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Monitor Synchronization

public class Count {
private int cntr = 0;
void inc () {
synchronized (this) {

cntr = cntr + 1;

J
J
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 Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.
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Monitor Synchronization

public class Count { public class Count {
private int cntr = 0; private int cntr = 0;
vold inc () { vold inc () {

synchronized (this) { = atomically {

cntr = cntr + 1; cntr = cntr + 1;

J J

} }

 Instead we provide an atomic block, and make
linearizablity guarantees without (necessarily)
providing mutual exclusion.
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An implementation
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Optimistic parallelism

for (...)

optimistically ({

...do an iteration ...

Programmer notes
) that the iterations or

conquer (A[n], n) f{ spawns are expected
to be independent.
Iff there are dynamic

Optimiscic spdwn dependencies, the
conquer (A, n/2); computations are
serialized.

optimistic spawn

conquer (A+n/2, n-n/2);
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