Projects

Permuting data on parallel disks

Disk access time $\approx 10^{-2}$ sec
Data transfer rate $\approx 10^{-6}$ words/sec

We want to do as few disk accesses as possible.

Convenient engineering assumption:
Disk is broken into large fixed-size blocks, e.g., of 1000 words.

\[\frac{N}{PB} \]

Computer memory holds M data records total.
Assume $M \gg PB$.

Permuting disk blocks

* Off-line (perm fixed in advance)

\[n = \frac{N}{P} \text{ tracks} \]

\[\frac{P \text{ disks}}{N \text{ data records}} \]

Block = B data record s

\equiv parallel I/O's to read all data = N/PB.

Theorem: Can permute with $O(N/P)$ parallel I/O's (not in place)
Conflict graph

Source disk

Dest disk

All degrees

\[v = N/p. \]

Fact: Any d-regular bipartite multigraph can be edge-colored with d colors. (Color = step at which block is moved.)

Hall's Thm.
For \(A \in V_1 \), let \(N(A) \subseteq V_2 \) be the set of neighbors of \(A \).
Then, a perfect matching exists if \(|N(A)| \geq |A| \cup A \).

Proof. Let \(f \) be maxflow, \(f(s, T) \) for some cut \((s, T)\) by maxflow-mincut thm.
Let \(A = S \cap V_1 \). Since edges from \(V \) to \(V_2 \) have \(\infty \) capacity, \(N(A) \subseteq S \). Also, \(N(V_1, A) \subseteq T \).

\[c(s, T) \geq |V, A| + |N(A)| \]
\[\geq |V, A| + |A| \]
Sorting (Vitter et al.)
\[O\left(\frac{N}{PB}, \frac{\log(N/M)}{\log(M/B)}\right) \text{ IO's} \]

Idea: Internal sort \(M \) records at a time into \(N/M \) runs.
Merge runs.

Would like to merge \(M/B \) runs at a time.

\[\frac{N}{PB} \quad \frac{N}{PB} \quad \frac{M}{B} \begin{array}{c} \uparrow \end{array} \downarrow \begin{array}{c} \log_{M/B}(N/M) \end{array} \]

Total \(N \) \(\frac{\log(N/M)}{\log(M/B)} \) \(\frac{N}{PB} \) \(\frac{\log(N/M)}{\log(M/B)} \) leaves

Problem: Can only read 1 block/run
- All of one run may be smaller than others.

Solution:
- Merge \(\sqrt{M/B} \) runs at a time (Depth of rec. doubled)
- Keep track of which blocks to read next in table
 - "Sloppy" merge. Clean up with \(O(N/PB) \) IO's.