Language-level Complex
Transactions

C. Scott Ananian

cananian@csail.mit.edu

Computer Science and Artifical Intelligence Laboratory
Massachusetts Institute of Technology

Ananian, 6.895 —p. 1


http://cscott.net

Monitor Synchronization

public class Count {
private int cntr = 0;
void inc () {
synchronized (this) {

cntr = cntr + 1;

J
J
J

 Traditionally, monitors associated with each
object provide mutual exclusion between
concurrent accesses to the object.

Ananian, 6.895 —p. 2



Monitor Synchronization

public class Count { public class Count {
private int cntr = 0; private int cntr = 0;
vold inc () { vold inc () {

synchronized (this) { = atomically {

cntr = cntr + 1; cntr = cntr + 1;

J J

} }

 Instead we provide an atomic block, and make
linearizablity guarantees without (necessarily)
providing mutual exclusion.

Ananian, 6.895 —p. 2



An implementation

Transaction Transaction

Version Version

owner

readers

versions
readers

fields

fields

Traditional Transactional

Ananian, 6.895 — p. 3



Optimistic parallelism

for (...)

optimistically ({

...do an iteration ...

Programmer notes
) that the iterations or

conquer (A[n], n) f{ spawns are expected
to be independent.
Iff there are dynamic

Optimiscic spdwn dependencies, the
conquer (A, n/2); computations are
serialized.

optimistic spawn

conquer (A+n/2, n-n/2);

Ananian, 6.895 —p. 4



	Monitor Synchronization
	Monitor Synchronization

	An implementation
	Optimistic parallelism

