82 Section 1.3 Matrix Algorithms

ynv = by — PNYN-1- Reformulating in vector form, we find that

GEITEIEY

for i > 1 (defining p; = 0), and thus that
v\ _ 4 (0
(5)-=()

where H, = G;---G; and G; = (_'g)‘ bI’ for 1 < i < N. Thus, we

can compute the y;’s as a snnple application of parallel prefix on 2 x 2
matrices. The solution to Uz = y can be computed in a similar fashion,
except that we compute z first and then work backwards from there with
the recurrences =; = (1/;) (¥ — wizix1) for 1 €4 < N — 1. In both cases,
the prefix approach tends to be stable since we are dividing by diagonal
.elements at every step, instead of by off-diagonal elements. ‘

The more challenging task is to find L and U such that A = LU.
Multiplying L and U together as in Equation 1.22, we find that ¢, = dy,
4, = p;gi—1, and d; = pyu;_; +g; for 2 < i < N. Reformulating, we find
that p; = £;/q;—1 and ¢; = d; — (Eq“—‘) for 2 < i < N. The hard part is
solving the recurrence for the g;. Once this is done, computing each p; is
straightforward since p; = £;/qi-1.

In order to express the recurrence g; = d; — (P) as a parallel prefix
problem, we make the substitution ¢; =r; /Ti1 where rg =1 and r; = d;.
This results in the recurrence

dinia

ry=d;iTi1 — Lins_qTin

for 2 < i < N, which is in a form that can be solved (as before) with
parallel prefix. After solving for the r;, we can plug back in and compute
g, = ri/ri-1 for ¢ > 2 in a single step. Provided that the ¢; are nonzero, the
r; will also be nonzero, and we will never have to worry about dividing by
zero. Hence, if the LU-decomposition exists, and A is nonsingular, then it
can be computed in O(log N) steps on an N-leaf complete binary tree.

1.3.4 Gaussian Elimination %

In order to solve arbitrary systems of equations, we need to use a more
robust (and expensive) technique known as Gaussian elimination. Gaus-
sian elimination is one of the oldest and most widely known techniques for

1.3.4 Gaussian Elimination x 83

solving general systems of linear equations and inverting arbitrary nonsin-
gular matrices. In this subsection, we describe how to implement a parallel
version of Gaussian elimination on a two-dimensional array. As a result,
we will be able to solve a variety of problems for N x N matrices in O(N)
steps.

We start with an algorithm for solving a system of linear equations
Az = b. For simplicity, we will assume that A is an N x N nonsingitlar
matrix, and, hence, that T has a unique solution. Extending the algorithm
to the case when A is nonsquare or singular, or when z has no solution, is
straightforward and left to the exercises.

Gaussian elimination is a process by which the matrix A is reduced
to an upper triangular matrix U by a series of elementary row operations.
In the case when A is nonsingular, the reduction continues until U = I,
the identity matrix. An elementary row operation consists of multiplying
a row by a scalar, switching two rows, or adding a multiple of one row to
another. In each case, the result of applying a row operation to a matrix 4 -
can be expressed as a matrix product KA where R is a matrix associated
with the row operation. For example, the matrix

d 1 0
1 00
0 01

serves to switch the first two rows of a 3 x 3 matrix, and

1 00
0 10
-2 0 1

serves to subtract twice the first row from the third row.
Since SAz = Sb for any §, notice that applying the same sequence of

row operations § = R -~ RyR; to A and b results in an equivalent system
of equations A'c = b where A’ = 54 and b = 5b. If A is nonsingular

and the row operations are chosen so that §4 = I, then =z = Sb and the
system is solved.

The sequence of matrices and vectors formed during Gaussian elimina-
tion is easily represented by a sequence of N x (N + 1) matrices of the form

= [A | b]. Notice that a row operation on A and b can be represented
as a single (identical) row operation on A. Hence, given a nonsingular A

84 Section 1.3 Matrix Algorithms

and arbitrary b, our goal is to perform a sequence of row operations Ry,
..., R, on A= [A] b]so that R,.--R.A=[I}b] Then the solution to
the original system will simply be 7 — b . In other words, the solution to
Ax = b is precisely the last column of R, -+ RiA

An example of how Gaussian elimination can be used to solve a system
of equations of this form is shown in Figure 1-47. At each step, we choose
an elementary row operation that moves the first V columns of the current
A closer to I. The first step In the example is to produce a 1 in the (1,1)
entry of A. This is accomplished by multiplying the first row by a scalar,
in this case 1/2. By subtracting appropriate multiples of the modified first
row from the other rows, we then zero out the remaining entries in the first
column. This is accomplished in steps 2 and 3, and the result is denoted by
AW in Figure 1-47. We next desire to produce a 1 in the (2,2) entry of A,
Unlike before, this cannot be accomplished by simple scalar multiplication,
since the (2,2) entry of AL is 0. Hence, we must first switch the second
row with another (in this case the third) that contains a nonzero entry
in the second column. This entry is then converted to a 1 in step 5 by
scalar multiplication. Since the second entry of the new third row of AL
is already known to be zero, we don’t have to worry about making it zero.
Rather, we only need to worry about zeroing out the second entry of the
first row. This is accomplished in the usual way to form A in step 6.
The algorithm is completed by normalizing the (3,3) entry of A® to be
1 in step 7, and zeroing out the third entry of the first and second rows
in steps 8 and 9. At this point, we have produced the identity matrix in
the first three columns of A%, and, hence, the solution to the system of
equations is contained in the last column.

In general, Gausslan elimination on an N x (IV + 1) matrix A consists
of N phases. In the first phase, we identify the uppermost nonzero item
in the first column of A and move the row containing that item ahead to
become the first row. We then multiply this row by a scalar to produce
a 1 in the (1,1) position and subtract multiples of the new first row from
the remaining rows so that all entries below the first in the first column
become zero. The resulting matrix is called AV, In the second phase, we
perform the same operations on the lower-right (N — 1) x N submatrix of
A, We also subtract a multiple of the second row from the first in order
to zero out the second entry of the first row. The resulting matrix is called
AR,

1.3.4 Gaussian Elimination % B3

2 ~7 vo2 T, 3,
A= 3 6 10 0o 1 Y 3 step 5

13 4 6 0o 0 ‘b
1 _7/3 3/1 1 0 _‘/2 _3/2

step 1 3 =10 4 0 1 ¥ 3, step 6
-l -4 6 0 o Y, Y/t
12 3, 1 o Y Y

step 2 0o 0 i - 0 1 Y, 3, step 7
-1 3 —4 6 0 0 1 -1
1 2 L 3, 1 0 0 -2

step 3 0 0 l/g "l/g 0 1 ‘3/2 3/2 step 8
0 5 _15/3 15/1 0 0 1 -1)
12 Th Y, 1 0 0 =2

step 4 0 -5/, 15/, 1 0 0 step 9
0o o 1 0 1 -1

Figure 1-47 Using Gaussian elimination to solve the system of equalions
2 4 -7 3

3 6 —-10 |z = | 4 |. Ezamining the rightmost column of A, we find
-1 3 -4 6
-2
that T = | 0

-1

86 Section 1.3 Matrix Algorithms

We continue in this fashion for N phases, at which point we will have
produced the identity matrix in the first N columns of AWM The solution
to the original system of equations will then reside in the last column of
AW,

It is a simple fact of linear algebra that this process of successively in-
terchanging rows, normalizing diagonal entries to 1, and zeroing out nondi-
agonal entries is always guaranteed to work provided that A is nonsingular.
This is because the inability to find a nonzero diagonal element at the be-
ginning of any phase would imply that the determinant of the original
matrix is zero, thereby implying that A is singular.

The implementation of Gaussian elimination on an N x (IV +1) array is
quite straightforward, although the notation involved can be a bit tedious.
To simplify matters, we will start by describing how to implement the first
phase on an (N + 1)-cell linear array. '

The first step in the first phase is to find the uppermost nonzero entry
a,, in the first column of A. The row containing an (row t) then becomes
the first row of A®M = (agjl-)). After finding this row, we normalize it

"so that a(lll) = 1. This is accomplished by multiplying each value in the
row by 1/an. In other words, a(ﬂ-) — agfag for1 <7 < N +1 (where
for simplicity we define a; 41 t0 be b, for 1 <i < N). Next, we subtract
multiples of this row from subsequent Tows of A so as to produce zeros in all
subsequent entries of the first column. This is accomplished by subtracting
a;; copies of the new first row from the ith row for t < i < N. More
precisely, we compute ag;) — ay — a,;la%) fori >ftand 1 <j <N+1.
Note that entries in previous rows (¢ < t) are left unchanged since their
first-column entries are already known to be zero.

All of these operations can be performed quite simply by an (N +1)-cell
linear array. The inputs are arranged so that the jth column of A enters
the top of the jth cell (counting from left to right) of the array starting with
ay; at step j. The first cell of the array scans for the first nonzero entry,
ignoring zero entries. When a nonzero entry a. is found, it is inverted and
sent tightward. The jth cell in the array (j > 1) simply passes downward
the inputs received from above (after holding each for one step) until it
receives a value (1/ay) from the left. This will happen at step 7+t —1, at
which point, the cell multiplies the current input from above {a,;) by the
input from the left (1/a.1) and then saves the result. The value from the
left (1/aq) is passed rightward, but nothing is passed downward. At this
point, the jth cell has just computed a(l;) = /a1

1.3.4 Guussian Elimination * 87

After seeing and inverting the first nonzero iuput, the first cell in the
array simply passes remaining inputs rightward. The subtraction opera-
i;ons are performed by the interior cells of the array. In particular, the jth
cell subtracts the product of the saved value (0(1?) times the left input (@)
from the top input (a; ;) at each step following the calculation of ag?. The
result is output below, and the left input (@) 18 passed rightward. Hence,
the jth cell computes and outputs

(1) (0

a’ij = G5 —~ aﬂalj

at step j +i—1 fori > t. Asan example, we have illustrated this pro-
cess for a 3 x 4 matrix in Figure 1-48. Following the notation adopted In
Subsection 1.3.2, notice that only the circular cell need perform divisions.

The preceding algorithm takes A as input from above, saves the first
row of A{Y), and outputs the lower-right (N —1) x N submatrix of A®
below. By placing an N _cell linear array just below the rightmost N cells
of the (IV 4 1)-cell linear array, we can also save the second row of AP and
output the lower-right (V —2)x (N —1) submatrix of A® The computation
proceeds exactly as before. The only task remaining in Phase 2 is to
subtract a'y times the second row of AP from the first row. This is
accomplished in the same fashion as with the other rows by simply i:aséing
the values saved by the first linear array downward once all other rows have
passed through them. The output from the second linear array will then
consist of the lower N — 2 rows of A® in a staggered fashion, followed by
the first row. So that later phases can proceed in a similar way, this data
is followed by the second row of A?, and then by a row of end-of-matrix
markers to let the cells in the subsequent linear arrays know when to pass
on their stored values downward.

All N phases can be performed by the upper-right portion of an N X
(N + 1) mesh, cuch as that shown in Figure 1-49. The kth phase of the
algorithm is performed by the kth row of the mesh. For each k, the kth
TOW

1) takes At-1) ag input starting withrows k, k+1,..., N and finishing
‘with rows 1,2, ..., k—1,

2) computes and stores the kth row of A¥ by computing 1 /agﬁ_l) in

cell (k,k) and af) = ¥ 1ot in cell (k. j) for 7 > k where t is

the smallest vatue in [k, k + 1, , N] such that altV # 0, and

B8 Section 1.3 Matrix Algorithms

after step 4

4
2
6 -1
5 0 4
] 1 3
2 4
after step | after step 3
8
2 4
6 ~1
3 0 4
-0 1 3

i
after step 2 . h -

after step 6

Figure 1-48 Computing the first phase of Gaussian elimination on a 3x4
matriz A. The first row of A s stored in the array. Subsequent rows of A
are output in a staggered fashion. Since the entries in the first column of A gre
zeroed out, they do not need to be output by the leftmost cell.

1.34 Gaussian Elimination * 89

#*

ba ol i~
g L

* 4y 13 |

input l

l output

Figure 1-48 Network used to solve a 3 X 3 system of equations Az = b. Cir
cular cells perform division. Square cells multiply and sublract. Asterisks denote
an end-of-matriz marker.

3) computes and outputs A®) starting with rows £+ 1, ..., N and
finishing with rows 1, ..., k by computing
ol = ol gl (129

for i # k in cell j for j > k.

The solution to the original system of equations will be output at the
bottom of the bottom-right cell of the mesh in order z,, #3, ..., Tn- The
total time required is 4V — 1 steps.

Although the overall implementation of Gaussian elimination may have
seemed complicated, the individual action of each cell is quite simple. Each
circular cell simply waits for the first nonzero input from above, whereupon
it inverts this input and passes it rightward. Subsequent inputs are also
passed rightward. Each square cell simply passes inputs from above down-
ward (after holding them for one step) until it encounters an input from

90 Section 1.3 Matrix Algorithms

X-yz

Figure 1-50 The basic operation of a nondiagonal cell in Gaussian elimination.

the left, whereupon it multiplies the left input by the top input and saves
the product. The left input is passed rightward, and nothing is passed
downward. In subsequent steps, square cells multiply the left input by the
stored value and subtract the product from the top input. The result is
immediately passed downward (i.e., the value from the top is no longer
held for one step before being passed downward since there is already a
value being stored in memory), and the left input is passed rightward.
For example, see Figure 1-50. Eventually, an end-of-matrix marker is de-
tected, whereupon the cell passes its stored value downward, followed by
the marker at the next step. :

The algorithm for solving systems of equations just described can be
easily extended to handle matrix inversion and other common problems in
linear algebra. For example, we can invert an N x N matrix A by simply
performing Gaussian elimination on the N x 2N matrix A=[A|I. IfA
is nonsingular, the sequence of elementary row operations used to reduce
A to [will also transform I into A~'. This is because if SA = I, then
§I = A~'. Hence, the algorithm can be implemented on the upper-right
portion of an N x 2N mesh, as shown in Figure 1-51. The function of
the cells is the same as before, and A~' is output from the rightmost N
columns of the array, leading rows first. The total time required is BN — 2
steps.

Notice that if we have several matrices to invert, then we can invert
them at a rate of one matrix every N steps by simply pipelining the matri-
ces into the network one after the other. More precisely, we start inputting
the jth column of the mth matrix into the jth column of the mesh im-
mediately after the jth column of the (rn — 1)st matrix has been entered
(1 <j £ N). We must be careful to attach the end-of-matrix markers for

1.3.4 Gaussian Elinination = 91

0 0
0 ! 0
913 0 0
3 . i I
243) 431

)

]

-1

3 ,
g;;_l} a;l} l outpur A
gl ey
TR T
ai,”

Figure 1-51 Network used to invert a 3 x 3 matriz A by Gaussian elimination.

The (i,) component of A=) is denoted by agj_l).

02 Section 1.3 Matrix Algorithins

the (m — 1)st matrix to the entries in the first row of the mth matrix, and
to reset the program in each cell whenever it sees such a marker. The delay
of the resulting algorithimn is still 5V — 2 since it takes that many steps to
invert any particular matrix, but the solution rate is one problem for each
N steps.

Caussian elimination is known to be numerically stable for several natu-
ral] classes of matrices. For example, when dealing with symmetric positive
definite or diagonally dominant matrices, we don't even need to switch
rows to ensure that the leading diagonal element in each phase is nonzero.
For most classes of matrices, however, the stability of the algorithm is dra-
matically improved by making sure to pivot on large entries within each
column, Unfortunately, the task of implementing Gaussian elimination
with pivoting on an array is difficult. Although several variations of Gaus-
sian elimination with pivoting have been devised, most take more than
O(N) steps to implement on an N x N array. Several such variations are
discussed in the exercises, as are modifications of the algorithm to compute
the determinant, rank, or PLU-decomposition of a matrix. In addition, a
more efficient implementation of Gaussian elimination with pivoting on a
mesh of trees interconnection network will be discussed in Chapter 2.

In conclusion, we note how surprising it is that such a simple intercon-
nection of simple cells can be used to compute such a powerful algorithm.
Yet this is a phenomenon that we shall observe over and over throughout
the text. In fact, this phenomenon will be especially apparent in Sec-
tion 1.5, where we use a virtually identical network and algorithm to solve
a variety of very-different-looking graph problems.

1.3.5 Iterative Methods *

All of the algorithms discussed so far in this section find ezact solutions to
systems of equations and related problems provided that the calculations
are done with infinite precision. In reality, of course, calculations are of-
ten done with imperfect finite precision, and the calculated solutions are
only approximations to the real solutions. If approximations to the real
solutions are acceptable, then it makes sense to consider ilerative meth-
ods as an alternative to the exact methods described in Subsections 1.3.3
and 1.3.4. Tterative methods work by continually refining an initial approx-
imate solution so that it becomes closer and closer to the correct solution.
For example, the Newton iteration algorithm for division is an iterative
algorithm. In some cases, iterative algorithms require substantially less

