Resource Allocation in the Face of Uncertainty:

How to Pick a Winner Almost Every Time

Tom Leighton M. I. T.

Joint work with:

Baruch Awerbuch

JHU & MIT

Yossi Azar

Tel Aviv U.

Amos Fiat

Tel Aviv U.

Talk Outline

- 1. The Pick-a-Winner Game
- 2. Strategies to maximize profit
- 3. Multiple players and other variations
- 4. Applications
 - task scheduling on networks of workstations
 - video-on-demand scheduling
 - investment planning
 - strategic planning
- 5. Competitive Analysis -- A broader perspective
- 6. Open questions

The Pick-a-Winner Game

- 1 player
- n = 8 options (A-H) to choose from
- 1 selection made at any time
- no changes allowed
- d = 10 days
- profit P = dividends paid by option <u>after</u> it was selected

Example: if D is chosen on day 4, then P = \$2

Note: $P_{OPT} = 6$ (by choosing B on day 1).

	1	2	3	4	5	6	7	8	9	10
A	\$1	\$1								\$1
В	\$1		\$1		\$1	\$1		\$1	\$1	
С	\$1			\$1						
D		\$1	\$1	\$1	\$1					
E	\$1					\$1				\$1
F	\$1					\$1		\$1		
G					\$1					
Н										

The Pick-a-Winner Game (cont.)

On-Line Version

- past dividend payments are known
- future payment schedule is not known
- the past and future may not be correlated
- the future is <u>not</u> necessarily random -- it is determined by an adversary who knows the player's strategy

Q: How much money can the player make?

	1	2	3	4 -	5	6	7	8	9	10
A										
В										
С										
D										
E										
F										
G										
Н										

Simple Observations

Fact: The profit for any deterministic player is 0, even if $P_{OPT} = \$d$.

Proof: The adversary pays a dividend for every option on every day until the player makes a selection --- then dividends are stopped for the selected option.

Remember:

- We are looking at the worst-case scenario.
- The adversary knows the player's strategy.

Simple Observations (cont.)

Fact: We can get expected profit

Popt/n by choosing a random

option at the start.

Proof: We have a 1/n chance of selecting the optimal option.

Note: The adversary does not know our random numbers, only our strategy.

Conjecture: The random-choice-atthe-start strategy is optimal.

- Since we don't know the future, a random choice is the best that we can do.
- The past has no bearing on the future, so it can't help to delay the selection.

A Not-so-Simple Observation

The player can do much better with the right randomized strategy!

Theorem: The player can get profit cPopt/logn with probability .99 if he knows Popt.

Remarks:

- Without knowledge of Popt, the expected return is c Popt / (logn logd).
- c is a constant that depends on the desired probability of success.
- The probability of success depends only on the player's random numbers.
- The probability of success holds for <u>all</u> payment schedules.
- These bounds are best possible.

Optimal Strategy

- 1. Player selects target profit P and confidence level 1 q.
- 2. Player flips coins to decide when and what to select as follows:

For
$$t = 1$$
 to d (days)

For
$$S = 1$$
 to n (options)

If a selection has not yet been made, and

If S pays its ith dividend on day t,

Then we select S with probability

$$2^{(qi/P)}/Pn^2$$

End

Result: If Popt > 3 P logn / q, then the strategy will return a profit >P with probability > 1 - q.

Intuition and Key Facts

The selection probabilities $2^{(qi/P)}/P_{n^2}$ start small and grow quickly (but not too quickly).

 The <u>slow start</u> is so that the adversary can't mislead the player with false starts -- e.g., options that pay P - 1 dividends early and then nothing later.

- Prob [mislead player]
$$< P n \left(\frac{2^q}{P n^2} \right) = O \left(\frac{1}{n} \right)$$

Example:

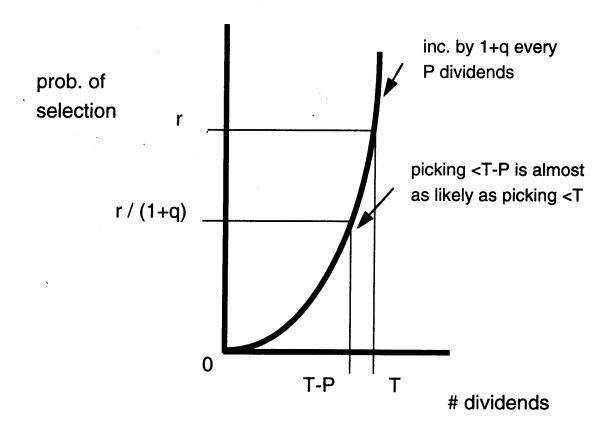
	1	2	3		P-1	P	P+1	***	d-1	d
A ₁	\$1	\$1	\$1	2=0	\$1					
A ₂	\$1	\$1	\$1	***	\$1	<u></u>				
Аз	\$1	\$1	\$1	4 • N	\$1					
	\$1	\$1	\$1	900	\$1					
	\$1	\$1	\$1	***	\$1					
	\$1	\$1	\$1	344	\$1					
An-1	\$1	\$1	\$1	402	\$1					
A n						\$1	\$1	•••	\$1	\$1

Intuition and Key Facts (cont.)

We need <u>fast growth</u> to insure that we make some selection with high probability.

Prob [no selection]

$$\leq \prod_{i=1}^{P_{OPT}} \left[1 - \left(\frac{2^{(qi/P)}}{Pn^2} \right) \right]$$


$$= \left[1 - \left(2^{\left(q\left(P_{OPT} - P\right) / P\right)} / P n^{2}\right)\right]^{P}$$

$$<\left[1-\left(n \ 2^{-q}/P\right)\right]^{P}$$

$$< e^{-n/2}$$

Intuition and Key Facts (cont.)

But, the growth must be <u>slow enough</u> to insure that whatever option is selected, the a postieri probability is high that the option was selected at least P payments before the final payment.

Summary

- Combining the preceding 3 conditions yields a proof...
- If Popt is known, choose target P = q Popt / (3 logn) and confidence parameter 1 q as desired.
 - Profit P will be obtained with probability 1 - q.
- If Popt is not known, guess it. I.e., choose target P = q 2^R / (3 logn) where R is uniformly selected from [1, logd].
 - 2^R will approximate Popt with probability 1 / logd.
 - Profit Popt / (c logn) will be obtained with probability 1 / (c logd).
 - c is a fixed constant.

Summary (cont.)

- Even if the past is not correlated with the future, the past can be combined with randomness to provide a very good prediction of future performance.
- The intuition that past winners are likely to be future winners can be used as the basis for a successful strategy, even though the intuition is not precisely correct.

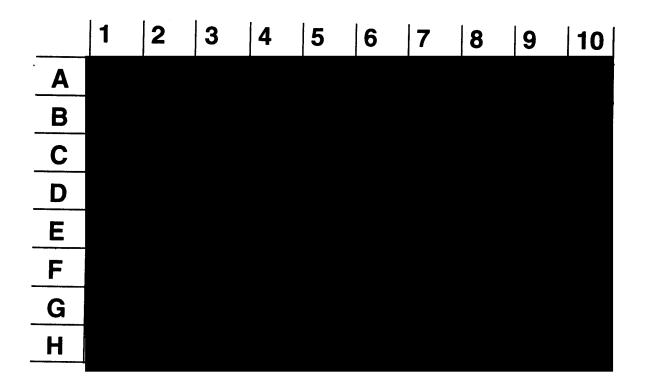
The Pick-a-Winner Game — with Variations

New Rules:

- k players
- 1 selection each
- n options
- dividends paid only to highestpriority player holding option
- d days
- changes allowed -- at cost of \$1 each
- P_i = profit of ith ranked player

The Pick-a-Winner Game --- with Variations (cont.)

Example:


- Player 1 selects D on day 2, swaps to E on day 5.
- Player 2 selects D on day 1, swaps to C on day 3.
- Player 3 selects E on day 2, no swaps.

Results: P1 = \$4, P2 = \$0, P3 = \$0.

	1	2	3	4	5	6	7	8	9	10
A	\$1	\$1	•							\$1
В	\$1		\$1		\$1	\$1		\$1	\$1	
С	\$1			\$1						
D E		\$1	\$1	\$1	\$1					
E	\$1					\$1				\$1
F	\$1					\$1		\$1		
G					\$1					
Н										

The Pick-a-Winner Game -- with Variations (cont.)

Let's Play!

Key Questions

Q: Can swapping help?

- Intuition says No: the future of one option seems to be indistinguishable from the future of another.
- Analysis says Yes: once we see the past, the randomized strategy may dictate a change.
- Advantages obtained by swapping:
 - -Increased profit
 - Increased probability of success
 - Knowledge of Popt no longer needed

Key Idea: break time into epochs, and run independent trials in each epoch.

 With very high probability, most trials will be successful.

Key Questions (cont.)

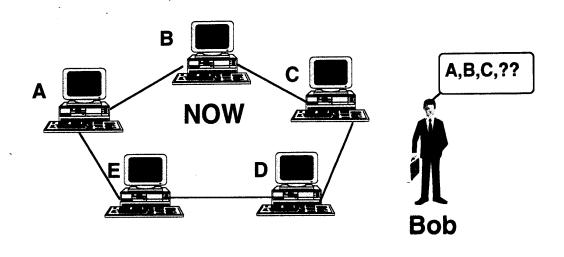
Q: Is coordination needed among players?

A: Yes, but very little.

- As long as no player is allowed to be too greedy, each player can make selections in isolation.
- Other players are considered to be part of the adversary.
- At worst, the jth ranked player can choose the jth ranked option.

Summary of Results

Prob[success]	1 / logd	66.	1 - o(1 / n)	1 - o(1 / n)	1 - o(1 / n)	1 - o(1 / n)
n? Profit	с Р _{орт} / logn	c Por/ logn	c P _{OPT}	с Рорт	(1 - o(1)) P _{OPT}	(1 - o(1)) P _{OPT}
Popt known?	8 8	Yes	No	Yes	Yes	ом тао
#swaps	0	0	c logn logd	c logn	c logn	c logn logPopt No
#picks	-	· Protection of the Control of the C	-	-	0(1)	0(1)
#players	-		_	-		*


* jth ranked player gets 99% of profit of jth ranked option.

Application: Scheduling on NOWs

Example Problem:

- Bob has a job requiring P cycles that he wants to run overnight.
- Bob picks a workstation for his job and assigns the job a background priority.
- The job gets done if the chosen workstation has at least P available cycles during the night.

Q: Which workstation should Bob choose?

Scheduling on NOWs (cont.)

Solution:

Model problem as 1-player Pick-a-Winner Game

- workstations ~ options
- cycles ~ days (overnight ~ d days)
- availability ~ dividends paid
- target profit = P cycles

Goal: maximize probability of success 1 - q

	1	2	3	4	5	6	7	8	9	10
Α	Α	Α	Α	Α	·		Α	Α	Α	Α
В	Α									ļ
С					Α					
D	Α									ļ
E			Α				<u></u>			
F			Α	Α	Α	Α	Α			
G					Α	Α				
Н										

A denotes availability

Scheduling on NOWs (cont.)

Result:

If some workstation will be available for at least 3 P logn steps, Bob can get c logn jobs of duration P done with probability 1 - o(1 / n).

Remarks:

- At most 1 workstation is used by Bob at any time.
- Bob can kill a job in progress and restart the job elsewhere.
- The high probability of success holds for all patterns of workstation availability.
- If Bob can use O(1) workstations at a time, then he can attain 99% efficiency.

Scheduling on NOWs (cont.)

Multiple Jobs

If there are k people, each with background jobs to run, then we can use the k-player Pick-a-Winner strategy.

Coordination:

- Each person receives a priority, but otherwise works independently.
- Competing demands for service are resolved by priority.

Result:

If the jth best workstation will be available for at least T_i steps, then the jth ranked person will get c T_i cycles with high probability.

Application: Video Servers

Example Problem:

- During the day, d customers request movies.
- At most k of n movies will be shown at a prearranged time that evening.
- Each request is immediately accepted or rejected.
- If a request is accepted, the movie must be shown. Rejected customers are lost.

GOAL: maximize the number of accepted requests.

Prior Results:

- k accepted requests in the worst case.
- c Popt / logn accepted requests with some lookahead.

Aggarwal-Garay-Herzberg (IBM '94, PODC '94)

Video Servers (cont.)

Our Solution:

Model problem as k-player Pick-a-Winner Game

- movies ~ options
- customers ~ days
- requests ~ dividends paid
- profit ~ number of accepted requests

Strategy: guess number of requests R_i for jth most popular movie & set target profit for jth movie to be c R_i / logn.

Result: Expected number of accepted requests = c Popt / (logn logd).

customers

movies

	1	2	3	4	5	6	7	8	9	10
Α	R									
В										
С		R			R			R		R
D										
E			R							
B C D E F				R		R	R		R	
G										
Н										

R = request for movie

Application: On-Line Set Cover

Problem:

- Given n sets S₁, S₂, ..., S_n.
- d items v₁, v₂, ..., v_d arrive one-per-step.
- As each item arrives, we learn to which set(s) it belongs.

GOAL: pick k sets to cover as many items as possible.

- credit is given only once for each item, even if it is contained in several sets.
- credit for an item is given only if the set was selected before or during the step when the item arrives.

Example:

- video server problem where each customer specifies a collection of movies, any one of which is OK.
- investment planning.

On-Line Set Cover (cont.)

Solution:

Same as for video servers except that each customer can specify several movies.

- items ~ customers
- sets ~ movies

Result: Total expected credit is

c Popt / (logn logd)

	V ₁	V 2	V 3					V d
S ₁	€	€			E	€		€
S ₂	€		€					
S₃		€			€			
				€				
							\in	
`	\cup					€		
Sn		€						€

Application: Strategic Planning

Example Problem:

- A general wants to find a soft spot among n enemy defensive positions.
- The enemy cannot afford to simultaneously defend all n positions.
- The enemy can rearrange defensive forces daily, but movement of forces is expensive.
- The general knows where the enemy forces were each day in the past -- but not where they will be tomorrow.
- The attack must take place within d days.

GOAL: decide where and when to attack so as to be assured victory.

Difficulty: Precise timing of the attack requires a more sophisiticated algorithm.

Application: Strategic Planning (cont.)

Solution: Use a modified 1-player Pick-a-Winner Strategy with target profit 1.

Modification:

When deciding whether or not to attack a position, use probability

$$2^{(q\,i)}/(n\,d)^2$$

where i is the number of consecutive preceding days that the position has been left undefended.

Result: The attack will be succesful with probability 1-q if the enemy leaves some site undefended for c log(nd) / q consecutive days.

On-Line Algorithms and Competitive Analysis

Goal:

Develop good algorithms for decisionmaking in the face of an uncertain future.

Performance Measures:

An algorithm is <u>competitive</u> if for any manifestation of the future, the algorithm does nearly as well as possible.

Example:

The best algorithm for the Pick-a-Winner Game is (c logn logd) - competitive.

- I.e., not knowing the future costs you a
 (c logn logd) factor in profitability.

Open Questions

How far can we go in predicting the future?

Is there a competitive algorithm for the stock market problem where prices can go up <u>and</u> down?

	1	2	3	4.	5	6	7	8	9	10
Α	-\$1		,	-\$1	-\$1	-\$1	-\$1			
В	+\$1		-\$1		+\$1		+\$1			
С	-\$1	+\$1		-\$1				+\$1		
D			-\$1			-\$1				+\$1
E	+\$1	+\$1	+\$1	-\$1	-\$1		-\$1	-\$1	-\$1	
F	-\$1		-\$1		-\$1				+\$1	
G		+\$1			+\$1			+\$1		
Н			+\$1				+\$1			