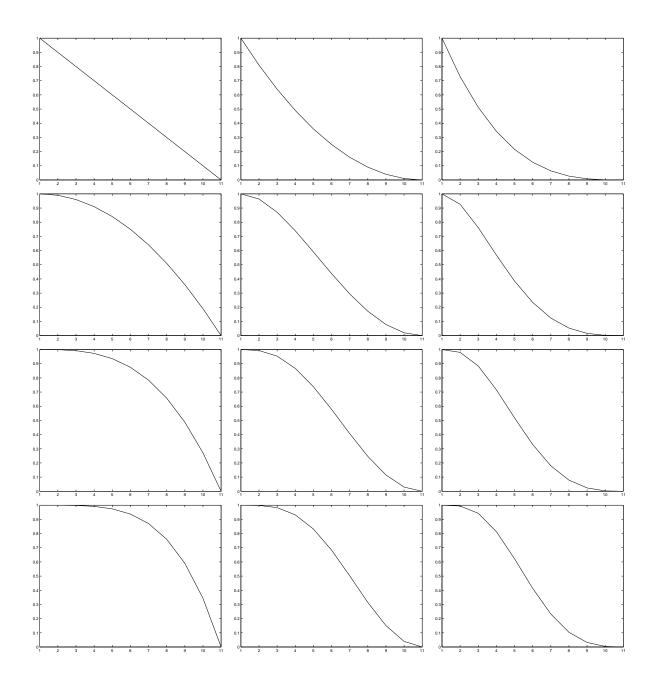
LSH: analysis

Question: How many indices *l* do we need ?

Theorem: Setting $l=n^{\rho}$ for $\rho=\frac{\log 1/P_1}{\log 1/P_2}$ is sufficient with constant probability.

(Hamming metric $\Rightarrow \rho = 1/(1+\epsilon)$)

"Proof"



LSH: Proof

Define:

- ullet p^* a point s.t. $D(q,p^*) \leq r$
- ullet FAR(q) all p s.t. $D(q,p) > (1+\epsilon)r$
- ullet BUCKET $_j(q)$ all p s.t. $g_j(p)=g_j(q)$

Events:

- E_1 : $\sum_{j=1}^{l} |\mathsf{FAR}(q) \cap \mathsf{BUCKET}_j(q)| \leq 3l$
- E_2 : $g_j(p^*) = g_j(q)$ for some g_j , $1 \le j \le l$

Will show: $\Pr[\overline{E_1}] < 1/3$ and $\Pr[\overline{E_2}] < 1/e < 1/2$

Proof: Bad collisions

Let $p \in FAR(q)$. Then

$$\Pr[p \in \mathsf{BUCKET}_j(q)] \le P_2^k$$

For
$$k = \log_{1/P_2} n$$

$$\Pr[p \in \mathsf{BUCKET}_j(q)] \leq P_2^{\log_{1/P_2} n} = 1/n$$

Thus

$$E[|\mathsf{FAR}(q) \cap \mathsf{BUCKET}_j(q)|] \le n \cdot 1/n = 1$$

$$E[\sum_{j=1}^{l}|\mathsf{FAR}(q)\cap\mathsf{BUCKET}_{j}(q)|]\leq l$$

By Markov inequality

$$\Pr[\sum_{j=1}^{l} |\mathsf{FAR}(q) \cap \mathsf{BUCKET}_j(q)| > 3l] = \Pr[\overline{E_1}] \le 1/3$$

Proof: Good collisions

For any g_j :

$$\Pr[g_j(p^*) = g_j(q)] \ge P_1^k = P_1^{\log_{1/P_2} n} = n^{-\frac{\log_{1/P_1} n}{\log_{1/P_2} n}} = n^{-\rho}$$

For $l=n^{\rho}$ we have

$$\Pr[\overline{E_2}] \leq (1 - \Pr[g_j(p^*) = g_j(q)])^l$$

$$\leq (1 - n^{-\rho})^{n^{\rho}}$$

$$\leq 1/e$$

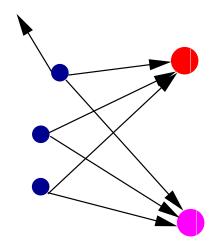
Web clustering

Goal: similarity search/clustering of the Web.

Problem: Huge data set!

Known approaches:

- detecting near-replicas [Broder-Glassman-Manasse-Zweig'97]
- link-based methods [Dean-Henzinger'99, Clever]



Would like to find pages with similar content based on text information (e.g., containing similar words).

Approach

ullet web page P o a set A of tuples of words:

$$P =$$
 "This is an example web page"

$$A = \{$$
 "this is an", "is an example", . . . $\}$

compare A and B by using

$$D(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- clustering (\approx S-LINK):
 - take all pairs of similar documents
 - compute connected components

Algorithms

- [BGMZ'97]:
 - consistent sampling of tuples
 - finding all intersecting pairs < A, B >
 - filtering
 - performance (for 30 M pages) :
 - * 10-tuples: $\approx 2 \cdot 10^{10} B$
 - * 1-tuples: $\approx 10^{15} B^*$
- LSH (for 25 M pages):
 - 67 indices, 300 MB per index
 - essentially same time for 10-tuples
 - most important: same for 1-tuples

Syntactic Approach: Algorithm

- tuple size = 10
- 10-tuples of words
- algorithm:
 - sample (consistently) 1:25 tuples
 - list all

$$< DOC_1, DOC_2, TUPLE >$$

- s.t. TUPLE appears in both DOC_1 and DOC_2
- group <,,> according to $< DOC_1, DOC_2, \cdot >$
- compute the intersections

A bonus "war story"

The aforementioned project did not proceed without problems.

Problem: the home page of colleague's advisor got clustered with:

- assorted pornography
- web pages on alcohol abuse

Problem II: our algorithm was provably correct, i.e., probability of failure was one in a million (we calculated it exactly).

What happened?

- ullet x a word (really, word's "signature", but ignore that)
- $\bullet \ \ \text{We used hash function} \ h(x) = (ax \ \text{mod} \ P) \ \text{mod} \ 2^8$
 - $-P = 2^{64} 57$ (more or less)
 - -a randomly chosen
- \bullet For various reasons, x divisible by 8 always (we were sampling 1 in 8 words)
- Implementation bug: forgot to use long long int \Rightarrow ax was computed modulo 2^{64} (rounding)
- ullet mod P had almost always no effect, since $P pprox 2^{64}$
- x divisible by $8 \Rightarrow (ax)$ divisible by $8 \Rightarrow (ax) \mod 2^8$ divisible by 8

- ullet 3 lowest bits of h(x) were almost always 0, so the actual range size was 2^5 , not 2^8
- Enough for unexpected word collisions to occur...

Moral: do your hashing well, or you might never graduate.

References

- Linear permuations: Broder, Charikar, Frieze, Mitzenmacher, "Min-wise independent permutations", STOC'98. Available at http://www.cs.princeton.edu/~moses/papers/
- Polynomial functions: Indyk, "A small approximately min-wise independent family of hash functions", SODA'99. Available at my web page.
- Locality Sensitive Hashing: Indyk, Motwani, "Approximate nearest neighbor: towards removing the curse of dimensionality", STOC'98, section 4.2. Note: "Near Neighbor" is called "PLEB" in that paper.
- Web clustering I: Broder et al, WWW6, 1997.
- Web clustering II: Haveliwala, Gionis, Indyk, "Scalable Techniques for Clustering the Web", WebDB 2000. Available at my web page.