
6.897: Advanced Data Structures Spring 2003

Lecture 4 — February 24, 2003

Fusion Trees

Prof. Erik Demaine Scribe: Ben Leong

1 Overview & Review/Background

In Lecture 2, we introduced the Transdichotomous RAM model of computation. In the Transdi-
chotomous RAM model, the memory is composed of words of length lg u bits each, where u is the
size of the universe U . Intuitively, it should take only one word to name an item. The manipulation
of a word in this model takes O(1) time for operations like addition, subtraction, multiplication,
division, AND, OR, XOR, and left/right shift.

In Lecture 3, we discussed how the fixed-universe successor problem can be solved with y-fast
trees [Wil84] in the Transdichotomous RAM model with insert, delete, succesor, and predecessor
operations taking only O(lg lg u) time.

In this lecture, we will see how we can approach the same problem using fusion trees [FW93]. Fusion
trees will perform particularly well when u is very large with respect to the number n of elements.
More specifically, our goal is to perform the operations insert, delete, successor and predecessor in
time better than the O(lgn) obtained by the usual balanced binary serach tree.

2 Top-Level Idea

A fusion tree is essentially a B-tree [BM72] with branching factor B = (lg n)1/5. What is the height
of the B-tree? If h is the height of the B-tree, then n = Bh, so

n = ((lg n)1/5)h

=⇒ lg n =
h

5
lg lgn

=⇒ h = Θ

(
lgn

lg lg n

)

Thus, to obtain O
(

lg n
lg lg n

)

time, our problem is reduced to the following: how do we determine

where a given query q fits among the (lg n)1/5 word-length keys at each node in O(1) time. Without
some preprocessing, we cannot even afford to look at all the keys ((lg n)1/5 words) in O(1) time! To
develop a solution, we begin by assuming a static model, where we do not insert/delete and work
out how we can perform a query given a fixed set of keys at a node.

1

PSfrag replacements

}

B = (lg n)
1
5

height

= Θ(lg n
lg lg n)







Figure 1: Determining the height of the fusion tree.

3 What matters in a node?

The first idea is to convert all Θ(B) keys at each node into binary strings and view them as paths
in a binary tree. In general, these Θ(B) keys will partition the address space into Θ(B) buckets
and our task for a given query q is to determine which bucket it fits into. Suppose that the keys in
a node are x0 < x1 < · · · < xk−1, where k = Θ(B).

1

0

0

0

0

0

0

0

0

0

0

1

11

1

1

PSfrag replacements

x0 x1 x2 x3
}B buckets

Although the paths may be arbitrarily long, we notice that the branching nodes (shaded in black
above) roughly characterize the shape of the binary tree. For k keys, there are exactly k − 1
branching nodes. Because several branching nodes can occur at a given level, the number of levels
that contain branching nodes is less than or equal to k− 1. This means that we require less than k

bits to distinguish between the xi’s. We shall call the bit positions corresponding to the branching
levels b0, b1, · · · , br−1, where

b0 < b1 < · · · < br−1 and r ≤ k − 1 = Θ(B)

Definition 1 (Perfect Sketch). Perfect Sketch(x) = extract bits b0, b1, · · · , br−1 out of word x,
i.e. a r-bit vector where the ith entry is the bith bit of x.

A perfect sketch would allow us to reduce the node representation to k r-bit strings. Because
k = Θ(B) and r = O(B), sketch(x) requires O(B2) = O((lgn)2/5) bits total. This is less than a
word.

Problem: Perfect sketch is hard to compute (especially for an arbitrary query q)!

2

Solution: We compute a slightly less compact form of sketch(x). This approximation of sketch
contains the same bits as the perfect sketch in the same order, but the bits are spread out with
extra 0’s in between (in a pattern that is independent of x, i.e. in consistent positions).

4 Computing sketch(x)

We compute sketch(x) using multiplication. This trick uses the word-level parallelism available
in the Transdichotomous RAM model. Let us start by trying to multiply by m and see how we
should choose m. Suppose x =

∑r−1
i=0 xbi2

bi . We can discard all irrelevant bits by computing
(

x AND
∑r−1

i=0 2
bi

)

, leaving just the bits that correspond to the branching levels b0, b1, · · · , br−1.

If we multiply x by m =
∑r−1

i=0 2
mi , we obtain

(

x AND
r−1∑

i=0

2bi

)

·m =

(
r−1∑

i=0

xbi2
bi

)

·
(

r−1∑

i=0

2mi

)

(1)

=
r−1∑

i=0

r−1∑

j=0

xbi2
bi+mi (2)

Now, all we need to do is to choosem so that the bits b0, b1, . . . , br−1 are redistributed in a compact
way. In particular, we will pick m such that

1. bi +mj are distinct ∀i, j (to prevent collisions).

2. bi +mi are concentrated in a small range
1 (to allow us to deal with it as a single word).

3. b0 +m0 < b1 +m1 < · · · < br−1 +mr−1, i.e. the order of b0, b1, . . . , br−1 is preserved (so that
we do not lose information).

Once we find m, we can compute sketch(x) as

sketch(x) =

(((

x AND

r−1∑

i=0

2bi

)

·m
)

AND

r−1∑

i=0

2bi+mi

)

>> min
i
{bi +mi}. (3)

Here
(((

x AND
∑r−1

i=0 2
bi

)

·m
)

AND
∑r−1

i=0 2
bi+mi

)

extracts all the bits from the word x that

correspond to the branching levels b0, b1, . . . , br−1 by masking out all the extraneous bits generated
by the multiplication, i.e., all the bits 2bi+mj where i 6= j. We are then left with r bits within a
range of r4 bits. We simply determine the lowest-order bit and right-shift until we remove all the
trailing zeros and we are left with the desired r4-bit word.

Now we return to the issue of picking m, or more precisely, the mi’s.

First: Pick m′
0 < m′

1 < · · · < m′
r−1 < r3 such that bi + mj are distinct modulo r3 ∀ i, j. We

prove by induction that this is possible.

1More specifically, within a range of r4 bits.

3

Proof: When r = 1, we have only one term and clearly the condition is trivially satisfied. Assume
that we are able to pick m′

0 < m′
1 < · · · < m′

t−1 such that bi + mj are distinct modulo r3. We
observe that in order to pick m′

t such that the condition is still satisfied, we only have to avoid all
the terms mi + bj − bk ∀ i, j, k. Otherwise,

m′
t ≡ mi + bj − bk (mod r3)

=⇒ m′
t + bk ≡ mi + bj (mod r3) (BAD!)

To avoid all the terms mi + bj − bk ∀ i, j, k, we have to avoid t · r · r ≤ (r − 1)r2 terms, because
t < r. Because the number of terms we have to avoid is (r − 1)r2, which is less than the size r3 of
the address space, there must be at least one term that we do not have to avoid2.

Second: We add suitable multiples of r3 to m′
i to produce mi so that the condition b0 +m0 <

b1 +m1 < · · · < br−1 +mr−1 is satisfied and all the bits fall just beyond the highest bit of the low
half of the product, as shown in the following figure:

PSfrag replacements

one word

×

r4 bits

· · · r3r3r3r3r3

br−1 +mr−1
b0 +m0

b1 +m1

Clearly, we can find the appropriate mi’s if we choose the multiples for m′
0, m

′
1, . . . , m

′
r−1 in strictly

increasing order. We observe that the resulting sketch has ≤ r4 bits.

Definition 2 (Sketch(Node)). We define the sketch for an entire node as follows:

sketch(node) = 1

≤r4 bits
︷ ︸︸ ︷

sketch(x0) 1

≤r4 bits
︷ ︸︸ ︷

sketch(x1) · · · 1
≤r4 bits

︷ ︸︸ ︷

sketch(xk−1) (4)

Essentially, it is the concatenation of the sketches3 of all the keys in the node, separated by 1’s.

Because each sketch(xi) is ≤ r4 bits in length and there are k of these terms, the total length of
sketch(node) is ≤ (r4 + 1)k, taking into account the extra 1’s that are concatenated between the
sketch(xi)’s. Because r ≤ k − 1, r4 + 1 < k4. Hence, the length of sketch(node) < k5 ≤ B5 = lgn

bits. This means that sketch(node) will fit in one word!

2This is a simple application of the Pigeon-hole Principle, where there are less pigeons than there are holes.
Clearly, at least one hole must be empty!

3Note that the function sketch(xi) (for all keys and all queries) at a node is a constant function determined only
by the keys (which is possible because we are considering only the static case).

4

5 Finding where a query fits in the sketch world

Once we compute the sketch of a node, we want to be able to use the sketch to allow us to compute
efficiently where a query q fits with respect to all the keys at the node. To do so, we first compute
sketch(q) using (3) above. Next, we multiply sketch(q) by a number generated by concatenating
k repetitions of the (r4 + 1)-bit sequence of the form “00 · · · 01”, i.e.,

replicated-sketch(q) =

sketch(q)× (
r4+1 bits
︷ ︸︸ ︷

00 · · · 01
r4+1 bits
︷ ︸︸ ︷

00 · · · 01 · · ·
r4+1 bits
︷ ︸︸ ︷

00 · · · 01
︸ ︷︷ ︸

k terms

) = 0sketch(q)0sketch(q) · · · 0sketch(q)
︸ ︷︷ ︸

0sketch(q) repeated k times

(5)

Next, we subtract replicated-sketch(q) from sketch(node), i.e.,

sketch(node)− replicated-sketch(q) =

r4+1 bits
︷ ︸︸ ︷
c0 · · · · · ·

r4+1 bits
︷ ︸︸ ︷
c1 · · · · · · · · ·

r4+1 bits
︷ ︸︸ ︷
ck−1 · · · · · ·

︸ ︷︷ ︸

k terms

(6)

If we AND this expression with
∑k−1

i=0 2
i(r4+1)+r4

, we obtain





r4+1 bits
︷ ︸︸ ︷
c0 · · ·

r4+1 bits
︷ ︸︸ ︷
c1 · · · · · ·

r4+1 bits
︷ ︸︸ ︷
ck−1 · · ·

︸ ︷︷ ︸

k terms



 AND

(
k−1∑

i=0

2i(r
4+1)+r4

)

=

r4+1 bits
︷ ︸︸ ︷

c00 · · · 0
r4+1 bits
︷ ︸︸ ︷

c10 · · · 0 · · ·
r4+1 bits
︷ ︸︸ ︷

ck−10 · · · 0
︸ ︷︷ ︸

k terms

(7)

We observe that

ci =

{
0 if sketch(xi) < sketch(q)
1 if sketch(xi) ≥ sketch(q)

(8)

and that ci as a sequence is zero for a while and then all 1’s and all that remains is for us to find
the crossover point. As discussed in Lecture 3, there are many ways to find the most significant
bit of (7). One is to use the O(1)-time algorithm of [Bro93]. We cannot afford to precompute a
lookup table on half-words, because this would require Θ(

√
u lg lg u) space, which may be much

larger than n. However, we can apply a different sketch function to (7) to be able to use a lookup
table. Because we care about only k bits, we can compute the sketch and extract the k bits. More
specifically, we can extract all the relevant k bits into a bit string of length ≤ k4 bits and perform a
lookup on the entire string. Because k4 = Θ(B4) = Θ((lg n)4/5), the space required for the lookup

table is O(2(lg n)4/5
lg lgn) = o(n).

6 Knowing where you are in the sketch world is not enough!

Even though we have shown that we can determine where a query fits in the sketch world, we still
need something more. Consider the tree with 4 elements and an incoming query “0101” as shown
in the following figure:

5

sketch: 00 0001 10 11
0000 1100 11110010 q = 0101

If we compute sketch(q), we obtain “00” and hence it would seem that q belongs somewhere between
“0000” and “0010.” Yet, this is clearly not the case.

Problem: Finding where q fits in the sketch world is not sufficient.

Solution: We first find the two neighbors of q in the sketch world, say xi and xi+1. Next, we find
the longest common prefix/lowest common ancestor of the real elements (not sketch) of either q

and xi or q and xi+1 (whichever is longer/lower). This is equivalent to finding the most significant
1-bit (again!) in the XOR of the 2 elements (which we know how to do from Lecture 2). This bit is
where we “fell off” the correct path and identifies the node of divergence. If we fix this first wrong
bit and set all remaining bits to either all 0’s or 1’s, we can find the minimum/maximum in the
subtree via another query in the sketch world and our query is complete. 2

Next time: In the next lecture, we shall see how we can make fusion trees dynamic and faster.

7 Open Problems (Demaine & Iacono 2003)

A natural question that we can ask is: how can we generalize fusion trees and the van Emde Boas
data structure to higher dimensions? Let’s start with the 2-dimensional case.

Problem 1: More specifically, how much more efficiently can we solve the planar point location
problem? In this problem, a plane is divided into cells by a graph. Given a query point, the goal
is to find the cell that contains the point. (See Figure 2.) Preprocessing is allowed on the planar
graph, but queries are performed online. The goal is to come up with an algorithm that can do
better than O(lg n) time.

Problem 2: A special case of this problem involves an infinite strip in a plane. The strip is
divided into trapezoids by line segments. Given a query point, the goal is to find the trapezoid
that contains the point. (See Figure 3.) The challenge is to solve this problem in o(lgn) time.

6

given this point
return the cell
that contains it

Figure 2: Planar Point Location Problem.

given this point

that contains it
return the trapezoid

Figure 3: Special Case of Planar Point Location Problem.

7

References

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

[Bro93] A. Brodnik. Computation of the least significant set bit. In Proceedings Electrotechnical
and Computer Science Conference, volume B, pages 7–10, 1993.

[FW93] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences, 47:424–436, 1993.

[Wil84] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Theta(n).
Information Processing Letters, 17:81–84, 1984.

8

