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1 Overview

In this lecture we study string matching and related problems. There are several famous algorithms
for string matching, and we briefly review some of them at the beginning of the lecture. Since this
is a data structures course, we will focus on an approach that involves pre-processing the text to
build a very useful data structure: the suffix tree.

After showing how to use suffix trees to solve string matching, we show how to use this data
structure to solve a related problem: document retrieval. In order to solve document retrieval, we
need to solve other algorithmic and data structures problems, including the Range Minimum Query
(RMQ) problem and the Least Common Ancestor (LCA) problem.

The lecture concludes with the application of LCA to suffix trees to solve several problems related
to string matching.

2 String Matching – Problem Definition

We can state this classic problem in algorithmic terms as follows: given a text T and a pattern P ,
each of which is a string over an alphabet Σ, find all or some occurrences of P in T or declare that
there are no matches.

Before we turn to suffix trees, a solution with a heavy data structures component, we briefly review
some classic solutions to string matching.

3 String Matching – Classic Algorithmic Solutions

There are a number of existing solutions that range from the brute-force deterministic to the very
elegant randomized.

3.1 Brute Force

This is the obvious approach: begin at the first position in T , and see whether P matches by
indexing through both strings. If P doesn’t match, then look at the second position of T , reset
the index in P and check whether P matches by indexing through both strings again. The running
time of this approach is O(|T | · |P |). If |P | is not constant—if |P | is the same order complexity as
|T |, for example—then this approach could become quadratic.
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Knowing that we cannot do better than linear time (since the “needle” could be anywhere in the
“haystack”), we are motivated to search for linear solutions.

3.2 Knuth-Morris-Pratt [KMP77]

This algorithm runs in O(|T |), which is the best one could hope for in order complexity terms. The
essence of the algorithm is that P becomes pre-processed into a finite automaton. The algorithm
is complicated, and we won’t cover it here, but students are encouraged to look it up if they have
never seen it before.

3.3 Boyer-Moore [BM77]

This algorithm runs in O(|T |) but sometimes runs in O(|T |/|P |), if things work out. The idea is to
keep a sliding window onto T but to try matching from the back of P to the front. The algorithm
looks at letters that do match to figure out how much to advance the sliding window. If the
algorithm is told that the back does not match, then in some cases, it may be possible to advance
as many as |P | spaces forward. An amortized analysis yields the running times just mentioned.

3.4 Rabin-Karp [KR87]

This is an elegant randomized algorithm that runs in O(|T |) with high probability (usually ab-
breviated “whp” and defined below). The idea is to make a numerical fingerprint of P , where
the fingerprint is taken modulo a prime, p. The algorithm maintains a sliding window on T and
compares the numeric fingerprint of the current window on T to the pre-computed fingerprint of
P . If these fingerprints match, the algorithm declares a match. Updating the numeric fingerprint
when the window slides takes constant time, so the entire algorithm is O(|T |). Failure occurs if the
two fingerprints are equal modulo the prime but in fact represent different strings.

Why does it make sense to use a randomized algorithm if there are deterministic ones that provide
the same order complexity with zero probability of failure? The reason is that the randomized one
is often easier both to implement and reason about, and, if its running time can be stated to be
“whp”, then the chance of failure is negligible.

Digress to define “with high probability”: An event E is said to occur with high probability
(whp) if:

Pr{E} ≥ 1−
1

nc

for all c ≥ 1, where n is the problem size. In our case, E is the event “the running time of Rabin-
Karp is O(|T |)”, n is |T | + |P |, and c should be able to take on any value without changing the
order complexity (at worst, different values of c should imply different constants absorbed by the
O(·)). In the case of Rabin-Karp, the constant c determines the size of the prime modulus p, over
which the algorithm takes fingerprints (since, the larger the prime, the lower the probability that
two fingerprints are going to be confused modulo that prime). Different values of c do not affect
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the running time or order complexity of the space required to run the algorithm1. In our case, E
failing means that the algorithm either returns a wrong answer or that it does not finish on time.
The important thing about “whp” is that it can mean “as likely as you want”, since the c term can
be whatever you want.

4 String Matching – Data Structures Approach

The above solutions all assumed that we could pre-process P but not T . We will now alter that
assumption and permit ourselves to pre-process T . Our approach relies on suffix trees, a powerful
and flexible data structure on which we will spend a good portion of the lecture. Below, we describe
what a suffix tree is, how it can be used for string matching, and its utility in several other problems,
including document retrieval.

4.1 Suffix Trees – Description

Suffix trees have come up a number of times in the literature [Wei73, McC76, Ukk95, GK97]. A
suffix tree is a kind of trie. Let’s first review tries.

Description 1. A trie is a tree in which each node has children labeled by letters in Σ.

a

a b

{aa, ab}

Figure 1: Trie storing strings aa and ab

There is a very natural correspondence between tries and sets of strings over Σ, as shown in Figure
1. To avoid ambiguities that result from situations in which one of the members of the set is a prefix
of another member of the set, we introduce a special symbol not in Σ: $. So we would represent
the set {a$, aa$} with a trie as in Figure 2.

Note that every leaf is connected to the rest of the trie by the $ symbol. Note, also, that this
approach is wasteful: if a path does not branch, then we can store it as a single edge. This leads
us to another description:

Description 2. A compressed trie is a trie in which non-branching paths are stored as single
edges and in which the edges are labeled with strings and not letters.

1For a given value of c, the success probability is ≥ 1− 1/nc when we take p = Θ(nc+1 log nc+1). (Also, p must be
≤ 2n.) Note that for all values of c, p can be represented with Θ(log n+ log logn) bits. For more detail, see Section
7.4 of Motwani and Raghavan’s book Randomized Algorithms.
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{a$, aa$}

Figure 2: Trie storing a and aa with terminating symbol

See Figure 3 for an example of a compressed trie.
We are now ready to describe suffix trees, which will be our sledgehammer for attacking string
matching and related problems. As we see below, a suffix tree is a very natural kind of trie.

Description 3. A suffix tree is a compressed trie that stores a set of strings equal to all |T |+ 1
suffixes of the text string T .

Note that we add 1 to |T | because the empty string is a suffix. For an example of a suffix tree,
see Figure 4. Before showing how suffix trees are useful for string matching and related problems,
such as document retrieval, we discuss the cost of suffix trees. We would like it to be the case that
constructing a suffix tree costs linear time and that storing the suffix tree costs linear space. The
reason is that |T | could be something extremely large, such as a document repository or massive
database. In these cases, we cannot afford quadratic space or time.

Suffix trees: Space cost If each edge of the suffix tree is labeled with a string, then we can wind
up storing a number of letters quadratic in |T |. As an example, imagine the suffix tree for the string
abcdefgh . . . z—in that case, we will have to store $, z$, yz$, and every suffix up to abc . . . xyz$.
To reduce our space consumption to something linear in |T |, we simply store at each edge the
indices i, j, where i, j correspond to the start and end indices of the substring that is supposed to
be labeling the edge. As a quick proof that we will only consume no more than linear space, note
that, by construction, every internal node branches, which means there are fewer internal nodes
than leaf nodes. But there are no more leaf nodes than suffixes, and there are a linear number of
suffixes. Since every edge gets a constant-sized label (two indices), we are done.

Suffix trees: Linear cost We can build suffix trees in O(|T |) time. We will cover the procedure
for building a suffix tree in the next lecture.

The point to remember is that if we are pre-processing T , then suffix trees are as cheap as you
could want, in order complexity terms—they require linear time to construct, and they consume
linear space.
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Figure 3: Uncompressed and compressed tries for ghost and ghoul

We will now show how to use suffix trees to solve the string matching problem.

4.2 Suffix Trees – Solving String Matching

Claim 4. Given a pattern P , and a suffix tree S for text T , we can find an occurrence of P in
time O(|P |).

Proof. We first outline our procedure and then discuss its correctness.

The idea is that we start at the root of S and index through P , using the current letter of P to
decide which branch to take from the current node of S. When edges in S are labeled with multiple
letters, we index through the edge and through P , matching the edge labels to the current letter
of P . We continue in this fashion, taking branches whenever we have indexed to the end of the
current edge label. The algorithm stops when either: a) we have finished iterating through P , in
which case we have a match, and we note the current node (that is, the node below the current
edge) or b) the current position of P does not match the current letter at the current edge, in which
case there is no match or c) it is time to branch, but there is no branch that corresponds to the
current letter of P , in which case there is no match. Figure 5 illustrates this procedure.

The correctness of this algorithm, namely that the algorithm declares a match if and only if P
occurs in T , is easily seen from the facts that a) S stores exactly the set of all suffixes and b) any
occurrence of P , say at position i, corresponds to a suffix, say T [i:]2. A formal proof is omitted.

2The notation T [i:] denotes the substring of T that starts at position i and goes to the end of the string
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Figure 4: Suffix tree for banana
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Figure 5: Lookup for an in suffix tree for banana

This algorithm clearly runs in time O(|P |), since we are indexing through P , so we’re done with
the claim.

We note that the algorithm returns a subtree (since it returns a pointer to a node), and that the
nodes of this returned subtree correspond to all of the occurrences of P in T . To see this, imagine
that P occurs at indices i1, i2, ...ik. Now consider the strings T [i1:], T [i2:], ... T [ik:]. Each of these
strings is a suffix of T and so is stored in the suffix tree. Moreover, each of these suffixes begins
with the same string (namely P ), and so each of these suffixes will have the same ancestors in the
tree (by the construction of the compressed trie). In other words, all of these substrings will be
part of the same subtree. Given that the algorithm actually returns a subtree in answer to the
question, “where does P occur in T?”, we can note the following properties of the procedure we
have just outlined:

• We can extract k matches in O(k) time, so we do not need to do all of the work upfront to
begin reporting matches. We simply iterate over the returned subtree and find matches as
we go.
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• Once we have looked at the pattern, we can extract the number of matches in O(1) time
(assuming we have augmented the tree by storing, at each node, how many children are
below it).

• This data structure can answer a number of questions. One is: “what is the longest repeated
substring that appears twice?”. To answer this, we augment the tree by labeling each of
the internal nodes with a “pattern depth”—the “pattern depth” is the number of letters on
the path from the node to the root. Since all internal nodes have at least two children, by
construction, then the internal node with the largest pattern depth corresponds to the longest
substring that appears at least twice. It takes time O(|T |) to find the non-leaf with the largest
pattern depth label.

We note that this last question is conceptually several questions rolled into one and that we can
use the structure of the suffix tree to answer these questions in parallel, in a sense. In the next
section, we illustrate how to use suffix trees to solve a different, but related, problem: document
retrieval.

5 Document Retrieval

This portion of the lecture is derived from a paper by Muthukrishan [Mut02].

Motivation. If we have a large collection of documents that we are permitted to pre-process,
we might be interested in quickly answering queries about which documents contain a particular
pattern. This is the problem that Web search engines face.

Formally, the problem can be stated as follows: given texts T1, T2, . . . , Tk, we would like to pre-
process the Ti so that we can quickly answer queries of the form: in which of the Ti does a pattern
P occur?

5.1 Using Suffix Trees for Document Retrieval

Motivated by the contents of Section 4.2, we might want to create a generalized suffix tree, using
as our set of strings the suffixes of all k text strings. In order to ensure that the trie does not
confuse substrings from different texts, we assign a different terminator symbol to each text string—
$1, $2, . . . , $k. Using different termination symbols ensures that if P occurs in different documents,
we will be able to distinguish the different occurrences, and it preserves the property that all
occurrences of P will be rooted at the same subtree.

But this approach is not exactly what we want. The problem statement calls for identifying which
documents contain P , not identifying all occurrences of P , which could potentially be much costlier
(since it takes O(m) time to return m matches by using a suffix tree).

5.2 Reduction to Range Minimum Query

Ideally, what we would like, as illustrated in Figure 6, is a list of the different $i appearing at the
leaves of the particular subtree returned by the string matching algorithm (as described in the proof
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Figure 6: subtree rooted at N represents all matches of pattern P—for document retrieval, we need
only a list of the distinct terminating symbols

of Claim 4). In the remainder of this section, we will reduce our problem—namely finding a list
of distinct $i in the set of leaves of a particular subtree—to the problem of finding the minimum
number in a given interval, which we call the Range Minimum Query problem. The construction is
as follows: use two parallel arrays A, B that are each of size |T |+ 1. Each element in these arrays
corresponds to a particular leaf (and since each leaf corresponds to a suffix, we need an array no
bigger than |T |+1). We require that the elements that correspond to leaves of a subtree are stored
consecutively. In the first of these arrays, A, we store, for each leaf, the index d of the corresponding
text Td whose suffix ends at this leaf (every leaf has a $d symbol, so just grab the d.)

The document retrieval problem can then be phrased as follows: given the appropriate
subtree (and its descendant leaves) of the suffix tree, and given the indices i, j that demarcate the
corresponding array elements in A, we would like to output a list of the distinct elements in the
interval A[i] to A[j].

0  1  2  3  4  5  6 . . . index
array A
array B

5  2  1  3  1  1  5 . .  
-1 -1 -1 -1 2  4  0  . .  

Figure 7: We keep two arrays: in the first, we list the index of the terminating symbol at the
corresponding leaf and in the second, we list the index at which the element was last seen. This
permits us to reduce document retrieval to FIND-LESS-THAN.
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To solve this, we first fill out the elements of B by iterating through B and, for 1 ≤ e ≤ |T | + 1,
storing into B[e] the index, f , of the last occurrence of A[e] (if this is the first time we are seeing
the element A[e], then store −1 into B[e]). This process is illustrated in Figure 7. The idea is that
at each element in B, we store the last time the corresponding element in A was seen. Our problem
of finding the distinct d is then equivalent to finding all of the elements in B between i and j that
have a value less than i. The justification is as follows: assume i ≤ e ≤ j. If B[e] ≤ i, then, within
the [i:j] interval, A[e] has not been seen (since the element was last seen outside the interval). If
B[e] ≥ i, then it means that A[e] was last seen within this interval and so the contents of A[e] do
not represent a newly seen index.

So now we have reduced document retrieval to FIND-LESS-THAN, which we define as finding
the list of elements in a given interval [i:j] that are less than a pre-specified value, s∗. As the
previous paragraph implies, we will use FIND-LESS-THAN by taking our interval to be B[i:j], and
s∗ to be i, the index demarcating the left-hand side of the interval.

To solve FIND-LESS-THAN, we reduce it to Range Minimum Query (RMQ). Assuming we have
an RMQ primitive, we can solve FIND-LESS-THAN as follows:

• use RMQ to return the index, k, of the minimum value, v, in the range [i:j]

• if v ≥ s∗, then return

• if v < s∗, then:

– output v

– recursively call FIND-LESS-THAN with the interval equal to [i:k − 1]

– recursively call FIND-LESS-THAN with the interval equal to [k + 1:j]

The running time of FIND-LESS-THAN is clearly O((# of unique indices)·(cost of RMQ)), and the
correctness derives from the fact that we are picking out all of the elements less than s∗, starting
from the minimum element in the interval.

We will discuss RMQ below; before doing so, let’s review how we got here. We started with the
document retrieval problem and noted that a suffix tree would be helpful as a data structure but
that, for document retrieval, we cannot naively use the suffix tree as we did for string matching.
Rather, what we wanted was an efficient way to extract the unique elements from the leaves of
a particular subtree of the suffix tree. To solve this problem, we did two things: we first created
arrays A and B that stored our elements and the index at which they were last seen. Second, we
then demonstrated an algorithm, FIND-LESS-THAN, that takes the array B as input and outputs
a list of unique documents. FIND-LESS-THAN relied on RMQ, so now we wish to solve RMQ, to
which we now turn our attention.

6 Range Minimum Query and Least Common Ancestors

This portion of the lecture is derived from a paper by Gabow, Bentley and Tarjan [GBT84]. The
problem we are trying to solve is: given an array A and an interval [i:j], output the index, k (where
i ≤ k ≤ j), of the minimum element in the interval. Below we outline the solution.
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6.1 Cartesian Tree construction

We first pre-process the array to construct the Cartesian Tree of the array as follows:

• the root of the Cartesian Tree is the minimum element of the array

• the left and right subtrees are the recursive Cartesian Trees of the left and right pieces of
the array, where we get left and right pieces by partitioning the array into two pieces around
the root element (each section corresponds to the set of indices less than or greater than the
index of the root element).

3  2  4  1  6  5  7 1  2  3  4  5  6  7

2 5

3 4 6 7

2

5

3

4

6

7

Figure 8: Cartesian Trees constructed from arrays

Figure 8 shows two different Cartesian Trees for two different arrays.

Now that we have a Cartesian Tree, we can answer questions about the minimum in any interval
[i:j]: the minimum is simply the least (or lowest) common ancestor of the two nodes in the Cartesian
Tree. This is intuitive from the construction; for a full proof see the paper by Harel and Tarjan
[HT84]. We now examine the LCA problem.

6.2 Least (Lowest) Common Ancestor

In the next lecture, we will see how to pre-process the array in linear time with linear space so that
we can find the Least Common Ancestor (LCA) in constant time3. For now, we assume that LCA
is a primitive that returns in constant time. We will shortly illustrate some of the power of the
LCA primitive. For clarity, we quickly highlight the series of reductions that led us to LCA.

3The main idea is to reduce the LCA problem to an easier version of RMQ, “RMQ Lite”. This series of reductions
is not circular because we solve the “RMQ Lite” problem without relying on LCA.
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Reductions: We have arrived at LCA via a series of reductions, summarized here: DOCUMENT-
RETRIEVAL =⇒ FIND-LESS-THAN =⇒ RMQ =⇒ LCA4.

6.3 Applications of LCA to Suffix Trees

We finish up the lecture by showing how the LCA primitive5 applied to suffix trees results in
solutions to several problems related to string matching.

We first note that when LCA is applied to a trie, it returns the longest common prefix (LCP) of
two strings (since the lowest common ancestor represents a common path, or series of letters, on
the way to the two strings). Moreover, when LCA is applied to a suffix tree for text T , we get the
LCP of 2 substrings of T . And if the suffix tree is the suffix tree for multiple texts T1, T2, . . . Tk,
the LCA algorithm determines the LCP of substrings that originate in possibly different texts.

6.3.1 Finding the Longest Palindrome

We use this last fact to determine, in time O(|T |), the longest palindrome that occurs in a text T .
This requires that we do the following pre-processing:

1. Create a suffix tree S that consists of the suffixes of T and R(T ), where R(T ) denotes the
reverse of text T

2. Pre-process the tree by assigning to each node a “pattern depth”, representing the number
of letters on the path from the given node to the root

3. For each i, create a pointer to the node that represents T [i:] and R(T )[i:]. In other words,
we store a mapping that takes us from suffixes of T and R(T ) to the corresponding nodes in
the suffix tree

4. Do the pre-processing to support LCA queries

Once we have done this pre-processing, we iterate, taking i from 1 to |T | and use LCA to identify,
in constant time, the LCP of:

• T [i:] and R(T )[|T | − i:]

• T [i:] and R(T )[|T | − i+ 1:]

which is correct since these two comparisons represent the possibilities for palindromes centered at
i or in between i and a neighbor. As we execute LCA for each i, we store a pointer to the longest
palindrome we have seen so far (and we know how long each one is, since we have pre-computed
the pattern depths). Since LCA is constant time, the whole procedure takes time O(|T |).

4And LCA =⇒ “RMQ Lite”, which we will discuss in the next lecture
5When we talk of the LCA primitive, we mean the algorithm that pre-processes a tree and then, in response to

queries, returns a pointer to the least common ancestor in constant time.
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6.3.2 DNA Application

One application of the above solution is determining where a strand of DNA might fold. DNA
consists of a string of nucleotides, each of which is, for the purposes of this discussion, distinguished
by an attached base. There are four types of base: thymine (T) and adenine (A), which bond to
each other; and cytosine (C) and guanine (G), which bond to each other. If we know the longest
“palindrome” of bonded pairs, we might be able to tell where the DNA will fold, that is, where the
kinks might be. For example, the string of DNA ....ATCCGGAT.... might fold in such a way that
the ATCC piece bonds to the GGAT piece (picture folding the strand over in between the middle
C and the middle G).

To determine the longest “palindrome” of bonded pairs, simply use the longest palindrome algo-
rithm and data structure, above. The only change is that instead of making a suffix tree out of
T and R(T ), the suffix tree S should be constructed from suffixes of T and R(T ), where T is the
string with the elements of T replaced with their bonding complements. A longest prefix match in
these two strings indicates where the longest string of “palindromic” bonding pairs occurs.

6.3.3 Searching for P in T with ≤ k mismatches

The final problem we examine is finding an “occurrence” of P in T with k or fewer mismatches.
After pre-processing, we can do this in O(k · |T |) time, as follows:

1. Construct a suffix tree S out of the suffixes of T and P

2. For each i, create a pointer to the node that represents T [i:]

3. Do the pre-processing to support LCA queries

4. For i from 1 to |T |:

• determine the LCP of T [i:] and P

• if the two strings match fully, then we’re done

• if there is a mismatch, the LCP will “stop” at the mismatch. If the mismatch occurs at,
for example, position p in P , then we keep going, only now we are comparing T [i + p:]
and P [p:]. By calling the LCP algorithm again, we can find the next mismatch. We can
keep doing this k times, each time advancing our index p.

In the worst case, we require k calls to LCP for each i, so this algorithm runs in time O(k · |T |),
since each call to LCP takes constant time, after pre-processing.

References

[BM77] R. Boyer and J. Moore. A fast string searching algorithm. Communications of the ACM,
20(10):762–772, 1977.

[GBT84] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry
problems. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
pages 135–143, 1984.

12



[GK97] R. Giegerich and Stefan Kurtz. From Ukkonen to McCreight and Weiner: A Unifying
View of Linear-Time Suffix Tree Construction. Algorithmica, 19(3):331–353, 1997.

[HT84] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, May 1984.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal of Computing, 6(2):323–350, 1977.

[KR87] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31:249–260, March 1987.

[McC76] E. M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. Journal of
the ACM, 23(2):262–272, 1976.

[Mut02] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 657–666, San
Francisco, CA, January 2002.

[Ukk95] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[Wei73] P. Weiner. Linear pattern matching algorithm. In Proceedings of the 14th IEEE Sympo-
sium on Switching and Automata Theory, pages 1–11, 1973.

13


