
6.897: Advanced Data Structures Spring 2005

Lecture 10 — March 8, 2005

Prof. Erik Demaine Scribe: Daniel Kane

1 Introduction

In this lecture, we discuss the implementation of the fusion tree data structure [2], as part of
our discussion of the predecessor problem. Given a static set, fusion trees can answer predecessor
or successor queries in O(logw n) time. In the dynamic case, both updates and queries can be
supported in time O(lgw n + lg w). Using exponential trees [1] (see also the problem set), this can
be reduced to O(lgw n + lg lg n) time per operation.

2 Operations on Words

There are several basic operations on words that we would like to perform in constant time, and
below are implementations for the word RAM (usually referred to as “bit tricks”).

Masking: given a set of bit positions p1, p2, . . . , pk we wish to take a word x =
∑w−1

i=0 xi2i to∑k
i=1 xpi2

pi , thus replacing all bits of x not in a position pi with a 0. This can be done in a single
operation by taking a bitwise and of x with

∑k
i=1 2pi .

Least/most significant set bit: Given a word x =
∑k

i=1 2pi with pi’s distinct, we wish to
compute maxi pi (alternatively mini pi). This gives the index of the most/least significant bit of
x that is set. It is easy to give an AC0 implementation of this operation. One can also given
an implementation on the word RAM using multiplication (see [2]). This is quite complicated (it
requires around 60 operations), and we will not discuss it.

Word-packed vectors: The true power of the transdichotomous RAM lies in the ability to pack
many small values in a single word. For any b, one can pack into a word up to bw/bc integers, each
of b bits. Each of the integers will occupy a range of bits from the word.

Replicating a value: It is easy to construct a word-packed vector of k values using k shifts and
bitwise ors. However, when we want to set all entries to some value x, this can be done in constant
time. We just take x and we multiply it with a pattern of the form 10..0 10..0 10..0 . . .

Parallel comparison: Given two word-packed vectors, one can perform many natural operations
on them in constant time, using word-level parallelism. For example, we can add the vectors (entry-
wise), generating a new word-packed vector with the result. This is done by just one addition of
the words. If elements have a zero spacing bit between them, carries will not propagate between
entries. These spacing bits can be cleared by masking, as above.

A very useful operation is comparing two word-packed vectors A and B, and generating a vector
of bits R (with spacing between them), where R[i] = 1 iff A[i] ≥ B[i]. We pack the entries of A
and B with one spacing bit between them. The spacing bits of A are made one, by oring with a

1

fixed pattern, and the spacing bits of B are made zero, by masking. We now subtract B’s word
from A’s word. Notice that we have not borrows between entries because of the carefully arranged
spacing bits. Furthermore, a spacing bit immediately above entry i will be one if A[i] ≥ B[i] (no
borrow from the spacing bit was needed), and will be zero if A[i] < B[i]. We can now mask away
everything except the spacing bits, which encode the answers to the comparisons.

Predecessor in a word-packed vector: Given a word-packed vector A, arranged such that
A[1] < A[2] < . . . , and a b-bit number y, we want to find the index of the predecessor of b in A
(i.e. the i so that A[i] < y ≤ A[i + 1]). We first replicate y into every entry of a vector B. Then,
we perform a parallel comparison of B and A. Now the result is given by the most significant set
bit; we find the index of this bit, and divide by b + 1 to get the real answer.

3 The Fusion Structure

The building block of fusion trees is a static data structure on k = O(w1/5) keys, that can be
constructed in kO(1) time, takes O(k) space, and can be queried for successor and predecessor in
O(1) time. Observe that it is not clear why word packing should help with this problem, since the
integers we are considering have w bits, exactly matching the word. The key insight is that we only
need a few bits of each word to determine the predecessor.

Let the keys be x1, . . . , xk. Interpret these numbers as root-to-leaf paths in a binary trie of height
w. Consider the tree induced by these paths. Let b1, . . . , br be the heights of the nodes which have
more than one child in the induced tree. Call these bit positions the important bits. Note that
because these nodes have more than 1 child, there are at most k such nodes, so r = O(k). Notice
also that the bi’s are the set of bit positions at which the bit strings of any two xi, xj differ for the
first time.

We define the sketch of a number to be just the important bits (b1, . . . , br), extracted from that
number. Notice that for any y and y the ordering of sketch(y) and sketch(z) is the same as the
ordering on the masks of y and z leaving only the bits in the bi positions. Since xi and xj differ
for the first time at some b position, we have that sketch(x1), . . . , sketch(xk) and x1, . . . , xk

have the same relative ordering. A fusion structure stores a word-packed vector with all sketches
of x1, . . . , xk. This fits in a word since it takes O(kr) = O(k2) = O(w2/5) bits. Furthermore, we
store the real xi’s consecutively, so that given any xi we can immediately find its successor and
predecessor.

In order to query the data structure to find the predecessor and successor of some q, it suffices
to find either one or the other. First, we compute sketch(q) and use our parallel comparison to
find the i satisfying sketch(xi) < sketch(q) ≤ sketch(xi+1). Note that xi and xi+1 do not
necessarily have any relation to the predecessor or successor of q. To see that, consider the case
when q diverges from its predecessor and successor (in the trie of height w) at some bit position
which was not defined as important. Then, that bit position is ignored by the sketch function. The
next important bit positions may be arbitrary in q, causing xi and xj to be somewhap haphazard.

The crucial observation is that xi and xi+1 nevertheless give some information about the predecessor
or successor of q. Assume by symmetry that q diverges from its predecessor lower that the point
of divergence with the successor. Then, one of xi or xi+1 must have a common prefix with q of
the same length as the common prefix between q and its predecessor. This is because the common

2

prefix remains identical through sketch, and the sketch predecessor can only deviate from the real
predecessor below where q deviates from the real predecessor.

The length of the common prefix can be computed by taking bitwise xor and finding the most
significant set bit. Hence we can find the common prefix between q and its predecessor / successor.
Assume that the predecessor deviates below. Now the question is how to find the actual predecessor
based on the known common prefix. If C is the common prefix, the predecessor is of the form C0A,
and q has the form C1B for some A and B. We now construct the word q′ = C011..1, and we
find its predecessor in the sketch world (as above). We claim that the sketch predecessor of q′ is
actually the predecessor of q. Since C is the longest common prefix between q and any xi, we know
that no xj begins with the string C1. Hence, the predecessor of q must begin with C0, and it must
also be the predecessor of q′ = C011..1. Now we claim that the predecessor of q′ was computed
correctly. Note that all important bits lower than |C| are 1, and thus q′ remains the maximum in
the subtree beginning with C, even after sketching. The maximum element xi beginning with C is
actually the predecessor we want.

4 Approximate Sketches

In the discussion from above, we assumed we could compute sketch(q) in constant time. Unfor-
tunately, we cannot do that. What we can do is compute an approximate sketch. An approximate
sketch has all bit positions b1, . . . , br in order, possibly separated by zero bits. These zero bits do
not influence the relative order of two sketches, so an approximate sketch is enough for the algo-
rithm from above. The trick is, of course, to compute small approximate sketches. We show how
to compute appoximate sketches of size O(w4/5), by a clever use of multiplication. This explains
why we needed to restrict k = O(w1/5) in the fusion structure: k approximate sketches have size
O(w), so they can be packed in a word.

To summarize, given bit positions b1 < b2 < . . . < br with r = O(w1/5) we want to construct, in
polynomial time, a set of bit positions c1 < c2 < . . . < cr < O(w4/5) and an operation computable
in O(1) time that takes a word x =

∑
i=0 xi2i to sketch(x) =

∑r
i=1 xbi

2ci . We accomplish this is
several steps:

Step 1: Construct m1,m2, . . . ,mr so that each of bi + mj are distinct modulo r3. This can be
done iteratively. If we have already picked m1, . . . ,mt so that there are no conflicts, it is enough
to pick an mt+1 that is not congruent to any mi + bj − bk modulo r3 for 1 ≤ i ≤ t and 1 ≤ j, k ≤ r.
Since there are fewer than r3 numbers to avoid, there must be some value of mt+1 that works.

Step 2: Let m′
i equal mi plus the correct multiple of r3 so that w + r3(i− 1) ≤ m′

i + bi < w + r3i.
Hence we have that m′

i +bj are all distinct because they are distinct modulo r3, and w ≤ m′
1 +b1 <

m′
2 + b2 < . . . < m′

r + br < w + O(r4).

Step 3: We now construct the sketch algorithm. Given x =
∑w−1

i=0 xi2i, we mask to leave only the
bi bits, ending up with

∑r
i=1 xbi

2bi . Next we multiply this by m =
∑r

i=1 2m′
i to get

∑r
i,j=1 xbi

2m′
i+bi .

Notice that by the results from step 2, that the powers of 2 in this expression are distinct, hence if
we consider the second word in this product and mask to consider only bits of the form m′

i +bi−w,
we are left with

∑r
i=1 xbi

2m′
i+bi−w. Hence if we let ci = m′

i + bi − w, this satisfies the properties
needed for our function.

3

5 Fusion Trees

We now store the n elements in a balanced B-tree with branching factor Θ(w1/5). At each node
of the tree we store a fusion structure which stores values separating the keys stored in each of
its subtrees. We can insist that the branching factors are Θ(w1/5) on all levels except for the
last. Hence there are O(logw n) levels. Queries are performed by performing a query in the fusion
structure at each level to determine which subtree to look in. This takes O(1) time per level for a
total of O(logw n) time. It is clear that this data structure takes linear space.

Making the structure dynamic is a bit more problematic, because rebuilding a fusion node takes
wO(1) time. However, we can reuse the idea from last lecture, which shows how to hide a wO(1)

factor in the update by bucketing elements into chunks of size wO(1). Now an operation also need
to search in the BST of a chunk, so the running times become O(lgw n + lg w). An alternative
dynamization is via exponential trees [1].

References

[1] Arne Andersson, Mikkel Thorup: Tight(er) worst-case bounds on dynamic searching and pri-
ority queues, STOC 2000: 335-342.

[2] M. Fredman, D. E. Willard, Surpassing the Information Theoretic Bound with Fusion Trees,
J. Comput. Syst. Sci, 47(3):424-436, 1993.

4

