6.897: Advanced Data Structures Spring 2003

Lecture 12 — Monday, April 7, 2003
Prof. Erik Demaine Scribes: Wayland Ni and Gautam Jayaraman

1 Overview

In the last lecture we solved the static least common ancestor (LCA) problem in constant time
per operation after linear preprocessing. We also built suffix trees in linear time after sorting the
alphabet.

In this lecture we establish succinct data structures, which are [typically static] structures that use
the information-theoretic optimum space up to lower-order terms and support basic navigational
operations quickly.

2 Succinct Data Structures

Our goal is to use space equal to the information-theoretic optimum (or information-theoretic lower
bound) plus lower-order terms and still be able to manipulate and search the structure. Specifically,
for an n-bit string, we would like to get the right constant term in front of the n instead of just
settling for O(n).

2.1 Binary Trees/Tries

For a given binary trie, we would like to know how many bits it would take to encode the trie. We
start by noting that the number of distinct rooted labelled binary tries on n nodes is the Catalan
number C),, where C), = (277:)/ (n +1). Then, on average, it would take lg C,, bits to encode a
single trie.
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So we can intuitively (log-asymptotically) think of C), as being roughly 4™, because 1g C;, ~ 2n.

2.1.1 Sidenote: Prefix Codes

Prefix codes are inserted at the beginning of a code to establish the length of the encoding, so the
reader knows when to stop reading. A good tool to know is how to make codes into prefix codes.



Given an n-bit string, we must encode its length. Of course, lgn bits are needed to encode the
length of the string. But then, we also need lglgn bits to encode the length of the extra Ign bits,
and lglglgn bits to encode the length of the extra lglgn bits, etc. Thus, the length of the optimal
prefix code would be n +1gn +1glgn +---+ 1+ 1g* n.

However, since the length of the optimal code is such a complex expression, we can simplify the
code by using a little extra space. We use lgn bits (the “prefix”) to encode the length of the n-bit
string and another lgn bits (the “pre-prefix”) to encode the length of the lg n-bit prefix in unary.
In other words, we repeat 0’s followed by a 1 to indicate the length. The total length would then
be n 4 21gn.

2.2 Level-Order Representation

The trivial way to use the optimum space, lg C), & 2n + o(n), would be to use a lookup table so
we could refer to a specific binary trie by number. However, our goal is to be able to navigate and
operate on the structure efficently as well.

Definition: An internal node is a node that contains an element.

Definition: An external node is a node without an element. External nodes are appended to the
tree for each missing child.

We now examine an encoding that is more navigable, called level-order encoding. To construct the
encoding, we first append an external node for each missing child. Now, there are 2n + 1 nodes, so
we spend 1 bit per node. We visit the nodes in level order, that is, we examine the nodes one row
at a time, starting at the root and continuing downwards, going from left to right within each row.

We write down a 1 for an internal node and a 0 for an external node. Since this encoding takes
2n + 1 total bits, it must be optimal.

Here is an example encoding for the tree below:

ABCxDEF *x G *x x
111 1110100

*
0

Visual representation of binary trie (left) and with added missing children (right).

Claim 1. The positions of the left and right children of the ith internal node are 2¢ and 2i + 1.



Proof. Suppose there are j external nodes up to the ith internal node. We show that strictly
between the ith internal node and its left child, there are i — j — 1 nodes:

e offspring of i — 1 previous internal nodes = (2(i — 1)).
e i — 1 of which were internal nodes, (all but root).

e j of which were external nodes.

Thus, the number of nodes strictly between the ith internal node and its left child is 2(i — 1) — (i —
1)—j=i—j—1.
Therefore, the position of left child =i+ j+ (i —j— 1)+ 1 = 2i.

2.3 Rank and Select

We define the functions Rank(7) and Select(i) in a static bit string:

Rank(i) = Number of 1’s at or before index i
Select(z) = Index of ith 1 bit

Note that Rank(i) and Select(i) are inverses. We can now define left-child(:), right-child (i) and
parent (i) as functions of Rank(i) and Select(i):

left-child(i) = 2 x Rank()
right-child(7) = 2 x Rank(7) + 1
parent(i) = Select(|i/2])

Our goal is to support these queries in O(1) time and o(n) extra space.

2.3.1 Rank

Suppose we divide up the string into bit strings of length % lgn. Using a lookup table on each piece
would require O(y/nlgnlglgn) space. Between each pair of pieces, we must store the number of
1’s so far from the left. Since we split the string into 1/2le = 1%; pieces, and lgn bits are needed
to store the cumulative counts of 1’s, the total cost is ©(n), which is too much.

n

Instead, using the idea from [J89], we can split the string into Tn)? pieces of length (lgn)2. Then

storing the cumulative ranks will cost O(W lgn) = O(lgln) bits, which is o(n).

Now we must split the (Ign)?-size chunks into % lg n-size sub chunks. We then store the cumulative
ranks within chunks between each pair of sub chunks. Essentially, we are storing ”local” counts
of 1 bits between every pair of %lg n-bit sub chunks. Moreover, since each count is local to the
specific chunk, the maximum number of 1 bits is (Ign)2, which takes lglgn bits to encode. Since
there are & total subchunks, and each local count can be encoded by lglgn bits, the amount of

lgn

space used is O(g;5; lglgn) = o(n).

At the bottom level of the structure, a simple lookup table can be used.
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Figure 1: Division of strings into bit strings of length %lgn (top) and length (Ign)? (bottom)

2.3.2 Select

Implementing Select is also possible but much harder, because the splits aren’t “even” in terms of
sparseness of 1 bits. The (complicated) details can be found in [CM96].

2.4 Transformations

We now show three succinct binary trie representations, and how to move between them. These
three representations, along with their isomorphism, were discussed in [MR97].

2.4.1 [“Normal”] Binary Trie

This is the type of tree we’re used to in e.g. balanced search trees. Each node in a binary tree may
or may not have a left child, and may or may not have a right child, but these two children are
always distinguished.




2.4.2 Rooted Ordered Tree

Each node in a rooted ordered tree has any number of children (0, 1, 2, ... ) and these children
are ordered. But you cannot have a second child without having a first child (as you can in binary
trees).

A rooted ordered trie can be constructed from a binary trie as follows:

1. Make a new root node, called *.
2. Set the old root node to be the left-child of *.

3. Examine the nodes one at a time in order. Whenever examining a node that is a right-child,
move that node (and its subtree) up so it becomes a right-sibling of its former parent.

2.4.3 Balanced Parentheses

cCC)yc)yc)yy ccyy )
* AABBDDGGACEECTEFTF %

These can be generated by taking a DFS walk over the rooted ordered trie, writing a left parenthesis
when expanding a node, and a right parenthesis when we are finished with its subtree.

2.4.4 Equivalent Relations

Since these three representations are isomorphic, we can establish equivalencies between common
operations on each representation. KEach heading below identifies an operation on an ordinary
Binary Trie, then the ensuing section explains the equivalent operations for the other two repre-
sentations. Some of the sections also depict all the examples of that relation in the root-ordered
tree and the balanced parentheses.

e node
Rooted Ordered Equivalent: Node. It’s the same.
Balanced Parentheses Equivalent: The position where a left parenthesis corresponds to the
node label.



Balanced parentheses example with all the node positions underlined.

e left-child(node)
Rooted Ordered Equivalent: The leftmost child of node. If node has no children, then null.

Rooted ordered example with all the left-child relations depicted in dotted lines.

Balanced Parentheses Equivalent: If the next position 7 after node contains a left parenthesis,
theni. Otherwise null.

Uy oy Coy oy Uy Yy oy
* A B B D D G G A C E E C F F *

Balanced parentheses example with all the left-child relations depicted in dotted lines.

e right-child(node)
Rooted Ordered Equivalent: The next sibling to the right of node, if there is one.

Rooted ordered example with all the right-child relations depicted in dotted lines.

Balanced Parentheses Equivalent: The position ¢ immediately following the right-parenthesis
that matches the left-parenthesis at node, as long as i contains a left-parenthesis.



* A B B D D G G A C E E C F F *

Balanced parentheses example with all the right-child relations depicted in dotted lines.

e parent(node)
Rooted Ordered Equivalent: The left sibling of node, if it exists. Else the parent of node.

Rooted ordered example with all the parent relations depicted in dotted lines.

Balanced Parentheses FEquivalent: If character ¢ immediately preceeding node is a right-
parenthesis, the node at the matching left-parenthesis of i. Else 3.

Balanced parentheses example with all the parent relations depicted in dotted lines.

e subtree-size(node) — (This is useful because it facilitates the computatation of indices of external

nodes, which are indices into suffix arrays.)
Rooted Ordered Equivalent: size of node plus sizes of all rightward siblings (if any).

Rooted ordered example depicting subtree at C using
diamond-shaped nodes, showing that subtree-size(C) = 3.



Balanced Parentheses Equivalent: size of node plus sizes of all rightward siblings (if any).
Size of a node equals (size of inclusive interval between left paren at start of node and match-
ing right paren) / 2.

CCoC ) oy Coy o ey Yy )
* A B B D D G G A C E E C F F *

Balanced parentheses example showing subtree size of C, which is size of C
(first solid arc) plus size of F' (second solid arc), which is 4/2 + 2/2 = 3.

e lca(nodel,node2)
Rooted Ordered Equivalent: The more-left sibling among the two children of lca that are on
the unique path between nodel and node2 .

Rooted ordered example showing how we find (first
following dotted arrows, then solid) that lca(E,G) = A.

Balanced Parentheses Equivalent: The more-left sibling among the two children of lca that
are on the unique path between nodel and node2. The lca of nodel and node2 in this
representation is the position of the left-paren of the minimal common enclosing parenthesis
pair of nodel and node2.

We define minimal common enclosing parenthesis pair of a node in the balanced paren-
theses representation as the pair of matching parentheses that define an interval of minimal
length that contains the node.

CoCoC )y Co) Yy oy Yy Yy oD
* A B B D D G G A C E E C F F *

Balanced parentheses example showing (with solid arc) that *
is the minimal common enclosing parenthesis pair of G and E

Summary of Equivalent Relations



Binary Trie Rooted Ordered Trie Balanced Parentheses
node node position of left paren with node label
left-child(node) first-child of node next position, only if it is (
right-child(node) next-sibling to next position after )
right of node that matches ( of node
parent(node) prev-sibling of node (if prev position (i) to node, if it has “(”.
none then parent of node) else the “(” that matches paren at i.
size of node + sizes of size of node + sizes of rightward
subtree-size rightward siblings of node siblings of node, where size of node
= dist from “(”to matching “)” / 2
among children of lca, the same as in rooted ordered trie, with lca
lca(nodel,node2) | leftmost one along the path = positon of left-paren of min common
between nodel and node2 | enclosing paren pair of nodel and node2

2.4.5 Performance

In [MR97] all of the above operations are accomplished in O(1) time except lca. In [BDMR99] the
results are extended to cardinal (or k-ary) trees, including the ability to find the ith child of a node
in O(1) time.

2.5 Other Succinct Data Structures
2.5.1 “Cardinal” (k-ary) Trees
These are trees where a node may have up to k children, so k£ can be thought of as the cardinality

of the alphabet ¥. For such trees the information-theoretic lower bound is C* = (knil) /(kn+1).

The structure described in [BDMR99] takes up space in between (lge + lgk)n and (2 + [lgk])n
bits, making it succinct for cardinal trees. It finds the child labeled 7 in time O(lglg k). This bound
was improved to O(lglglg k) in [RR99].

OPEN question: Can this bound be reduced to constant time?

2.5.2 Suffix Tree Equivalents

Suffix trees, introduced in Lecture 10, have various uses in text searching. This has prompted
research to find succinct representations for them. Papers by Grossi, Vitter, Ferragina, Sadakane,
as well as some from SODA 2003, provide good samples of this research. There are still unresolved
questions about pattern matching with succinct suffix tries. For example:

OPEN question: Using O(n) bits of space can you find one or more matches to a pattern P in a
text T in time O(|P|)?
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