Comparison Networks

Notations

Sorting Network [developed in 50s]

10 5 2
5 10 6 5
2 5 6
2 5 10

Sorted outputs

"Why does it sort?"

Running time = depth = longest path of comparitors (=3)

Odd-Even Transposition Sort

Depth = N

"How low can you go?"
step 3 - Sorting network = mergesort [Batcher]

\[
\text{Depth } D(n) = D(n/2) + \lg n
\]

\[
= \Theta(\lg^2 n)
\]

\[
\text{Size } S(n) = 2S(n/2) + \Theta(n\lg n)
\]

\[
= \Theta(n\lg^2 n)
\]

Example:
Bitonic Sorting Network (Batcher)

Step 1: Sort "bitonic" sequence

Def. A bitonic sequence:

- Or cyclic rotation

0-1 bitonic sequence:

Key subnetwork: half cleaner

Claim: half output is clean (\& bitonic)

Pf:

\[
\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
\end{array} \quad \Rightarrow \quad \begin{array}{c|c}
0 & 1 \\
1 & 0 \\
\end{array}
\]

\[\text{or}
\begin{array}{c|c}
0 & 1 \\
1 & 1 \\
\end{array} \quad \Rightarrow \quad \begin{array}{c|c}
0 & 1 \\
1 & 1 \\
\end{array}
\]
Sort bitonic sequence

Depth: \[D(N) = D(N/2) + 1 \]
\[= \log N \]

Size: \[S(N) = 2S(N/2) + N/2 \]
\[= \Theta(N/\log N) \]

Step 2: Construct merging network, one sorted up, other down.
Frequently drawn where I means.
Batcher's Odd-Even Merge Sort

Step 1: Build merger of $A = a_0 \ldots a_m$ and $B = b_0 \ldots b_{n-1}$

Interleave elements.

Proof: 0-1 Lemma.

\[
\begin{array}{c|c|c|c|c}
T & 0 & 1 & 0 & 1 \\
\hline
A & 0 & 1 & 0 & 1 \\
B & 1 & 0 & 1 & 0 \\
\end{array}
\Rightarrow \left\lfloor \frac{r}{2} \right\rfloor + \left\lceil \frac{r}{2} \right\rceil
\begin{array}{c|c|c|c|c}
T & 0 & 1 & 0 & 1 \\
\hline
A & 0 & 1 & 0 & 1 \\
B & 1 & 0 & 1 & 0 \\
\end{array}
\Rightarrow \left\lceil \frac{r}{2} \right\rceil + \left\lfloor \frac{r}{2} \right\rfloor
\]

\Rightarrow \text{#0's in each list differs by 1.}

Merge \(M(N) = M(N/2) + 1 \)

= \(\Theta(N \log N) \)

Sort: \(S(N/2) = S(N/2) + M(N) \)

= \(\Theta(N \log^2 N) \).
Longstanding open question:
Does there exist sorting network with depth $O(\log n)$?
1983: yes! AKS sorting network (Kjell, Komlos, Szemerédi)
Depth: N

#Comparisons: $O(N\log N)$

Unfortunately, very large constants: many thousands!
Sorting on Mesh of Trees.

Def: 2-dimensional mesh of trees (MOT) M_{2,N}.

N×N grid → remove grid edges
- add tree above every row & column

Nodes: \(N (2N-1) + N (N-1) = 3N^2 - 2N \)

diameter: \(4 \lg N \)

bisection width: \(N \)

recursive decomposition: remove all roots
\(\Rightarrow 4 \) separate \(M_{2,\frac{N}{2}} \).
Sort \(N^2 \) elmts: \(\Theta(N^2) \) time (bisection \(CB \))

Sort \(N \) elmts: \(\Theta(\log N) \) time

\(\text{W} \ldots \text{W}N \)

(1) pass \(W \) along 1st row & 1st column

(2) In node \(p_{ij} \)
 (row \(i \), column \(j \))
 store \(\{ \), \(W_i \leq W_j \)
 \(\{ \), \(W_i > W_j \)

(3) count #1's in jth tree
 \(\Rightarrow \) rank of \(W_j \) in sorted order

(4) if \(\text{rank}(W_j) = k \)
 \(\Rightarrow \) send \(W_j \) to \(j \)'s routine.

\(\Rightarrow \)

2k + 5 \log N

Note: \(\Theta(k + \log N) \) bit steps for \(k \) bit #s.

Send MSB first.
Sort N^2 elements: $\Theta(N)$ time (binary search tree)
Sort N elements: w_1, w_2, \ldots, w_N $\Theta(\log N)$ time

Idea: brute force. Do all comparisons.

Given N k-bit #s, following bit-stably sorts in $2k + 5 \log N$ steps:

1. Pass w_i along i: its column & row
 (MSB first) Store at root of each column tree.

2. For each leaf, bitwise compare $w_i \leq w_j$.
 (Break ties with index i, j)
 Leaf p_{ij} stores:
 \[
 \begin{cases}
 1 & \text{if } w_i < w_j \\
 0 & \text{if } w_i \geq w_j
 \end{cases}
 \]

3. w_j count #1's in leaves of j's column tree
 \[\Rightarrow \text{rank of } w_j \text{'s sorted order.} \]

4. If rank(w_j) = r, send w_j to root of r's row tree.
Simulating Bipartite Graph/Ideal Computer on MOT

For large N, Knn not realistically implementable.

\[\rightarrow \text{Simulate Knn by M2N with } 2\log N \text{ delay} \]

The catch: quadratic blowup in space/hardware.