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1 Topics Covered

1. Review of y-fast trees

2. RAMBO model

3. Finding the least significant 1 bit in a word

4. Van Emde Boas in O(1)

5. Decision-tree model, lower bound

2 Review of y-fast trees

The y-fast tree [5] is a data structure for the fixed-universe successor problem. It uses indirection as
shown in Figure 1. Each bottom structure is a balanced binary search tree (e.g., AVL tree or red-
black tree) storing Θ(lg u) elements, where u is the size of the universe. The top (main) structure
is a dynamic perfect hash table storing all lg u prefixes of each of the Θ(n/ lg u) representative
elements (one per bottom tree), where n is the number of elements in the structure.
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Figure 1: y-fast trees.

To find the successor and predecessor of x in a y-fast tree, we proceed as follows:

• Binary search on the length of a prefix match between x and a representative element, in
O(lg lg u) time.

• The hash table stores with that prefix the minimum and maximum elements of subtree rooted
at the corresponding node in a binary tree.
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• The prefix match narrows the search down to two bottom trees (because we learned that x
is between two representative elements).

• Search in the two bottom trees in O(lg lg u) time.

Updates work as follows:

• Update the bottom tree in O(lg lg u) time.

• If a bottom tree grows to 2 lg u elements, split it in half.

• If a bottom tree shrinks to 1
4
lg u elements, merge it with a neighbor (and then possibly resplit

in half).

• In either case, O(1) representative elements change, and the cost to update the top structure
is O(lg u). We can charge this cost to the Θ(lg u) insertions or deletions that caused the grow
or shrink.

• Amortized cost of update is O(lg lg u).

3 RAMBO model

The RAMBO model was introduced by Fredman and Saks [3]. RAMBO stands for Random Access
Machine with Bit Overlap. Like the Transdichitomous RAM [4], a RAMBO has words of length
≥ lg u bits, and the words can be manipulated in O(1) time. Unlike the RAM, however, a RAMBO
can have some of its words partially overlapping, i.e., sharing some bits. Figure 2 shows a simple
example in which half of the words are rows of a lg u × lg u matrix, half of the words are columns
of the matrix, and every row word and column word share exactly one bit.

Figure 2: Matrix RAMBO.

This model will be used to solve the fixed-universe successor problem in constant time per operation.
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4 Finding the least-significant 1 bit

Problem: Given a binary word w, find the index of the least-significant 1 bit.

Solutions: All of the following solutions take O(1) time.

• An all-powerful RAM can do this by defining it as an instruction.

• This operation is an instruction on many real chips like Cray and Pentium.

• We can get a word containing just the least-significant 1 bit by computing a = (w AND w −
1) XOR w. For example:

w = 01011101000

w − 1 = 01011100111

w AND (w − 1) = 01011100000

a = (w AND (w − 1)) XOR w = 00000001000

The word a captures the information regarding the position of the least significant 1 bit in w.
This computation can be done in O(1) on a word of length lg u.

Instead of a = 00000001000, if we want the actual index 3 (11 in binary), then the problem
can still be solved with O(1) arithmetic and bitwise operations [1].

• For an easier, general solution to problems like this one, it is reasonable to build a lookup
table.

A First Attempt: There are u possible bit strings of length lg u. For each such input, there
are lg u possible indexes for the answer. Thus, we can store an answer using O(lg lg u) bits.
Therefore, a simple lookup table storing answers for all u inputs would take O(u lg lg u) space,
which is too much (superlinear).

Solution: The space requirement can be dramatically reduced by a two-step lookup, that
is, searching for a 1 in the lower half bits of the word and then in the higher half bits. Let
LSB(x) be the function which returns the least significant 1 bit in the word x. Let LSB[·]
denote a lookup table access. We denote the lower and the higher half words of x by low(x)
and high(x), respectively. Then,

LSB(x) =

{

LSB[low(x)] if low(x) 6= 0
LSB[high(x)] + lg u/2 otherwise

Each call to LSB(·) involves one lookup which can be done by a single random access. Now it
is sufficient to have a table of answers for all possible half words with (lg u)/2 bits. Such a table
has 2lg u/2 =

√
u entries. Therefore the space requirement is now only O(

√
u lg lg u) = o(u)

bits. The lookup still takes O(1) time.
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5 Van Emde Boas in O(1) in the RAMBO model

Brodnik, Carlsson, Karlsson, and Munro [2] showed how to solve the fixed-universe successor prob-
lem in O(1) time in the RAMBO model. There are 2u bits of RAMBO storage, one for each node in
a complete binary tree (see Figure 3).1 The words in the RAMBO consist of the bits corresponding
to a root-to-leaf path in the binary tree.

Figure 3: Binary tree with the dark nodes representing present elements and their ancestors.

Suppose we set a bit to a 1 if the corresponding node is an ancestor of a present element, as in
Figure 3. As described in the previous section, given a query word w ∈ U , we can find the lowest
set ancestor of w in O(1) time. In order to get the successor, we could maintain a pointer from
each node to the min and the max elements in the subtree rooted at that node, as in Figure 4. But
then each leaf may have upto 2 lg u pointers to it, and therefore Insert and Delete would require
Ω(lg u) pointer updates.

Figure 4: Binary tree with nodes storing pointers to min and max in their subtress.

Instead, we store left and right pointers in a node only if the pointers are different from its parent.
More precisely, we store pointers at each branching node, i.e., a node with elements present in both
the left and right subtrees. Each branching node stores a pointer to the maximum element in its
left subtree and the minimum element in its right subtree. See Figure 5.

Figure 5: The same binary tree with pointers only from the branching nodes (light nodes with an
outer circle).

Now the predecessor and successor of an element of the universe can be found by the two pointers
stored at the lowest branching ancestor. The data structure takes only u bits of RAMBO space
and 2n words of RAM for the pointers.

1In fact, there are only u bits of RAMBO storage, because the leaves do not have to store their bit.
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One detail remains: how to map a node in the RAMBO tree to the two corresponding pointers
stored in RAM space. This mapping can be done by storing the RAM pointers in a dynamic
perfect hash table, keyed by the position in the tree. A position in the tree can be represented by a
one-word bit string to specify the root-to-node path together with the length of that path. Such a
position representation can be computed in constant time, and hence the hash table does the job.

Incidentally, this RAMBO structure has been implemented in real hardware as an SDRAM memory
module.

6 Outside fixed universes: Decision-tree model

In this model, the algorithm is viewed as a tree. The nodes represent any computation except for
branching, and the branches emerging from a node represent the decisions. Each node is allowed
to have only O(1) branches. The length of a root-to-leaf path is the running time of a particular
instance of the algorithm. The worst-case running time of the algorithm is the height of the tree.

This model is similar to the comparison model, except that the latter allows only comparison
operations in the nodes. Thus, the comparison model is strictly weaker than the decision-tree
model.

What kind of computation is not captured by this model? Random access. With random access,
the computation can perform multi-way branching based on the input read, whereas this model
allows only O(1)-way branching.

Execution time

0 1

0 1

0

Figure 6: Decision tree model. The nodes represent any finite computation.

6.1 Lower bound

Theorem 1 Any data structure implementing Insert and Successor requires Ω(lg n) amortized time

in the worst case, in the decision tree model.

Proof: The proof is by reduction from Sort(a1, a2, . . . , an):

Insert(a1)
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Insert(a2)
. . .
Insert(an)
print x = Successor(−∞)
print x = Successor(x)
. . .
print x = Successor(x)

The n Successor calls produce the sorted list of the elements a1, a2, . . . , an. Therefore Sort ≤
Insert&Successor. For sorting n elements, there are n! possible permutations, so there are at least
n! leaves of the tree. Thus, the height of the tree is at least ∼ n lg n, so sorting requires Ω(n lg n)
time.

7 Introduction to fusion trees

Once again the desired operations on the data structure are Insert, Delete, Successor and Prede-

cessor, but now we consider the case that the universe U is very big, so Θ(lg lg u) is too large. We
want a running time of o(lg n).

The fusion tree [4] is a B-tree with branching factor of Θ(lg n)1/5. It is able to visit a node,
and decide which branch to follow, in constant time. Therefore, the time to perform a search is

proportional to the height of the tree, O
(

lg n
lg lg n

)

.
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