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Retiming Synchronous Circuitry’
Chatles E. Leiserson? and James B. Saxe®

Abstract. This paper deseribes a circuil transformation called refiming in which registers are added al
some points in a circuil and removed from others in such a way that the functional behavior ol the
circuit as a whole is preserved. We show that retiming can be used to transform a piven synchronous
circuit into a more eMficienl circuit under a variety of different cost criteria. We model a circuil as 1 graph
in which the vertex sel Vis a collection of combinational logic elements and the edge set E is the set of
interconnections, each of which may pass (hrough zero or more registers. We give an O( V| E| gV ])
algorithm for determining an equivalent retimed cireuil with the smallest possible clock peried. We
show that the problem of delermining an equivalent retimed circuit with minimum stale {iotal number
of registers) is polynomial-time sclvable. This resull yiclds a polynomial-time optimal solution to the
problem of pipelining combinational circuitry with minimum register cost. We also give a chacterization
of optimal retiming based en an efliciently solvable mixed-integer linear-programming problem,

Key Words. Digital circuitry, Graph theory, Linear programming, Network flow, Optimizalion,

Pipelining. Propagation delay, Retiming, Synchrenous cireuitry, Systelic circuits, Timing analysis.
S
1. Introduction. The goal of VLSI design automation is to speed the' design of a
system without sacrificing the quality of implementation. A cominon means of
achieving this goal is through the use of optimization tools that improve the quality
of a quickly designed circuit. In this paper we show how to optimize clecked
circuits by relocaling registers so as 10 reduce combinational rippling. Unlike
pipelining, this technique, which we call retiming, does nol increase cireuil latency.

In order to illustrate retiming, consider the problem of designing a digital
correlator. The correlator takes a stream of bits xXg, Xy, X5,... 28 input and
compares it with a fixed-length pattern dg, @, ..., 4. After receiving each inpul x;
{i = k), the correlator produces as output the number of matches

(1) Y= Z, Mx;_; a5)
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C. E. Leiserson and J. B, Saxe

Fig. 1. Correlator 1: a simple circuit made of two kinds of functiorlal elements, Each comparator § has a
propagalion delay of 3 esec, and each adder + has a propagation delay of 7 esec. A longesl path of

combinational rippling starts al the register on the connection labeled A, and thus the clock period of
the circuil is 24 esce. :

where 4 is the comparison lunction

5(x, 3) = {l it x =y

0 otherwise.

Figure | shows a design of a simple correlator for the case when k=3
Correlator | consists of two kinds of [unctional elements, adders and comparators,
whose I/O characteristics are shown in the figure. The boxes between (he
comparators are registers which act to shift the x; to the right down the length of
the correlalor. On each lick of the global clock,jeach x; is compared with a
character of the patiern, and the adders sum up theT number of matches.

This design, though easy to understand, has poorlperformance. Between ticks of
the clock, the partial sums of the matches ripple up the length ol the correlator.
Suppose, for instance, that each adder has a propagation delay of 7 esec,* and each
comparalor has a propagation delay of 3 esec. Then the clock period must be al
least 24 esec— the time [or a signal to propagate [rom the register on the connection
labeled A through one comparator and three adders.

A design that gives belter performance can be de1j'ived. by removing the register
on connection A from Correlator 1 and inserting a new register on conneclion B, as
shown in Figure 2. To show that these two correlators are indeed [unctionally
equivalent, consider the portion of the circuit surroulnded by the dashed box in the
figure. It communicates with (he rest of the circuit only through connections A and
B. When the register on 4 is removed, all input signé]s to this portion of the circuit
arrive one clock tick earlier, and thus the boxed portion of Cosrelator 2 performs
the same sequence of computations as in Correlathr 1, but one clock tick earlier,
Since the output [rom the boxed portion of Correlator 2 is delayed one clock tick
by the new register on connection B, the remainder of the circuit sees the same

4 Recall that one epiosecond (esec) equals one one-zillionth of
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Fig. 2. Correlator 2: a rerimed circuit functionally equivalent to, bul more eflicient than. Correlator 1.
The bongest path of combinational rippling begins at the regisler on connection C, and the clock period
of this circuit is 17 esec.

behavior as in Correlator 1. We say that the three functional elements in the boxed
portion of Correlator 2 lead by one clock lick the corresponding functional
clements in Correlator 1. Allernatively, we say that the three elements in Correlator
| lag by one clock tick the corresponding elements in Correlator 2.

Correlators | and 2 are [unclionally equivalent, but the performance of the
retimed circuit Correlator 2 is better than that of Correlator 1. The clock period of
Correlator 2 is 17 esec—the time for a signal to propagate [rom the register on
conneclion € through one comparator and two adders. Nolice thal the two designs
use the same functional clements connected in the same manner and differ onty in
the locations of registers. Correlator 2 has the 1/O characteristic specified by (1),
but it should be apparent that a dircct verification requires considerably more
effort Lthan the verilication ol Correlator 1.

Retiming, the technique of inserting and deleting registers in such a way as lo
preserve function, can be used to produce an even faster circuit than Correlator 2,
Section 4 gives an implementation of the correlator that achieves a clock period of
13 esec. Remarkably, if the pattern of comparators and adders is exlended
arbitrarily to (he right, a clock period of 14 esec can always be achieved by
reliming. In this paper we cxhibit a polynomial-time algorithm for determining a
retiming of a circuil that minimizes clock period.

The remainder of this paper is organized as follows. Section 2 presents the graph-
theoretic model of synchronous circuits used in this paper. In Section 3 we [ormally
describe the operation of retiming [14], in which registers are deleted [rom some
connections of a circuit and added to others so that the circuit function is
prescrved. Section 4 gives a simple polynomial-time algorithm for minimizing the
clock period of a circuit. Section 5 gives an asymptotically more efficient algorithm
to solve the same problem. In Section 6 we show that the problem of finding a
retiming of a circuit that minimizes clock period can be reduced Lo an efficiently
solvabie mixed-inleger linear-programming problem, thus providing a framework
for retiming based on mathematical programming.

Sections 7-9 discuss extensions of these results. Section 7 considers the special
case where all functional elements have identical propagation delays and shows
that optimal retimings can be lound more efficiently in this case. The section also
discusses the relationship of this work to systolic computation and shows how to
improve the performance of many systolic circuits in the literature. While earlier

»
K

Y0/€0/€0

STF0 €C2 LT9 XVd BT FT

SOT LIK

c00[



8 ; C. L. Leiserson and J. B. Saxe

sections arc concerned with finding retimings that are optimal in the sense of
minimizing clock period, Section 8 examines a dilferent optimization crilerion,
namely minimizing the total amount of state {(number of registers) in the retimed
circuit. In particular, we show that the problem of rétiming a circuil to minimize its
state subject to an upper bound on the clock period can be reduced to the lincar-
programming dual of a minimum-cost flow problem, and hence can be solved
oplimally in polynomial lime. Section 9 extends our methods (o 2 more general
circuit moedel in which individual functional clements may have nonuniform
propagation delays—e.g, the low-order output bit of an adder may be available
earlier than the high-order bit. :

In Section 10 we brielly mention further extensions, including the application of
our algorithms to optimal pipelining of combinational circuitry.

2. Preliminaries. In this section we deline the notations and lerminology necded
in this paper and present our graph-theoretic model of digilal circuits. We conclude
by giving a simple algorithm for determining the minimum feasibie clock period of
a circuit from its graph. :

We can view a circuit abstractly as a network of finctional elements and globally
clocked registers. The registers are assumed to havg Lhe following characteristics:
each has a single input and a single oulput; all are clocked by the same periodic
waveform; and at each clock tick, each slorage element samples its inpul and the
sampled value is made available at the output until the next tick. We also assume
that changes in the output of one storage element do not interfere with (he input to
another at the same clock lick. An example of such a storage element is an edge-
triggered, master-slave, D-type flip-Nlop [21]. )

The functional elemenls provide the computdtional power of the circuit.
Our model is unconcerned with the level of complexity of the the functional
elements—they might be NAND gates, multiplexors, or ALUs, [or example. Each
[unctional element has an associated propagation delay. The cutputs of a functional
element at any time are defined as a specified function of its inputs, provided that
all the inputs have been stable lor a lime al least equz'}l to the element’s propagalion
delay. We make the conservative assumplion that when an input to a funclional
element changes, Lthe outputs may behave arbilraril?r unlil they settle Lo their Ginal
values. |

To be precise, we model a circuil as a finite, vértex-weighled, edge-weighled,
directed multipraph G = (V, E, d, w) (henceforth, v\J‘c simply say “graph” or, more
frequently, “circuil”). Figure 3 shows the graph ol Correlator | from Figure 1. The

i
!
v vy vy l A

Fig. 3. The graph model of Correlalor | from Figure L.
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vertices Vool the graph model the functional elements of the circuil, Each vertex
ve Vis weighted with its numerical propagation delay d(v). The directed edges E of
the graph model interconnections between functional elements. Each edge e E
connects an output of some lunctional element to an input of some {unctional
clement and is weighted with a register count w(g). The register count is the number
of registers along the connection.® Between two vertices, there may be multiple
edges with different register counts.

Vertices can be designated Lo represent interfaces with the external world, and
each such vertex is given zero propagation delay, as is shown for vertex v, in IFigura
3. (We elaborate on this technicality in Section 10.) If the relative times of events at
multiple external interfaces must be preserved, we treat them as a single interface
and represent them as a single vertex with multiple incident edges. Otherwise, we
assume thal multiple external inlerfaces are independent of each other and cannol
communicale with eacl other externally. For inost of our theory, external
interfaces can be handled as ordinary vertices, and thus our lormalism omits them.

We use the following lerminology extensively. To avoid conlusion between
vertex~-weight functions such as the propagation defay 4 and cdge-weight functions
such as the register counl w, we use Lhe term weight for edge-weight functions only.
In fact, the only verlex-weight lunctions we use are the propagation delays d(v), and
in general we refer to the particular edge weights w(e) ol a circuit as regisler counts,
If e is an edge in a graph that goes from verlex u Lo verlex v, we use the pnotation
u 5 v. In the event thal the identity of either the head or the tail of an edge is
unimportant, we use the symbol?, as in u S

For a graph G, we view a path p in G as a sequence of verlices and edges. 1{ a path
p starls al a vertex « and ends at a vertex v, we use the notation u-5s b, A simple
path conlains no verlex twice, and therefore the number of vertices exceeds the
number of cdges by exactly one.

We extend the register count function w in a natural way lrom single edges to
arbitrary paths. For any path p = v, 80, & -.. Z=3p,, we define the path weight as
the sum of the weights of the edges of the path:

k—1

w(p) = ¥, wie,).

i=0

Similarly, we extend Uhe propagation delay function d to simple paths. For any
simple path p = v, 3 v, 3-..24p,, we define the path delay as the sum of the

delays of the vertices of the path:
k
dip) = ¥ d(v;).
i=n

*If an output of a functional element fans out to more than one other functional element. the sir'.lgle
inlerconnection can be treated, without loss of generalily, as several edpes, each with an appropriate
weight. Any optimization can be translated from the model back to a circnit with fanout, Section 8
examines lanout more closely.
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10 C. E. Leiserson and J. B. Saxe

In order that a graph G = (¥, E, d, w) have welh defined physical meaning as a.

circuil, we place nonnegalivity restrictions on the propdgalmn delays d(v) and the
register counts w{e):

‘|
t
i

DIi. The propagation delay d(v) is nmmegatiuefor: each vertex ve V.

WI1. The register count wie) is @ nomegative integer for each edge e ¢ E.
We also impose the restriclion that there be no difected cycles ol zero weight:

W2, in any directed cyele of G, there is some ed’gq with (strictly) positive register
count. !

We define a synchronous circuit as a circuit that satisfies condilions D1, W1, and
W2. The reason [or including condition W2 is that whenever an edge e belween lwo
verlices u and b has zero weight, a signal entering vertex v can ripple unhindered
through verlex u and subsequentiy through vertex . If the rippling can feed back
upon itself, preblems of asynchronous latching, osciﬁation, and race conditions can
arise. By prohibiting zero-weight cycles, conditiofy W2 prevents these problems
[rom occurring, provided thal the system clock rups slowly enough Lo allow the
oulputs of all the functional elements to settle bethen each two consecutive ticks.

For any synchronous circuit G, we define the (m1mmum [easible) clock period
O(G) as the maximum amount of propagation delay through which any signal
must ripple between clock ticks. Condilion W2 guarantecs that the clock period is
well defined by the cquation ‘

D(G) = max{d(p): w(p) = 0}
For the circuit graph in Figure 3 the clock period ifs 24, which corresponds to the
sum of Lhe propagation delays along the path ¢, -+ v; = v = 05,
Determination of the clock period ®(G) is relatiively simple. The algorithm we
presenl here is similar 1o an aigorithm that lorms a Part ol a design ool developed
at American Mlcrosyslcms Inc. [17].

Algorithm CP (compute the clock period of a circuit), ! This algorithm computes the
clock period ®(G) for a synchronous circuit G = (IV E, d, w.

1. Let Gg be the subgraph of G that contains prec1sely those edges e with register
count w{e) = ‘

2. By condilion W2 G, is acyclic. Perform a tbpo]ogical sort on Gy, totally
ordering its vertices so that if there is an edge [rom vertex u to vertex v in Gy,
then u precedes v in Lhe total order. \

3. Go through the vertices in the order df:ﬁned by Lhe topological sort. On
visiting each vertex v, compule the quantity 4(0) as follows:

a. Il there is no incoming edge Lo v, set A{v) « d(v).
b. Otherwise, set A(v) « d(v) + max{A(u): u —b v and w(e) = 0},
4, The clock period ®(G) is max, ) A(v). : Ll

Retiming Synchronous Circuitry 11

The algorithm works because, for each vertex v, the quantity A(v) equals the
maximum sum d4(p) of verlex delays along any zero-weight direcled path pin G
such that 75+ v. The running time is O(| E{).

3. Retiming. Retiming transformations alter Lhe clock period ol a circuil _hy
inserting and deleting registers, but without otherwise affecting the circu1lt's
structure. This section formally defines retiming and proves some simple properties
of the transformation.

A retiming can be viewed as an assignment of a [ag Lo each verlex in a circuit, and
this is how we define it formaily. A retiming of a circuit G = (V, E, d,w) is an
integer-valved vertex-labeling r: V¥ — Z. The retiming specifies a translormation of
the original circuit in which registers are added and removed so as to change the
graph G into a new graph G, = (V, E.d,w,), where the edge-weighting w, i
defined for an edge « 5 v by the cquation

(2) w,(€) = wie) + r(v) — r(u).

In the example of Figure 3, the retiming that assigns —1{ to [unctional elements
o4, 1y, and vg, and assigns O Lo all other verlices, yields the cireuit of Figure 2.

Equalion (2), which tells how retiming affects the register counts ol edges,
extends naturally Lo paths.

LEMMA 1. Let G = {V, E,d w) be a synchronous circuit, and let r be a retiming.
Then for any path u 5 vin G, we have

w(p) = wip) + r(v) — ru).

ProOOF. Suppose p is composed of vertices and edges v, Bp, B 25, We

have

k=1
W) = ¥, w ()

Il

k-1
3 (wle) + (v ) — ()
=0

k—1 k—

L
Z w(e;) + Z (r(t;e ) — ()

i=0

w(p) + r(5,) — (o)

I

because Lhe sum on the right telescopes. O

COROLLARY 2. Let G = (V,E,d,wd be a synchronous circuit, and let r be a

retiming on the vertices of G. Then, for any cycle p in G, we have w,(p) = w(p)}.

Proor. Immediale [rom Lemma 1. O
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12 C. E. Leiserson and J. B. Saxe

A retiming r ol a circuit G is legal il the retimed praph G, satisfies conditions W1
and W2. An arbilrary assignment of lags to the vertices of a circuit G may cause the
retimed circuit 7, to violate condition WI, which says that no edge may have a
negative register count. This condition must beE checked explicitly in order to

ensure thal z retiming is Jegal. Interestingly enough, condition W2 need not also be
checked because of the following consequence of Corollary 2,

COROLLARY 3. Let G=(V,E, d,w) be a sync}tronous circuit, and let r be a

retiming on the vertices of G such that G, satisfies condition WI. Then r is a legal
retitming., :

PrOOF.  Since the propagation delays d are unaffected by retiming, condition DI
is satisfied by graph G,. Since condition W1 is true by supposition, it remains only
to show that G, satisfies condition W2. Let p be any cycle in G. We must show that
p includes at least one edge e such that w,(e) > 0. Since graph G satisfies conditions
W1 and W2, the reister count w(p) of the cycle|in G must be positive. But by
Coroliary 2, the register count w,(p) of the cycle in G, is equal to w(p) and is

therefore positive. Hence, there must be an edge onilhe cycle in G, that has positive
register count, | O

To conclude this section we comment that it is hccessary lo prove that when a
circuit G is retimed to produce a new graph G, the new circuit is [unctionally
equivalent, as seen by the external world, to the original—provided, of course, thal
G, satisfies conditions W1 and W2. Such a proof can be found in [14], which also
contains a technical definition of the lerm “equivalcnl."

Moreover, we can show that retiming is, in a s nse, the most peneral possible
metbod for changing the register counts within alcircuit without disturbing the
circuit’s function. Although we do not formally prove it here, we oulline the thread
of reasoning. (For an example of a similar argument used 1o prove a weaker resull,
see the prool of Theorem 3 in {14].) Without loss of generalily, assume that any
cirouit G = (I, E, d, w) under discussion has the lollowing (wo properties.

l. Every vertex ve V is connected by a path to some external interface.

2. Every vertex ve V has at leasl one input. (Otherwise, v compules a constant
Tunction.?)

Given the graph of such a circuit, but no knowledge of what functions are
computed by the functional elements, it is impossible, other than by retiming, to
aller the register counts on the edges and be assurejd that the external behavior is
unchanged. For any relabeling of the edpe weights that is not a reliming, an
adversary can specify the lunctional elements in su h a way that the new circuil
behaves differently from the original circuit. We omit the details of this argument.

% In the graph (Figure 1) of Correlator 1, for example, we do not use [uncliona] elements io input the
constants g,, but have instead incorporated them into the compéralors,

. _— 1
Reliming Synchronous Circuitry I

4. An Algorithm for Clock Period Minimization. This scclion presents a poly-
nomial-ime algorithm for retiming a circuil so as lo maximize performance.
Specifically, we solve the [ollowing clock-period-minimization problem: Given «
circuit graph G = (V, E, d, w, find a legal retiming r of G such that the clock period
O(G,) of the retimed circuir G, is as small as possible. The solution of this problem
depends on some basic results rom combinatorial optimizatiofi and graph thcory.
In particular, we rely on the fact that the following linear-programming problem
can be solved cfficiently, .

ProsLEM LP. Let § be a set of m linear inequalities of the form

(3 XX <a,

i in
on the unknowns x,, x,,..., x,, where Lhe a;; are given real constants. Dlelerm ne
feasible values for the unknowns x;, or determine that no such values exist.

Constraint systems in which each constraint has the form of inequality (3} arise
in shorlest paths problems and have been studied extensively. Such a system of
linear inequalities can be satisfied—or determined {o be inconsistent—in O(mn)
lime by Lhe Bellman-Ford algorithm [10, p. 74].

The algorithm for minimizing the clock period of a circuit is based on an
alternative characterization of clock period in tlerms of two quantities which we
now deline:

Wu, v} = min{w(p): u 5» v},
® D(ut, v) = max{d(p): u 5> v and w(p) = W(u, )}

The quantity W(u, v} is the minimum number of registers on any path lrom vertex v
to vertex », We call a path u 5+ v such that w(p) = W(u, v) a critical path [rom u o
v. The quantity D(u, v} is the maximum total propagation delay on any critical path
from u to v. Both quantities are undefined if there is no path from u to v. Table |
shows the values for Correlator 1.

LoMMA 4. Let G = (V, E, d, w) be a synchronous circuit, and let ¢ he any puositice
real number. The following are equivalent:

4.1. D) < ¢
4.2, For all vertices w and v in V., if D(u, v) > ¢, then W{u,v) = 1.

PrOGF. (4.1 =>4.2} Suppose ®(G) < ¢, and let u and v be verticc§ in ¥ such l‘hat
D(v, v) > ¢ If W{u, v) = 0, then there exists a path p from « to v willy propagation
delay d(p) = D(u, v), which is greater than ¢, and register count w(p) = W(u, v) = 0.
Conltradiction. o

(4.2 = 4.1) Suppose 4.2 holds, and let u 5+ v be any zero-weight path in G. Then
we have W(u, v) = w(p) = 0, which implies d(p) < D{1, v} < ¢. O
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24
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10
17
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33
26 - 30 -
19
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i) is the maximum propagation delay
ds for any retiming of Correlator 1. A

{u, v) > 0 wherever By, v) > ¢. Circled entries in the

U3
33
30

0.
13

30
30

Ul
20
10

Uy
10
17

L 14
nclude 2] possible clock perio

-weight path rom u (o v. and D{u,

L
L) = ¢ if and only if W

Ug

s
¢t entries in the table for O i

Table 1. The values of the function W and D for Correlztor 1.*
LS

By

Uy

Un

Uy
o
Uy
U3
Yy
4]

*The quantity W(w, v) is the number of registers on a minimum
legal retiming r produces a circuit G, with clock period ©(G

Lable for D are explained in the last paragraph of Section 4.

along any such critical path. The distin

Uy
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L1 is not difficult to compute W by solving Lhe all-pairs shortest-paths problem in
G. Common ways ol solving this problem are the Floyd-Warshall method
(10, p. 86], which runs in O(| V| *} time, and Johnson's algorithm [7], which runs in
O(VIIE| + |¥V|2 1glV]) time using the Fibonacci heap data struciure due o
Fredman and Tarjan [2]. The basic operations on weights used by these algo-
rithms are addition and comparison. The [ollowing algorithm shows that with a
suitabiy chosen weight function, an all-pairs shortest-paths algorithm can be used
to compute both W and D.

4

Algorithm WD (compute W and D). Given a synchromous circuit G =
(V, E, d, w), this algorithm computes W(u, v) and D(u, v) for all u, v € V such that i
is connected 1o v in G.

1. Weight each edge - ? in E with the ordered pait (w(e), — d(u)).

2. Using the weighting from step 1, compute the weight of the shortest path joining
edach connected pair of vertices by solving an all-pairs shortest-paths algorithm.
(In the all-pairs algorithm, add two weights by performing componentwise
addition. Compare weights using lexicographic ordering.)

3. For each shortcst-path weight (>, ¥) between Lwo vertices w and b, sel Wi, v)
x and D(u, v) « d(o) - y. o

The reason thal I and D arc important is that they behave nicely under reliming,

LEMMA 5. Let G=(V,E d w) be a synchronous circuit, and let W and D be
defined an G by (4). Let v he a fegal retiming of G, and let W, and D, be defined
analogously on G,. Then

5.1 a path pis a critical path of G, if and enly if it is a eritical path of G,
5.2 Wilu, 8) = W(u, v) + r(v) — r(u) for all connected vertices wyveV, and
5.3. D,(u, v) = D(u, v) for all connected vertices u, ve V.

PrROOF. Condition 5.1 follows from Lemma 1 because retiming changes the
weighls of ail paths from u 10 v by the same amount, and then 3.2 follows
immediately. Condition 5.3 is a consequence of 5.2 together with the fact that
reliming does not alter propagation delays. O

The next resull is a corollary to Lemma % which shows that the range of D
contains the clock periods of all circuits obtainable by retiming G. In Table | the 20
distinct values for D include all possible clock petiods for any retiming of

- Correlalor 1.

COROLLARY 6. Let G=<(V, E, d, wd be o synchronous circuit, and let r be a
retinting of G. Then the clock period ®(G,) is equal to D(u, v) for some v, pe V.

PrOGF. By the definition of clock period, the circuit G, contains some zero-weight
path 15 v such that d(p) = ©(G,), and thus we have W, (1, v) = w,(p) = 0.
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16 C. E. Leiserson and 1. B Saxe

Moreover, no zero-weight path in G, has greater proﬂagalion delay than p, which

implies D, (4, »)=d(p). Hence, by Lemma 5 we have W(G,)=D, (0, v}=D(u,p). O

i
Lemmas 4 and 5 also allow us to characlerize the condilions under which a
retiming produces a circuit whose clock period is no grealer than a given constant.
|

Tueorem 7. Let G = <V, E, d, w) be a synchronous ;circuit, let ¢ be an arbitrary
positive real number, and let v be a function from V to the integers. Then r is a legal
retiming of G such that ©(G,} < c if and only if

7.1 1) — r(e) < w(e) for every edge u 5 v of G, and |
1.2 r(u) — 1) < W, v} — 1 for all vertices u,ve V .s;hch that D(u, v) > c.

Proor. By Corollary 3, the reliming r is legal il and anly if condition 7.1 holds. If
risindeed a legal retiming of G, then by Lemma 4 the retimed circuil G, has clock
period ®(G,) < ¢ precisely under the condition that | 1, 0) = | for all verlices
w, v € V such thal D, (u, v} > ¢. Since by Lemma 5 we; have W, (1, 0) = W, v) +

Hv} — r(r) and D (u, ) = D{u, v), this condition is equiivalenl 1o coudition 7.2.

Theorem 7 provides the basic tool needed to solve [the clock-period-minimiza-
lion problem. Notice that the constraints on the unkn ywns r(v} in the theorem are
linear inequalities involving only differences of unknowns, and thus we have an
instance of Problem LP.” Thereflore, using the Bellman-Ford algorithm to test
whether a retimed circuit exists with clock period less than some constanl ¢ takes
O(1V{) time since there can be only Q(|V|?) inequalities.

We now present an algorithm to determine a retiming [or a circuil G such that
the clock period of the retimed circuil is minimized. ;
|
Algorithm OPT1 (clock-period minimization). Given ta synchronous circuit G =
(V. E, d, w), this algorithm determines a retiming r such that {G,) is as small as

possible. |

I. Compute W and D using Algorithm WD. ’ |

2. Sort the elements in the range of D.

3. Binary search among the elements D(1, v) for the minimum achievable clock
period. To test whether each potential clock period ¢ is feasible, apply the
Bellman-Ford algorithm to determine whether the conditions in Theorem 7 can
be salisfied. 1

4. For the minimum achievable clock period found in siep 3, use the values for the
+{v) found by the Bellman-Ford algorithm as ihe oi)timal reliming. (]

Algorithm OPTI runs in Q(|V|? Ig| V]) time. For some circuits, we can some-
times improve the performance of Algorithm QOPTI |by using a smaller set of

i
7 Actually, we have lhe infeger linear-programming version of the problem because the unknowns r(v)
are required Lo be integer. Since the value on the right-hand side of each equalion is integer, however,
the Bellman-Ford algorithm produces an integer optimal solulion if one exists,

Retiming Syichronezs Chirsinn 1=

rivl=0 ffwgls -1 rvgd=-2
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Fig. 4. The graph model of an optimal eorrelator with clock period 13. The circuit is abtained from the
graph of Carrelator 1 in Figure 3 by applying the oplimal reliming, determincd by Algorithm OPTI.
For each vertex v, the value r(p) is the lag of v with respect to the corresponding verlex in Corrclalor |1,
The retimed weight of an edge n 5 v is given by w,(e) = w(e) + e — {n).

inequalitics. (An algorithm with a provably better asymplotic performance is given
in the next section.} The key observation is that we may eliminale any inequality
F) — r{v) < W(u, v) — 1 from condition 7.2 il either D(e, v) — d(v) > c or D{u,n} —
d(n) > ¢. The intuition behind this optimization is that there is no need to require
explicitly that a path p have positive weight w,(p) il we already require some
subpath of p to have positive weight.

As an example, Figure 4 shows the circuit graph of Correlator 3, which can be
obtained from Correlator 1 by applying the Bellman-Ford algorithm to the
inequalities from Theorem 7 with clock petiod ¢ = 13. There are 11 inequalities
(one for each edge) that must be salisfied to ensure a legal reliming—condition 7.1
in Theorem 7. Of the potential 34 inequalities arising from cases where D, v) >
13—condition 7.2 in the theorem —only five need be included il we eliminate (hose
for which either D(u, ¥) — d(v} > 13 or D{u, v) — d{u) > 13. Those entries corre-
sponding to the five relevant inequalities for D are circled in Table 1.

5. A More Efficient Algorithm for Clock-Period Minimization. In this section we
describe an asymptotically more eflicient algarithm for (he clock-period-minimiza-
lion problem. Specifically, we show thal the feasible clock-period test in step 3 of
Algorithm OPTL, which determines whether there exists a retiming of G with clock
petied at most ¢, can be performed in O(JV|]E|) time, a significant improvement
over O(J¥|*) for sparse graphs. This resull yields an O{|V||E| lg|V|)-time
algorithm for determining the optimal retiming,

We begin with the O(| V| |E|)-time algerithm for determining whether a given
clock period is feasible.

Algorithm FEAS (feasible clock-period test). Given a synchronous circuil G =
(¥, E,d, w) and a desired clock period c, this algorithm produces a retiming r of G
such that G, is a synchronous circuil with clock period @(G,) < c, il such a retiming
exists.

1. For each vertex v e V, scl #(v) — 0.

2. Repeat the lollowing | V| — | limes:
2.1. Compule graph G, with the existing values for r.
2.2. Run Algorithm CP on the graph G, to determine A(v) for each vertex v e V.
2.3. For each v such that A(v) > ¢, set r(v) « r(v) + 1.
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18 C F Leisersar and J B Sawr

3. Run Algorithm CP on the circuit G,. If (I)(G,);> ¢, then no feasible retiming
exists. Otherwise, r is the desired reliming. : tl
|
Proor oF CokrecTness.!  Algorithm FEAS works by relaxation. Siep | specilics
an initial lentalive retiming in which each vertex:has zero lag {so that G, = ).
Each iteration ol step 2 is equivalent 1o one pass of a Bellman-Ford algorithm on
the constraints in Theorem 7. We assume that the tentative values produced during
each pass over the constraint set depend only on the tentative values from the.
previous pass.

Aller cach ileration of siep 2, the tentative retiming is guaranteed Lo be legal.
Consider an edge # 5 v in G, I the retimed weight w,(e) is strictly positive at the
beginning of the iteralion, then it will be nonnegative at the end of the ileration
because r{u) can increase by at most | and r(v) canhot decrease. Il w,{e) = 0 at the
beginning of the iteration and il r(u) is incremented, then r(v) will be incremented as
well because A(v) = A(u) + d(u) = Alu) > c in thisi case.

kt remains to show Lhat step 2 simulates a pass of a Bellman-Ford algorithm on
the constraints itom Theorem 7. Since the tenlalive reliming is always legal at the
beginning ol an iteration, the constrainls 7.1 a;n: already salislied. Thus, the
relaxation step in the inner loop of the Bellman-Ford algorithm does not change
the value of any r{v) for these constraints.

To see that the effects of the relaxations due to the constraints 7.2 are achieved,
consider any wo vertices u, v € V. Il we have D(u, v) < ¢, then no inequality for
critical paths [rom u to v occurs in this conslraintiscl. If the retimed critical path
weight W (u, v) = W, v) + r(v) — r(u} is posiliv;e, then the corresponding in-
equality in the constraint set is already salisfied.; Finally, when D(u, v) > ¢ and
W(u, v) = 0, there is some path u 5+ v such that w,(p) = W, (i, v) = 0 and d(p) =
D{u, v). The existence of this path implies that A(p) = d(p) = D(u, v) > ¢, so that
r(v) will be given the new value r(v) + 1 = r(u) + W, (1, v} — Wi, v)+ 1 = r(u) —
W(u, v) + 1, precisely achieving the eflect of the desired relaxation of the constraint
ru) — r(v) < W{u, v) — 1. Conversely, r(v) is incremented only when therc exisls
some path x -5+ v such thatl w(p) = 0 and d{p) = A(v) > ¢, implying that D(x,v) >
d(p) > c and W, (u,v) = 0. | i

|

Algorithm FEAS can be used to improve the clock-period-minimization algo-
rithm OPT1. i
|
Algorithm OPT2 {clock-period minimization). Given 2 synchronous circuil G =
(V, E,d, w), this algorithm determines a retiming r such that &(G,) is as small as
possible. |

1

Run Algorithm QOPT1 using Algorithm FEAS in step 3, rather than the Bellman-
Ford algerithm, to lest whether each potential clock period ¢ is leasible. ]

Algorithm OPT2 runs in O(J V| |E| Ig] V) lime.é

& A more detailed proof can be found in [20]. i

|
|
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6. A Mathemancal-Pregramming Framework for Retiming. In imis szcuon we
describe another algorithm for clock-period minimization based on a special case
ol mixed-integer lincar progrumming, Specitically, we show that the [easible clock-
period test can be performed in O(| V|| E] lg|V{) time, Although this bound is not
an improvemenl over the O(] V| 1£]) bound for Algorithm FEAS, the mathemali-
cal-programming [ramework in this section provides lurther insight into retiming.

The [leasibie clock-period test can be reduced to the foliowing mixed-integer
programming preblem.

PropLEM MILP.  Let § be a set of m linear inequalities of the [orm x; — x; < a;;
on the unknowns x,, x,,..., x,. where the a,; are given real constants, and let & be
given. Determine feasible values for the unknowns x; subject to the constraint that
x;isintegerfori=1,2,....kand realfor i = k + 1,k + 2,..., n, or determine Lhat
no such values exist.

Although mixed-inleger programming is in general NP-complete (because
integer programming is [4,p. 245]), this special case can be solved in
O(nn + km lg n) time {15]. The reduction of the [casible clock-period test lo
Problem MILP makes use ol the following lemnma.

LEMMAB. Let G = (V, E, d, w) be a synchronous circuit, and let ¢ be a positive real
number. Then the clock period W{G) is less than or equal to ¢ if and only if there exists
a fimction s: V = [0, c] such that s(v) = d(v) for every vertex v and suwcl that
s(v) = s(t) -+ d(v) for every zero-weight edge u > v.

Proor. For cach verlex v, lel A(v) be the maximal sum of the combinational
delays along any zero-weight path that ends at v. (This A is the same as the one in
Algorithin CP.) By definition, we have ®(G) < c if and only il A(v) < cfor all v. I
we have {(G) < ¢, the [unction A satisfies the desired properties for 5. Conversely. if
a funclion s exists that has the desired propertics, then we have A(v) < s(v) < ¢ for
every verlex v, O

Lemma 8 and Corollary 3 together give a characterization of when it is possible
to retime a circuit so that the retimed circuil has a clock period of ¢ or less.

LEMMA 9. Let G = (¥, E, d, w) be a synchronous circuit, and let ¢ be a positive real
number. Then there exists a retiming r of G such that O(G,) < c if and only if there
exists an assignment of a real value s(u) and an integer value r(v) to each vertex v e V
such that the following conditions are satisfied:

9.1. —s(v) < — d{(v) for every vertex ve V,

9.2. s{v) < c for every verltex ve V,

9.3. r(u) — r(v) < wie) wherever u - v, and

94 s(u) — s() £ — d{v) wherever u > i such that r(u} — r(r) = wie).
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20 ) . C. L. Leiserson and 1. D Saxe

Proofr. Condition 9.3 captures Lhe requirements for r to be a legal retiming, as
given in Corollary 3, namely that r be a mapping [rom V Lo Z such that G, salislics
condition W1 (no negative-weight edges). Conditions 9.1, 9.2, and 9.4 caplure the
requirement for G, to have a clock period ®(G, ) < ¢ as given in Lemma 8. (Recall
that G, is defined to have w, (e) = w(e) + r(v) — r(u) [or cach edge usv) . O

Unfortunately, this result does not quite allow us to recast an instance ol the
feasible clock-period test as an instance of Problem MILI® because of the qualilying
clause “such that r(u) — (v} = w(e)” in condition 9.4. The next theorem shows that
the conditions can be expressed wilhout such a clause.

THEOREM 10. Let G = (V, E, d, w)> be a synchronous circuit, and et ¢ be a positive
real number. Then there is a retiming r of G such that ©(G,) < c if and only if there
exists an assignment of a real value R(v) and an integer value r(v) (o each vertexve V
such that the following conditions are satisfied:

10.1. r(v) — R(v) < — d(v)/c for every vertex ve V,

10.2. R(v) — r(v) < 1 for every vertexve V, ‘

10.3. r(w) — r(v} < w(e) wherever u S0, and

10.4. R(u) — R(v) < wie) — d{v)/c wherever u = v.

PrROOF. Any solution to the conditions in Letnma 9 can be converled to a
solution to the conditions above by using the same values for Lhe r(v) and taking
R(v) = r(v) + s(v)/c lor each vertex v. Conversclzly, any solution to the conditions
above yields a solution to the conditions in: Lemma 9 using the subslitution
5(¢) = c(R(v) — r(v)}. i o

Theorem 10 is the basis for the following improvement on Algerithm OPT1.

Algorithm QP13 (clock-period minimization). ;Given a synchronous circuil G =
(V, E,d,w), this algorithm determines a rel:mmg r such that ®(G,) is as small as
possible. -

Run Algorithm OPTI, but in step 3, test whethcr each potential clock period c is
feasible in the following manner. !

1.1. Use Theorem 10 to produce an instance ol Problem MILT that has a solution
if and only if clock period c is feasible.

3.2. Use the algorithm from [15] to determmﬂ whether the inslance of Problem
MILP has a solution. : O

!
)

This algorithm can be made to run in O(|V] | E| lg| V] + [ V1% 1g?| V) time by
choosing efficient algorithms for each of the steps. If Johnson’s all- pairs shortest-
paths algorithm [ 7] using the Fibonacci heap data structure due to Fredman and
Tarjan (2] is used in Algorithm WD, step 1 runs in O(| VIIEI +|V|? lgIVI) Lime.
Since there are only 0| ¥ [%) elements in the range of D, step 2 runsin (1 V|2 Ig| V)
time. Each iteration of the binary search in step 3 requires solving an instance of

Retiming Synchronous Circuitry 21

Problem MILP with | V| integer variables, | V| real variabies, and 2|V| + 2|E| =
O(| E|) inequalities. Thus Lhe Lotal Llime for step 3is O(| V| |E]Ig| V| + {1V 2 1g?| V).
The optimal retiming Irom step 4 is produced as a side cllect of step 3.

7. Unit Propagation Delay, Systolic Circuits, and Slowdown.  This section cxam-

ines circuits in which the propagation delays of all functional ciements are equal.
For such circuits, the clock-period-minimization problem can be solved more
simply than for arbitrary circuits. In this section we explore Lhe relation of this class
of circuits 1o systolic computation [8],[9],[11], [14]. We observe that many
systolic circuits in the literalure can support several independenl, interleaved
computations. In [14] we introduced a transformation called slowdown which,
when coupled with retiming, can be used to produce a systolic circuit from an
arbitrary synchronous circuit. In this section we give an eflicient algorithm for
determining whether any given circuit G can be produced’ "lrom another circuit
{called a reduced form of G) by slowdown and retiming. Il such a reduced circuit
exists, then our algorithm finds one.

We define a circuit G = {V, E, d, w) 1o be a unit-delay circuit il each vertex ve V
has propagation delay d(v) = |. The next theorem gives a characterization of when
a unit-delay circuit has clock period less than or equal to ¢. The theorem is phrased
in terms of the graph G — I/c, which is defined as G — lfc = (¥, E, d, w') where
w'(e) = w(e) — 1/c for every edge e € E. Thus G — 1/c is the graph oblained [rom G
by subtracling I/c [rom Lthe weight of each edge in G.

THEOREM 1. Let G = {V, E, d, w) be a unit-delay synchronous circuit, and let ¢ he
any positive integer. Then there is a retiming r of G such that 9(G,) < c if and only if
— 1/c comtains ne cycles having negative weight.

Proor. First, suppose G — ljc has ne negalive-weight cycles. We produce a
reliming r of G such that #{G,} < ¢. Assume without loss ol generality that there is
a path from each vertex v of G 1o some vertex sy (if not, add edges ol the lorm v — vy
with sulficiently large weight so thal no negative-weight cycles are introduced into

— 1/¢), and let g() be the weight of the shorlest path [rom v to vy in G ~ L/c. For
each vertex v, let H(v) = [glv)].

We now prove that the funclion r so delined is a legal rellmmg and that
M(G,) < . First we show legality by showing w,(e) = w(e) + r(v} — r(x) = 0 for
every edge 1 — v. The shortest path in G — 1/c from u 10 vy is at feast as shorl
as the path u 5 v -5 py, where p is the shortest path (in G — 1/c) from v to v,
Thus, we have g(u) < g(v) + w{e) — Y/e. Taking ceilings of bolh sides gives r{u} <
Iglv) + wie) — 1/c] < [g(vy 14 wie) < r(v) -+ wie), and thus w,(e) = wle) + r(v) —
r(u) = 0, as desired.

Next, we must show thal the clock period of the retimed circuit G, is al most ¢.
That is, we must show that w,(p) = | [or any path u 45 v containing c or more
edges. The shorlest path from u to v, is at least as short as the path u R
where g is the shortest path from v to vy. Furthermore, the lotal weight along p in
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!
G — 1/c is at most w(p) — 1, since there are at leéast ¢ edpges in the path. Thus, we
have g(u) < g(v} + w(p) — L, and w,(p) = w(p) 4 [g(v) 1 — [g(u)] > 1.

On the other hand, suppose G — 1/c contains some cycle p with nepalive weight.
We must prove thal G cannot be retimed to have aclock period of ¢ or less. Let n be
the number of edges in the cycle p. By the definition of G — l/c, we have
w(p) — njc =w'(p), where w' is the edge-weight function for G — I/c. But by
supposition, w'(p) is negative, which means that w(p) — njc < 0, that is, the cycle p
contains fewer than n/c registers in G. But retiming leaves the number of registers
on any cycle unchanged (Corollary 2). Thus, no matter how the fewer than n/c
registers are distributed on the cycle of n vertices, there must be some register-free
path with at least ¢ edges and, therefore, with at least ¢ + | verlices. Consequently,
G cannot be retimed to have a clock period of cor less. {1l

|

To test whether there is a retiming r of a unit-delay circuit G such that dG,) < c,
we can use the Bellman-Ford algorithm to find the weight g(v) of the shortest path
in G — 1/c from each vertex v to an arbilrary vertex vy I the shortest-path weighls
are not well defined, the Bellman-Ford algorithm detects a negalive-weight cycle,
which means that no retiming exists. Thus, the fleasible clock-period test can be
petformed in O(}VI|E|) time for unit-delay c;ircuits using the Dellman-Ford
algorithm directly,

A systolic circuit is a unit-delay circuit in which there is at least one register along
every interconnection between two lunctional elements. Thus the clock period
of a systolic circuit is the minimum possible—Lhe propagalion delay through a
single functional element. Systolic circuits have been sludied extensively
[81, [91, (111, [14], and they have many applications including signal processing,
matrix manipufation, machine vision, and raster graphics.

Interpieted in the context of systolic circuits, Theorem 11 is a generalizalion of
the Systolic Conversion Theorem from [ 14], which says that G can be retimed Lo be
systolic if the constraint graph G — | has no cycles of negative weight. (Simply
restrict Theorem 11 to the case where ¢ = 1.) The Systolic Conversion Theorem is
generalized in a dilferent way in [14], however, through the idea of stowdow.

For any circuit G = (V, E, d, w) and any positive integer c, Lhe circuit ¢G is the
circuit obtained by multiplying all the register coints in G by c. That is, the circuil
G is defined as ¢G = (¥, E, d, w') where w'(e) = cw(e) lor every edge e € E. All the
data Now in ¢G is slowed down by a [actor of ¢, so that ¢G performs the same
computations as G, but Lakes ¢ times as many clock ticks and communicales with
the external intetfaces only on every cth clock tick. In fact, ¢G acts as a sct of ¢
independent, interleaved inslances of G. .

If a circuit G can be obtained by retiming a cir;cuit of the form cG', then we say
that G is a ¢-slow circuit, and, more specifically, th;at G is a c-slow form of G'. In Lhis
situation, we say ' is a reduced form ol G. The main advantage of a c-slow circuit is
that it can often be retimed to have a shorter clock period than any of its reduced
forms. For some applications, throughput is the issue, and multiple, interleaved
streams ol computation can be effectively utilized. A ¢-slow circuit that is systolic
offers maximum throughput.

Reliming Synchronous Circuitry 23

The [oilowing corollary Lo Theerem 11 lells when a circuit has a c-slow form
which is systolic.

CoROLLARY |2, Let G = (V, E, d, w) be a unit-delay synchronous circuit, and let ¢
he an arbitrary positive integer. Then the following are equivalent:

12,1 The graph G — |/c has no negative-weight cycles.
122. The circuit G can be retimed to have clock period less than or equal 1o c.
12.3. The circuit ¢G can be retimed to be spstolic.

ProOF.  That 12.1 and 12.2 are equivalent is exactly Theorem 1 1. The equivalence
ol 12.1 and 12.3 follows by applying Theotem !l to ¢G with clock period 1, and
observing thal ¢G — | has a negative-weight cycle if and only if G — /¢ has
negative-weight cycle. O

v
n

The registers of a circuit of lhe form ¢ are naturally divided into ¢ eguivalence
clusses. Given any {wo registers 4 and B in ¢G, the number of registers on any lwo
palhs [rom register A to register B are congruent modulo ¢. Moreover, il we
consider undirected puths, in which edges can be traversed in the reverse direction,
and il we generalize Lthe notion of path weight by adding | for each regisier on a
forward edge and subtracting | for each register on a reverse edge, the register
counts of two undirected paths from registcr A (o register B are also congruent
modulo ¢. Consequently, Lhe registers are naturally divided into equivalence classes
according to their undirecled path weight {medulo ¢) from an arbitrary vertex.

At any given lime siep, any lwo registers in dilferent equivalence classes contain
data from independent streams of computation—data that can never arrive at
inputs of the same [unctional element at the same time. Although retiming destroys
the individual identitics of the registers, Lemma 1 guarantees that the registers of
any c-slow circuit can still be partitioned inlo ¢ such equivalence classes.

Using, the notion of cquivalence classes of registers, the following scenario
iflustrates the relationships given in Corollary 12. Let G = {V,E, d,w) be a
unil-delay synchronous circuit. Find an integer ¢ such that G — I/c has no
negative-weight cycles, and consider the circuit ¢G. There is a retiming r of ¢G such
that (¢G), is systolic, Il we remove all the registers in Lhe c-slow circuit {cG), excepl
for those in one equivalence class, the resulting circuit is a retimed form of (he
original circuit G, and its clock period is less than or equal to c.

Many systolic circuits appearing in the literature are 2-stow or 3-slow—even il
the ideas of slowdown and retiming were not explicitly used in their design. For
example, Lhe systolic algorithms lor band-matrix multiplication and LU-decompo-
sition [rom [9] are 3-stow and can support three independent, interleaved streams
of computation. If all independent streams of compulation cannot be utilized in a
c-slow circuit, it may be desirable (o remove all regislers except for those in one
equivalence class. The following algorithm determines if a circuit is actually a ¢-
slow form of another, and if so, produces a reduced form of the circuit,
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Algorithm R (remove all bus one equivalence class of registers in a circuit). Given a
synchronous circuit G = (V, E, d, w) this algorithm delermines the largest ¢ such
that G is c-slow and produces a reduced circuit G’ such that G is a c-slow form ol G',

1. Foreach vertex v € V, sel dist(v) Lo the weight of some undirected path from v to
an arbitrary verlex vy e V. .

2. Compule ¢ = ged{w(e) + dist(v) — dist(u}: 1 5 v}

3. For each vertex ve V, set r(y) = dist(v} mod ¢!

4. Produce G' = (V, E, d, w), where w'(e) = (wle) + r(v) — r(u))/c for each edge
K _e’ b. , D

PRrOOF OF CORRECTNESS.  We first show that for each edge u 5 v, the value w'(e) is
a legal register count, By construction, ¢ evenly divlides w(e) + r(v) — r(u) because ¢

divides w(e) + dist(v) — dist(u)." Thus, for any edge, the register count w'(ej
produced in step 4 is guaranteed (o be an integer. In addition, w'{e) is guaranteed to

be strictly greater than — | beause r(u) must be Iessilhan cand w(e) + r(v)is at leasl

0. Since we have just shown that w'(e) is an integer, it must be nonnegative.

The constructlion in step 4 directly provides the idenlily G’ = G, /c, and thus G is
a c-slow form of G'. We show Lhat the ¢ computcdiin step 2 is Lhe largest possible.
Suppose there is a ¢’ such that G is a ¢'-slow lorm dl another circuit G'. We wish (o
show that ¢’ divides w(e) -+ disi(v) — disi(u) for each edge v S5 v, and thus that ¢’
divides c. For every vertex u, the weights of all undirected paths in ¢'G’ [rom v 1o v,
are congrucnt modulo ¢'. Since retiming changes| all path weights between two
vertices by the same amount (which is provable for undirected paths by generaliz-
ing Lemma [}, it must be the case that in G, the weights of all undirected paths [rom
v to g are congruent modulo ¢'. Tn particular, the weight of the path u -+ vy that
determines dist(u) and the weight w(e) + dist(v) of the path u-5 v = v, must be
congruent moedulo ¢’. Hence ¢’ divides w(e) + disr(;u) — dist(u). L

Step | of Algorithm R can be performed in time O(¥V|+ |E))=0(E] by
depth-first search. Step 3 runs in O(J¥|) time, and s:lep 4 takes Q(1E]) time. Step 2
takes more work, but not much more. The computalion of the grealest common
divisor (ged) of | E| integers can be performed in O(| E| -+ lg x) time, where x is the
least nonzero absolute value ol any of the numblers. Just start with this value
x—which can be found in O(|E|) time—as a tentative ged, and ged in each of the
other numbers in any order. Each mod operation in Euclid’s algorithm either uses
up one of the | E| numbers, or else divides the curro!;nt lentative ged by the golden

ratio (I 4 \/5)/2.“’ (As a practical matter, starting with any of the | £| numbers as
the initial tentative ged would give reasonable per{ormance, since the number of

® 1 w(e) + dist(r) — dist{u) = 0 for every edge i 5 p, then in Slei:) 2 we gel ¢ = oo, Using the standard
convention that x mod o = xand xfe0 = 0, Algorithm R yields a reduced graph G’ in which each edge
u = v has weight w'(e) = 0. l

'® Thal is, if » mod operations are performed Lo compute a new tentative ged, then it will be smaller than
the old lentative ged by at least.a factor of ({1 + ‘/5)/2)"' t
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registers in a typical circuit is much less than exponential in the number of edges.)
Thus the Lotal running time of Algorithn R is O E] + lg x).

Observe that Algorithm R works not enly for unit-delay circuits, but for any
synchronous circuit. Furthermore, when he exira equivalence classes of registers
from a c-slow circuil are removed, the clock period of the reduced circuit is not
unduly lengthened. The definition of w' in step 4 provides that, for any path p of
weight w(p) = ¢ in G, we have w'(p) > 0, which implies that ®(G") < ¢c®(G). To
guaranlee the minimum clock period, however, the reduced circuit must generally
be retimed.

A systolic circuit that is naturally c-slow can be converted by Algorithm R into a
circuit that performs an operation on every clock tick and whose clock period is
bounded by ¢. This conversion can result in a performance advantage because, in
practice, there are time penalties associated with the loading of registers. Because of
this overhead, ¢ clock ticks of a circuit with nominal period 1 typically use more
time than one clock tick of a circuil with nominal period ¢. Also, a reduction in
registers may save chip area, which can leéad to further performance improvements
since the wires will in general be shorter. A possible disadvantage of reducing the
number of cquivalence classes of registers is Lhat throughputsis also reduced in
cases where the independent streams of computation might be effectively utilized.

8. Register Minimization and Fanout. Thus far we have concenlrated on clock
period as the objective unction for determining « reliming. In Section 7, however.
we showed (hat the number of registers in a circuit could somelimes be reduced by
a method other than retiming. This section shows that the problem of retiming a
circuit o minimize the total state of a circuit is polynomial-time solvable by
reducing that problem to a minimum-cost flow [ 10, p. 129] problem. We also show
that the tolal state of a circuit can be minimized subject to a bound on the clock
period. These resulls can be cxtended to reflect the widths of the interconnections
and ways by which faneut is modeled.

For a given circuit G = {V, E.d, w), the state-minimization problem is o
determine a retiming r such that the total stale $(G,) = Z,_; w,{¢) of the retimed
circuit is minimized. This problem can be solved in polynomial time as the
following theorem shows.

THEOREM 13, The stede-minimization problem can be reduced to the minimum-cost
flow probiem.

SKETCH OF PROOF.  Lel G = (V, E, d, w) be a circuit. We seek a retiming r such
that the tolal state §(G,) = Z,_, w,(¢) of the retimed circuit is minimized. By (he
definition ol w,, we have

S(G,) = 3. w,(e)

eck

Y. (w(e) + r(v) — r(w)

I

S(G) + ) r(v) (indegree(v) — outdegree(v)).

neV
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26 ; C. E. Leiserson and J. B. Saxe

Since 5{G) is constant, minimizing S,(G) is equivalent to minimizing the quantity

(5) Y. (v} (indegree(v) — outdeérce(u)},

vel

which is a linear combination of the r(v) since j(indegrcc(u)—ouldcgree(u)) is

constant for each v. The minimizatlion is subject to the constraint that, for cach
e . - . -

edge u - v, the register count w,(e) is nonnegative—that s,

(6 Hu) — r{v) < wie)

We can regard each edge of ¢ € E as a network flow arc having infinite capacily and
having cost w(e) per unit of flow. The dual of the linear-programming problem

given by (5) and (6) asks that we assign to cach edge e a nonnegalive flow f(e) such
that the net flow out of any vertex v is ;

) Y fle)— Y f(e) = outdegree(v) ~— indegree(v),

and such that the total cost ), . ; w(e)f(e) is minimized. This problem can be

expressed directly as a minimum-cost {low problem by augmenting the flow graph

with a source and a sink, each of which is connected to each verlex by an edge

whose capacity is delermined by (7). The lags #(v) in the minimum-state retiming

are lhe dual variables (potentials) for the optimal flow f*(e), which most

minimum-cost flow algorithms compule. O
|

The dominant cost in solving the state-minimization problem is solving the
minimum-cost flow problem, lor which many algo;ﬁith:ns exist [ 1], [3], [5], [6].
[18]. Using the algorithm due to Orlin [18], for example, the stale-minimization
problem can be solved in O(|E|* Ig| | + | V|| E| Ig2{¥|) time, Under the assump-
tion that the largest number of registers on any single edge in the circuit is at most
polynomial in [V, we can use the algorithm due 10, Goldberg and Tarjan [6] 1o
solve the state-minimization problem in O(| V|| E| 181 V1 Ig(IVI*/|E])) time.

More complicated problems can be solved withjn the same framework. For
example, the total stale of a circuit can be miuimizﬁ':d subject to a bound on the
clock period. Given a maximum allowable clock period ¢, we wish to find a
reliming r that minimizes the state S(G,) of the retimed circuit subject to the
condition that (G, ) < c. In this case, we must mininjize the quantity (5) subject 10
the constraints lrom Theorem 7, which require that r(u) — r(n) < w(e) whenever
u -5 v, and that r(u) — r(v) < W(u, v) — | whenever 1_)(1:, v) > c. The stale minimi-
zalion problem remains the dual of a minimum-cost flow problem, but the flow
graph is augmented with additional edges.!"

The state-minimization problem can be gcncrali;zed by allowing regislers on
different edges to have different costs. For example,i it may be cheaper 1o add a
'! See Section VIL2 of [20], for a more extended discussion of !lhe minimum-cost flow duals of the
variants of the state minimization problems discussed in this section.
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register along 2 one-bit wide control path than along a 32-bit wide data path. We
may model such situations by assigning to each edge e a breadth B(e) proportional

to the cost of adding a register along e. The objective function which we must
minimize is then given by

(8) ) rw)(Z Ble)y— Y ﬂte)),

velV 1%y rS7

and the constraints on the r(p) are unchanged. This problem is still the dual of a
minimum-cost flow problem since the quanlily in the large parentheses is a
constant for each u. Although the fi(e) need nol be integers, il there is a solution to
the state-minimization problem, there is an integer optimal solution because the
linear-programming tableau for the problem is unimodular and the right-hand side
is an integer vector.

In a physical circuit, a signal from a register or functional element may fan out to
several functlional clements. As was mentioned in [ootnote 5 in Section 2, we model
this situation with several dillerent edges in the circuit graph. For the clock-period-
minimization problem, there was no harm in modeling [anout in this manner, but
for the state-minimization problem, there can be. The difficulty that arises in the
State-minimization problem is that regislers can be shared along the physical
interconnection. The objective functions (5) and (8) do not take sharing into
account.

Fanout can be incorporated into the model in several ways that allow the
sharing of registers to be accounted for exactly. We begin by looking at the
situation in Figure 5(a) where one vertex u has an output that fans out to lwo
vertices v, and v,. To deal properly with this situation in the state-minimization
problem, it is sufficient to introduce a dummy vertlex & with zero propagation delay
which models the fork of the interconnection, as is shown in Figure 5(b). When Lhe

M|
la}
[
vz

o«iig

(b)
- D O
2 o rlv.;"
@ (el
r(ai-0 Ayl
r{uz)=2

Fig. 5. Modeling two-way fanoul with an extra vertex having delay zero.
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28 C. E. Leiserson and ). B. Suxe

circuit is relimed Lo minimize the number of registers, either (he edge from & Lo v, or
the edge from i Lo v, will have zero register count, and the edge from u Lo @ will
have the shared registers. In Figure 5(c) the edge to v, ends up with zero weight
alter reliming so as to minimize the total number of registers.

Large mulliway forks present some modeling alternatives not encountered in the
two-way case. Il a physical interconnection is to be modeled, the fork can be
decomposed into several iwo-way forks. (In fact, our concern for modeling the
physical interconnection prompted us to design Correlalor | with the x; running
through the comparators rather than with mu]tlway fanout direclly from the
exlernal interface.)

For logical design, however, it may be undesirable to model the physical
interconnection. In the case of a hree-way fork, for instance, we might wish Lo
share the largest possible number of registers between the two edges wilh greatest
register counts, regardless of which two edges these end up being. Modeling a k-
way lork for k > 3 by decomposing the interconnection into two-way forks will not
work. ‘

A solution to this problem ol modeling k-way fanout wilh maximum regisler
sharing is depicted in Figure 6. An output of vertex 4, having breadth f}, fans out lo

1., Uy along edges 1 3 0y, 4 3 vy, .., u 3 v, In Lhe retimed circuit, the cost of

this fanout should be ff times the maximum of retim,bd edge weights w,(e;). So (hat
the register count cosl function S(G,} will properly model the register sharing, we
first add a dummy vertex with zero propagation delay. Letting w,,, =

MaX, ¢ w(e,), we add edges v, 5 tt, with welghts\ w(e;) = w,., — w(e;). Finally,
we pive all edges ¢; and g breadlhs of fij/k. ‘

The modified circuit graph accurately models the sharing of registers among the
edges ¢; involved in the [anout when the state is niinimizcd. For any reliming r,
Lemma 1 dictates that the weights w,(p;) of all paths p;=u S, % will be
identical since they are identical in the unretimed circuit. The retimed register
counts w,(e;) are constrained by the rest of the circuifl, but the weights w,(&,) will be
as small as possible because i is a sink in the graph. Thus the register count of one

Yoy Jﬂjk 1

i
: K
ey - e “les)

Bk TN ﬂ/ik

Fig. 6. A gadget for modeling ihe cost of mulliway fanout with maximal sharing of registcrs.
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ol the & will be zero, and therefore the weight of each path p, will be
max, .; ., W,{e;). Since there are k paths, each with breadih fi/k, the total cost of the
paths will be ffi-max, ., ., w,(e;) as desired.

9. A More General Model for Propagation Delay. In this section we exlend Lhe
methods of Sections 5 and 6 to deal with lunctional elements in which the
propagation delays through individual functional elements are nonuniform. ln an
adder, for example, the propagation delay from a low-order input bit to a high-
order oulput bil may be [ar greater than the propagation delay [rom a low-order
inpul bit to a low-order outpul bit or [rom a high-order input bit to a high-order
output bil. Thus, the worst-case propapation delay through two cascaded adders
can be much less than twice the worst-case propagalion delay through a single
adder. This section gives a more general circuit model 1o handle this commonly
occurring siluation. We show how the retiming problem in this model can be
reduced Lo simple mixed-integer programming as in Section 6. We also give a more
cllicient relaxation algorithm similar to that in Section 5.

We may lake into account nonunilorm propagation delays through functional
elements by modilying the model [or synchronous circuits given in Section 2, 50
that lrom each inpul to each output of a given functional clement, an independent
propagation delay may be assigned. Figure 7 shows graphically the “insides” of a
functional elemeat in this model. The vertex v conlains internal edges drawn [rom a
set F,c {e:?7 50} x {e:v5 7). We denote the set of all internal edges of all
vertices as F' = | J..y F,.

We augment our arrow nolation as [ollows. For internal edges f, e F, and
f, € F,, we use the notation f, > f, toindicale thal normal edge e connects internal
edge f, of u to internal edge f, of v. This means not only that u = v, but also that
there are edges 72 wand v 3 7 such that f, = (g, ¢) and f, = (e, ¢y). Notice thala
single edge - v typically connects multiple internal edges of # with multiple
internal edges of v.

The propagation delay [unclion d, rather than being a [unction from V to the
nonnegative reals, is a [unction from F to the nonnegative reals. For an internal
edge f = (e,, ¢;) € F,, the value d{ f') denotes the propagation delay through f. A
given output of a lunctional element v need not depend on all the inputs. In an
adder, for example, the values of the high-order input bits have no effect on the low-
order bits of the output.

Fig. 7. A lunclional clement with nonuniform propapation delays. The time at which output X must
seltle is either 4 esec aller inpul A settles or 11 esec alter input B settles, whichever is later.
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30 C. E. Leiserson and J. B. Saxe

We view paths in the exiended model as going from an internal edge, via an
alternating sequence of normal and internal edges, to an internal edge. For any
path p= £, f, 3...%4 £ the delay is naturally defined as d(p) = d(J;) +
d(f)) + -+ +d({,), and the register count of the path is defined as w(p) =
w(gp) + wie,} + -~ + wie,_,). We use the nolation u -5+ v to denote that path p
goes [rom some internal edge of vertex u Lo some internal edge of vertex v.

The clock period ©(G) of a circuit ¢ = ¢V, E, d, w) is the maximum delay along
any path of zero weight. We define retiming, which affects w but not d, exactly as it
is defined in the model of Section 2.2

The following results show how the clock-period-minimization problem lor a
circuit ¢ under the extended model can be reduced to an instance of Problem
MILP having one inleger variable for each functional element of G and one real
variable for each edge of G. The results, which parailel Lemma 8, Lemma 9, and
Theorem 10, are presenled without proof.

LEMMA 14, Let G = {V, E, d, w) be a synchronous circuit in the extended model,
and let ¢ be a positive real number. Then the clock period ®(G) is less than or equal to
¢ if and only if there exists a function 5: E — [0, ¢] such that

14.1. s(e} = d( [} wherever [ 57, and
14.2. se,) = se,) + d(f) wherever 75 57 and w(e,) > 0.

LEMMA 15. Let G = (V, E,d, w) be a synchronous circuit in the extended model,
and let ¢ be a positive real number. Then there is a retiming r of G such that ©(G,) < ¢
if and only if there exists an assignment of a real value s(e) to each edge ¢ € E and un
integer value r{v) to each vertex v e V such that the following conditions are satisfied:

151 —s5(e) < — d(f) wherever f 5 i

15.2 s{e) < c for every edge e E,

15.3 r(u) — r(v) < w(e) wherever u 5 v, cmd

15.4. s(e,) — s(e,) < — d(J) wherever u 5 I B9 , ) — r(v) = w(e,), and fEF,.

THEOREM 16. Let G = {V, E, d, w) be a synchronous circuit in the extended model,
and let ¢ be a positive real mumber. Then there is g retiming r of G such that d(G,) < ¢
if and enly if there exists an assignment of a real balue R(e} to each edye ¢ € E and an
integer value r(v) Lo each vertex v e V such that [ilefo”owinq conditions are satisfied:

16.1. (1) — R(e) < — d(f)/c whereuer f 59 and feF,.
16.2. R(e) — r(v} < | wherever v 5,

!2 The possibility that the internal connections hetween the inpuls and oulputs of a functional element
may not be a complete bipartile graph gives rise to some lechnical differences between the extended
model and the model of Section 2. First, condition W2 need only be imposed lor Lhose cycles in which
conseculive edges are actually connected by the internal data paths in the vertices. Second, retiming may
not be the only way to adjust register counts so that function is guaranieed to be prescrved — il Lhe
(undirected) graph of internal connections in some functiongl clement is nol connected, then the element
can be broken up into two or more independenl compenents which can be given different lags.
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163, (1) — r{v) < wie) wherever u 5 o, and
164, R(e,) — Rie,) < wle,} — d(f)/c wherever ? i I e

Theorem 16 says Lhat the problem of testing whether a given clock period is
feasible for a circuit G = (¥, E,d, w> in the extended model can be efliciently
reduced to an instance of Problem MILP having k = |V| integer variables,
i — k =|E| real variables, and m = 21E| + 2|d| inequalities, where [d] is the
number of pairs {e,, e,} of edges [or which die,, e,} is defined. Thus the feasible
clock-period test can be perlormed in O(|d|(|E| + [V 1g|E|)) lime.

We can reduce the cost of the feasibility test to O(]V1{}F|} by using an algorithm
similar to Algorithm FEAS. The dominant cost of this computalion is due to | V|
executions of an algorithm similar to Algorithm CP, each ol which runs in O(}F|)
time.

The clock-period-minimization algerithm for circuits in the extended model is
similar to Algorithm OPT2 which performs a binary search over a sel of possible
values for the minimal clock period. By the same argument used in Corollary 6 for
the model of Section 2, the optimal clock period must be equal to Dy, v) for some
pair of vertices u and v, where D and Ware defined as in (4), but with the semantics
of the notation interpreted in the exlended model. The values D, v) for all
connected pairs of vertices 1 and v can be lound in Q(|E}[F| + |V{E|Ig]ED) time
by an algorithm similar to Algorithm WD. The key step is to apply Johnson's all-
pairs shortest-paths aigorithm [7] to the edge-weighled graph H = (E, F, ud),
where the weighting function is defined by wd(f) = (w(e), — d(f)) wherever ? 5 f
in G (that is, wherever e Lo D). Using Fibonacci heaps [2] fortbe priority queue
in Johnson's algerithn, a time bound of O(|E||F) + | E|* ig| £]) can be achieved.
Oune addilional observation is required lo prove the claimed time bound of
G{|E| |F} + |V||E| lg| E|). The dominant cost of compuling W and D by Johnson's
all-pair shorlest-paths algorithm is due to { E| applications of Dijkstra’s algorithm
to find shortest paths [rom each verlex e € H to each other vertex. Since W and D
are defined on V x ¥ rather than on £ x E, however, we really only need to solve
|V| problems of the form: Given a vertex ve V, find for each e € E the weight of a
shortest path from v to e. Each such problem can be solved by using Dijkstra’s
algorithm to find the shortest-path weights from a sct of vertices in I (namely,

from any x € E such that 750 in G), rather than from a single vertex. Using
Fibonacci heaps, the claimed running time for computing W and D is obtained.
The total cost of clock-period minimization in the extended model is therefore
O(EiF| + V| ELIGIED) + OV ELIgIV]) = O(El[FI + [VIIF| ] V).

10. Conchling Remarks. Our goal has been to provide a general [ramework for
the precise understanding of circuit timing. Through the use of a simple graph-
(heoretic model, we have been able lo cast a variety of circuit timing problems in
purely combinatorial terms. We believe our approach to be robust. Many other
circuit models and many other circuit problems can be handled within the basic
framework. We take time here to discuss a [ew.

CT¥0 €C6Z LT9 XVAI SG:F1T

F0/€0/€0

SOT LIK

FT0[



32 . C. E. Leiserson and J. B, Saxe

Pipelining. An important special case of clock-petiod minimization is the prob-
lem of eptimally pipelining combinational circuitry. In a combinational circuit, ali
register counts are zero, and thus the circuit graph is acyclic. We can consider (he
circuit to have one input interface v, and one output interface v,. By retiming a
combinational circuit G, we can produce a pipelined circuit G, which achieves a
shorter clock period at the cost of introducing a latency of r(tg) — r(v,) clock licks
for signals to propagate from the input interface vy Lo the outpul interface vg-

In the optimal pipelining problem, we are given a combinalional circuil G and a
nonnegative integer | and asked to produce a retimed circuit G, with minimum
clock period subject to the constraint that Lhe retimed circuil have lalency at most
L This problem is just the clock-period-minimization problem with the additional
constraint that r(u) — rv) </ This additional constraint can be modeled by
augmenlting the circuil G with an edge vy 5 n; having weight w(e) = I Also, the
methods of Section 8 can be applied Lo solve the problem of minimizing the state of
pipelined circuitry subject to upper bounds on clock period and latency.

Timing at External Interfaces. An external interface may be [orced lo meet
various timing specifications. For instance, il an exlernal interface has a known
time delay between the time at which it receives outputs from the circuit and the
time at which it presents inpuls, the external vertex can be assigned a propagalion
delay greater than 0. By augmenting Lhe set of inequalities specified in Theorem 10,

it is often possible for the optimization algorithms to act subject to other

constraints. If data must be available to an interface along some edge v > py within
some time ¢ alter each clock tick, for example, we can express this by the inequality

R(0) — r(ve) < - + wie),
C

where v, is the verlex representling the intetface. This conslraint is equivalent to
saying that we must have A(v) < t if the register count w, (e} of edge e is zero in the
retimed circuit. Similarly, if data [rom the interface is not available on an edge
vy — v until some time 1 after each clock tick, this constraint can be expressed by
the inequality

o) — R < wie) — L

Geometric considerations. The optimization methods discussed in this paper can
be applied largely independently ol geometric consideralions because although
reliming causes the addition and delefion of registers, it otherwise leaves the
lunctional elements and their pattern ol inlerconnection the same. Thus if a given
circuit has an area-efficient layout, chances are that a retimed form of the circuit
can be laid out efliciently. In some cases, however, the Roorplan of a circuil may
limit the number of registers on certain interconnections.

The inequalities that constrain the retimed system can be augmentled to express
these geometric constraints. For example, to specily an upper bound k on the
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number of registers that can fit along some edge 1w, we can impose Lhe
constraint

o) — r(1) < k — wie).

We can also model a siluation in which the first k registers on an edge v 5 v are
relalively cheap and additional regisiers are more expensive. Add an auxiliary
vertex & in the middle of edpge e. Then assign a high cosl to registers on the edge
i — it and a low cosl o registers on the edge &t — v, but constrain &t — v to have at
most k registers in the retimed system. Solve the system of constraints as in Secltion
8 On the other hand, if the first regisier on a conneclion is expensive and
additional regisicrs are cheap, then it is NP-complete to determine whether a
circuilt can be retimed to achieve a specified bound on register cost
[20, pp. 182-183].

Slowdown. [n Seclion 7 we showed how a c¢-slow circuit, which supports ¢
independent streams of compultation, can be reduced to support a single stream ol
computation by removing registers. The nolion of ¢-slow circuitry oflers new
insight into many circuit designs thal are not technically c-slow. Consider, for
example, a 2-slow circuit in which only one stream ol compulation is being used.
The registers in the circuil fall into two equivalence classes, one of which is idle
during each clock period. Using Algorithm R to remove all the registers in one
equivalence class is one way Lo oplimize such a circuit.

Anolher way to save registers is to modify the functional elements to perlorm
slightly different actions on even and odd lime steps so that each physical register
plays the roles of lwo logical registers, one in each equivalence class. A cursory
examination of the resulting circuit would not reveal that it is 2-slow according to
the circuit model, bul it would nevertheless communicale with the host only on
every olher clock tick. Although this method lor saving registers may sometimes be
acceplable, the overhead of register multiplexing and the complexity of control
suggest thal Algorithm R is a more reasonable alternative. Moreover, when
conlronted with a circuit that communicates externally only on every other clock
tick or a circuitl whose functional elements perform different operations on
alternate clock ticks, we may suspect that it is really a 2-slow circuit in disguise, and
that penetrating the disguise might lead to improved performance and simplifica-
tion of the control logic.

Data-dependent propagation delays. A major deficiency of the circuil modef is its
inability to represenl combinational lopic elements with data-dependent propaga-
tion delays. For example, il a multiplier can produce an answer quickly whenever
one of its inputs is zero, its propagalion delay is data dependent. We would like 1o
take advanlage of the shorter delay whenever possible in order to speed a larger
compulation.

While we are unable to model dala dependence in the general case, we can
somelimes use the exlended circuit model of Section 9 to model partially the effects.
As an example, in nMOS circuits [16], the transition ol a Boolean signal from 0 to
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1 can take much longer than the transition of the same signal from | to 0. We can
model this situation somewhal by representing each wire as two edges in the graph,
one representing the vajue 0 on the wire and the other representing 1. We choosc
propagation delays for internal edges of a [unctional element depending on how 0
or | inputs affect the output, Unfortunately, we cannot model how the delays affect
the clock period exactly, but upper bounds can be obtained which will, for example,
properly model the propagation delay through two cascaded inverlers.

There is much more to be understood about clocked circuits. Do powerlul
combinatorial optimization techniques apply to other timing models such as those
involving muitiphase clocking disciplines? Can dala-dependent propagalion delays
be handled in a reasonably general setting? Is it possible to solve the state-
minimization problem with a polynomial-time algorithm hat is simpler than the
typical algorithms for solving minimum-cost flow problems? Can hierarchically
described circuils be oplimally retimed in time proportional to their descriptions?
Under what circumstances can optitnal relimings of parametrized families of
circuils be algorithmically obtained?

Retiming is a transformation that can be used to produce efficient circuils, and
we have presented a variely of algorilhms [or automatically retiming circuits. Of
great interesl, however, are design methodologies in which retiming is performed
by an individual instead of an algorithm, as is done in [117, [12],{14], and [20].
Retiming seems to be a valuable technique which could be incorporated into both
circuit compilers and interactive design tools.
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