
Accelerating Multiprocessor Simulation

Kenneth C. Barr
MIT Computer Science and Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA 02139

kbarr@csail.mit.edu

Abstract
Detailed simulation of interesting benchmarks can take days
when running on a multi-processor simulation target. We
introduce the Memory Address Record (MAR), a structure
which allows for rapid simulation of directory-based cache
coherent processors. The MAR allows the directory state and
caches to be constructed quickly and correctly after a period
of fast warming. Use of the MAR boosts speeds by up to 1.9
times on a set of scientific computing benchmarks.

1. Introduction
Computer architects rely on simulators to evaluate, refine,

and validate new designs before they are implemented. The
speed of these simulations dictates the number of design
points that can be studied, the number of experiments that
can be run, or the amount of validation that occurs, so it is
crucial that a simulation complete quickly. Unfortunately,
complex systems dictate complex simulators, and we have
reached the point where detailed simulation of interesting
benchmarks can take days (or longer), even for a uniproces-
sor target.1 When simulating a parallel target, execution time
can be even greater as the simulation must take into account
cache coherence, interconnect timing models, and many pro-
cessors executing instructions. If not kept in check, this nec-
essary complexity can slow down the simulation feedback
cycle to the point of making simulation useless as a debug-
ging or design tool.

This paper proposes the Memory Address Record (MAR),
a structure for speeding up the simulation of directory-
based cache-coherent processors. During a fast “warming”
phase (the bulk of simulation), the simulator replaces de-
tailed cache, interconnect, and directory models with quick
writes to the MAR. The data from the MAR can be used to
reconstruct processor data caches and directory state. After
reconstruction, a shorter period of detailed simulation can
begin with correct data in the caches and directory, leading
to relevant simulation results even as simulation time is de-
creased.

We begin with a review of related work (Section 2), includ-
ing a recent result related to statistical sampling in microar-
chitectural simulation. Section 3 presents the MAR and ex-
plains how it is used. Section 4 gives the intuition behind its
speed and correctness. In Section 5 we discuss the proper-
ties of our chosen scientific benchmarks and show that the

1In this paper, the simulation host is a single-processor work-
station running the simulation. We are concerned with tar-
gets that simulate multi-processor machines.

MAR cuts the execution time of these benchmarks. Perfor-
mance is measured using the MAR we have implemented as
an addition to a cycle-accurate, execution-driven simulation
of the SGI Origin 3000. Sections 6 and 7 conclude the paper
with some caveats and suggestions to address them in future
work. Finally, we summarize the current state of the MAR.

2. Related Work
There are countless ways to attack slow simulators ranging

from coding optimizations (e.g., the macro-based instruction
execution of SimpleScalar [1]) to parallel hosting of simula-
tion in which each simulated processor runs on a different
physical processor. Rao and Wilsey provide a good survey of
research used to speed simulation of large systems with com-
ponents that operate in parallel. Their paper also discusses
problems specific to such large-scale simulation including
the slowdown imposed by synchronization of the blocks that
operate in parallel, or imposed by replay when this synchro-
nization is relaxed [8]. The Wisconsin Wind Tunnel project
is another source of ideas for parallel simulation [6]. One
of the project’s advances is having the host computer exe-
cute target instructions directly rather than through emula-
tion. Windtunnel also takes advantage of a parallel host to
simulate a parallel machine, using portable message passing
and synchronization directives rather than machine-specific
ones. Speed boost typically comes at the expense of accu-
racy and/or complexity so techniques which can minimize
this expense are preferred. The RSIM group examines such
tradeoffs in the context of shared-memory multiprocessors
[3] and [7].

The technique presented in this paper is motivated by two
interesting techniques which strive for speed with minimal
impact on accuracy and a not un-reasonable amount of com-
plexity. In the first, “Rigorous Statistical Sampling,” short
periods of slow, detailed simulation are alternated with long
periods of fast, reasonably accurate simulation. If carefully
performed, the technique yields accurate results (less than
1% error rates versus complete simulation) with dramatic
speedup (35-60 times faster) [11]. Multi-configuration sim-
ulation is a second underlying concept. It allows a single
simulation run to report the effects of many different proces-
sor configurations with a single run. By setting up proper
data structures and noting structural properties, statistics
for many configurations can be produced quickly without
specifically simulating each configuration. For example, the
properties of fully associative (FA) caches imply that a FA
cache is a subset of all larger FA caches (with the same line
size) [9]. Thus, large FA caches need not be probed if one
observes a hit in a smaller FA cache.

1



mar_record

writetime
readers[N]

writer

cacheline N−1

cacheline 1
cacheline 0

Physical Memory Space

Figure 5: An abstract view of the MAR during fast warm-
ing. For each touched cacheline in physical memory, the
MAR contains a “mar record.”

3. Structure of the MAR
The MAR is intended to support Rigorous Statistical Sam-

pling as described in [11]. As such, it supports very fast
updates during the warming phase. When it is time to
switch to the detailed simulation phase, these updates can
be used to quickly fill the caches and directory with correct
contents. Since the MAR contains a superset of data in the
caches, it supports multi-configuration simulation (e.g., dif-
ferent cache sizes, replacement policies, or coherence proto-
cols). This section explains the structure of the Memory Ad-
dress Record and gives an example of its use. We also sketch
a O(sets ∗ways ∗ CPUS) algorithm which can be used to re-
place the current O(sets ∗ (ways ∗ CPUS)2) procedure and
allow one to distinguish between all four directory states in
a MESI protocol.

3.1 Data structure and Algorithms
The MAR is updated whenever a processor issues a read or

write request into its memory hierarchy. When the simulator
leaves the fast warming phase, data from the MAR is used to
fill in the caches of all processors and the directory informa-
tion for each cache line. For simplicity, the implementation
described in this paper uses a single-level cache, and each
processor is assumed to have the same cache parameters.

The MAR makes heavy use of C++ standard template li-
brary containers and iterators. The MAR is implemented
with a hash map in order to support O(1) updates (on
average) and limit the space use to O(touched lines). A
“touched” cache line is a single cache line that that may be
accessed many times over the course of execution. Time-
ordered data is kept in priority queues or (multi)sets. An STL
set is an associative container that (contrary to its mathemat-
ical counterpart) stores its contents in a well-defined order.
This allows the quick filtering-out of data at the beginning of
the set. Sets, unlike priority queues, support iterators, specif-
ically the reverse iterator used to retrieve the most recent ac-
cesses that belong in the cache. Operations on a set require
O(log n) worst-case time.

Figure 5 shows the conceptual structure of the Memory
Address record. In the implementation, we do not store
a mar record for every cache line in physical memory.
Rather, a hash table (keyed on address) is used to store only
the mar records for those lines that are accessed by the pro-
gram. A mar record stores the ID of the last processor to
write that line (if any) and the time at which the write oc-
curred. An array of readers, indexed by processor ID, stores
the last read time for each processor. This hash-based struc-
ture provides for fast updates during the warming phase us-
ing the algorithm in Figure 1. Data may be written to the

MAR by the simulated processors in any order as the times-
tamps allow for sorting later. When it is time to enter the de-
tailed phase, we can use the data in the MAR to reconstruct
the caches and directory.

Cache reconstruction begins by coalescing the data for
each cache line that maps to a given set. We transfer the
data from the MAR into the system of priority queues dis-
played in Figure 6 by following the COALESCE-CACHELINES
algorithm of Figure 2. The process continues with the
RECONSTRUCT-CACHES algorithm shown in Figure 3. One
may notice that the latest write[i][j] queues contain informa-
tion that is already present in the pqueue : the tag and time
of the latest write to set i by CPU j. However, by storing
this information outside of the pqueue , we can quickly filter
the pqueue so that only accesses following the latest writes
are considered. An improved set of algorithms that could do
without this redundant information is described in section
3.3. Once RECONSTRUCT-CACHES is complete, each proces-
sor’s cache is nearly up-to-date and will be finalized during
the RECONSTRUCT-DIRECTORY phase.

RECONSTRUCT-DIRECTORY, shown in Figure 4, uses the
contents of the caches and the rules in Table 1 to reconstruct
the directory state. Current, a three-state MSI protocol is
used. Since a line may be evicted from cache, we are unable
to distinguish between a line in the Exclusive state and one in
the Shared state (where all other copies have been evicted).
Cache state is also updated during this phase to reflect write-
backs (dirty→ clean transitions) caused by share requests.

3.2 Example
To see the MAR in action, we present an example. Con-

sider a two-processor system that makes the stream of mem-
ory references shown in Table 2. For simplicity, assume each
read (R) and write (W) is to the same cache line with address
A.

At time 6, we wish to reconstruct the caches and directory
state. The data in table 2 is stored in the MAR, but as a single
stream of triples: A: (0,CPU1,R), (1,CPU1,W), (2,CPU2,R), ...
COALESCE-CACHELINES places the data into two priority
queues and notes that latest write to the set containing A is
at time 3. Next, we execute RECONSTRUCT-CACHES. All ac-
cesses prior to time 3 are thrown away, and the data remain-
ing in the pqueues tells us that there is a “read” copy of the
data in CPU1 and a “write” copy in CPU2. When we run
RECONSTRUCT-DIRECTORIES, two copies are noted, so both
must be marked clean, and the line must be Shared by CPU1
and CPU2.

3.3 An improved algorithm
The MAR implementation described above will likely

serve as a straw man for future implementations. In fact,
we are developing a new scheme that is both faster in theo-

Condition Resulting State
Line not present I
Line present in one place (dirty) M
Line present in one place (clean) S or E
Line present in many places (all clean) S

Table 1: Rules for reconstructing directory state. All lines
start in the invalid state. Only one of the above conditions
should apply.

2



UPDATE(time, address , load , cpu)

1 if isLoad(load )
2 then MAR[address ].cpu[cpu]← time
3 else
4 MAR[address ].writer← cpu
5 MAR[address ].writetime← time

Figure 1: This procedure is called during the warming phase to update the MAR.

COALESCE-CACHELINES()

1 for each mar record, i, in MAR
2 do set ← setContaining(addressOf(i))
3 if isWrite(i)
4 then p← writeCPU(i)

� determine last writer of i
5 record i’s tag and time in priority queue last write[set ][p]
6 record WRITER and i’s tag and time in pqueue [set ][p]
7 else � it’s a read
8 for each CPU p that reads i
9 do record READER and i’s tag and time in pqueue [set ][p]

Figure 2: Procedure to coalesce cache lines into an array of per-set priority queues

RECONSTRUCT-CACHES(numsets , numways , numcpus)

1 for set ← 0 to numsets
2 do for p← 0 to numcpus
3 do times[0 . . numways ]← the times of up to numways most recent writes in last write[set ][p]
4 Discard from pqueue [set ][p] any access before times
5 for w ← 0 to numways
6 do place the tag, dirty, and valid bits from the numways most recent

pqueue [set ][p] entries into way w of set set in the cache of CPU p

Figure 3: Procedure to rebuild caches using data from the MAR.

RECONSTRUCT-DIRECTORY(numsets , numways , numcpus)

1 for i← 1 to numcpus
2 do for j ← 1 to numsets
3 do for k ← 1 to numways
4 do look in way k of set j in each of the other numcpus −1 caches, and apply the rules in Table 1

Figure 4: Procedure to rebuild directory from data in caches.

3



set 0
set 1

set S−1

time
read/write

Time−ordered priority queue storing:

tag

CPU 0

pqueue[0][1]pqueue[0][0]latest_write[0][0] latest_write[0][1]

pqueue[S−1][1]

Memory Access Priority Queues

CPU 1 CPU N−1

Figure 6: Priority queues used for constructing cache contents.

Time 0 1 2 3 4 5
CPU 1 R W R
CPU 2 R W

Table 2: Stream of accesses referred to in example.

retical runtime and more accurate in terms of allowing MESI
instead of MSI. A brief description of this algorithm follows,
whetting the appetite for future improvements.

UPDATE now counts how many times each cache line is ac-
cessed. COALESCE-CACHES no longer maintains last write .
However, it is modified to record the last reader or writer
of each cache line. This additional information can be used
to distinguish the S and E state and eliminate the squared
term from the runtime of RECONSTRUCT-DIRECTORIES. Two
passes are made across each set. In the first, we build shar-
ing vectors, in the second we consult the new counts and last
write tables to get directory state.

The new RECONSTRUCT-DIRECTORIES works as follows...
We scan through a set and consider each line l. If the last
access was a read, and l is a write, then it is known that l is
shared without having to check all other CPUs and ways.
If the last access was a write and l is write, then we can
stop checking: l must be Modified. The counters allow us
to distinguish the Shared and Exclusive state. Consider a
line that has been read > 1 time (as recorded by UPDATE).
If there is only one instance of it in the cache (and assuming
the computer does not do auto-upgrading of lines), then the
line must be Shared. However, if we have recorded only one
read, then the line is in the Exclusive state.

4. Why the MAR works
There are two steps to understanding the MAR. First, one

must see that it faithfully restores the state of both the caches
and the directory. Next, one must understand how this
restoration can occur in the absence of detailed cache and
directory models.

4.1 Correctness
A cache contains the most-recently used subset of the main

memory of the computer. We can use induction to show that
the caches created by the MAR and its algorithms provides
the same subset that would arise during traditional simula-

tion. We start with a base case and show that the algorithms
preserve necessary and sufficient information for reconstruc-
tion and that they apply this information appropriately.

For the base case, assume the contents of the caches are
valid. As memory is accessed, it is recorded in the MAR.
Only one processor may write a cache line at a time. The
MAR stores that single most recent writer for each line. Many
processors can read a cache line at once, and the MAR also
keeps a record of all CPUs that tried to read a line. Thus no
information needed for cache-construction is lost by UPDATE
in the warming phase.

Since a cache is a subset of main memory, several
lines of memory may map to the same cache set. The
COALESCE-CACHELINES procedure performs the lines-to-
sets mapping and sorts the accesses, but does not discard any
information.

In an w-way set associative cache, only the w most re-
cently accessed lines mapping to a set are present in the
cache. The RECONSTRUCT-CACHES procedure consults the
per-cpu/per-set queues created by COALESCE-CACHELINES
placing thewmost recent accesses into the appropriate cache.
By discarding accesses that occur before the latest write, this
reconstruction procedure respects sequential consistency in
that reads see the value of the most recent write to the same
address. Thus, after RECONSTRUCT-CACHES has completed,
the caches’ contents are valid and accurately reflect the state
of the machine after the most recent access.

Turning to the directory, note that the state of a line and
its sharing vector merely reflect the information stored in the
cache of each processor. For example, the only way many
processors can have a valid copy of a cache line is if the line
is Shared by each. In an actual system, the directory informa-
tion is stored at a home node in order to coordinate memory
accesses of multiple processors and preserve sequential con-
sistency. Unlike a real system, the simulator is “omniscient”
in that it has access to the cache of every simulated processor.
By looking at the contents of all caches, the directory bits can
be correctly inferred using the rules in Table 1.

4.2 Speed
The directory-based cache coherence protocol used by the

SGI Origin is carefully described in [5]. When the number
of messages-per-transaction is enumerated, one finds 2,3, or
4 messages in many cases, but (2 + 2 · sharers) messages

4



when a Read-Exclusive or Upgrade is issued to a line in the
Shared state. While optimizations (intervention forwarding
or reply forwarding) may be applied [2], optimizations at-
tack messages along the critical path rather than the total
number of messages exchanged. A faithful timing simula-
tor must model each message and the contention it faces on
an accurate model of the interconnect. Furthermore, cache
timing models must be consulted and the caches and direc-
tory bits must be updated appropriately. The MAR elimi-
nates these details from the warming phase, but allows ac-
curate reconstruction of the caches and directory that simple
fast-forwarding does not.

At a high level, the time of default simulator can be
expressed by: (all memory accesses ∗ T (simulate cache +
simulate directory + simulate network))
where each “simulate” term is dependent on factors such as
associativity, nodes, messages, et cetera.

The time required in a MAR-based simulator is bro-
ken into two parts: update and replay. Update
time is (all memory accesses ∗ T (hash table update)) where
T (hash table update) = O(1). Playback time is greater than
update, and a glance at the algorithms used suggest that it
is quicker than performing a detailed model of a single re-
quest. Even if the detailed model was fast, MAR playback
has the advantage of only depending on the number of lines
touched and cache memory size rather than each dynamic
access. Section 5 (Figure 9) shows that touched lines is a
much smaller number than all memory accesses. Referring
to figures 2, 3, and 4 we see that playback time with the cur-
rent algorithms is:
(touched lines ∗O(sharers) +O(sets ∗ (ways ∗ CPUS)2)).

5. Evaluation
To evaluate the MAR, we use the same subset of the

Splash 2 benchmarks [10] found in Hennessy and Patter-
son’s computer architecture textbook [4]. The authors chose
these particular four benchmarks because they represent
common techniques in scientific computing (LU and FFT)
and important types of parallel communication (Barnes and
Ocean). Furthermore, the benchmarks represent a spectrum
of performance characteristics and scaling properties (Table
3) which help to exercise the MAR in different situations. All
applications were run with default parameters with the fol-
lowing exceptions: a four-processor configuration was speci-
fied and problem sizes scaled to those listed in Table 4. These
scaling choices were made so that the benchmarks could
complete in 1-5 minutes.

To demonstrate the benchmarks’ contrasting behavior, Fig-
ure 7 shows the data cache miss rate on a 4-way machine
with 64KB, 2-way set associative, 32B block caches. The
rates vary widely between the benchmarks and are rela-
tively consistent as processor count is varied. The bench-
marks can also be compared with respect to their sharing
behavior. Tests with an unmodified UVSIM reveal differ-
ent sharing patterns shown in Figure 8. Low sharing can
reduce the time spent modeling communication. Though 0
or 1 sharer-per-cacheline is common, both LU and Barnes ex-
hibit non-negligible amount of higher sharing degrees. Fig-
ure 9 shows the high accessed-to-touched ratio common to
all benchmarks. Recall that a “touched” cache line is a sin-
gle cache line that that may be accessed many times over
the course of execution. This high ratio means that many ac-
cesses will be “compressed” in the MAR during the update

phase. When we arrive at the playback phase, work is done
only for each line in the MAR.

Parameter Value
FFT Points to transform 16384
LU Matrix dimension 128 x 128

Barnes Particles 512
Ocean Grid points per dimension 34

Table 4: Splash 2 Parameters

Splash2 Miss Rates (64KB Cache/4 CPU)

0

2

4

6

8

10

12

14

16

fft lu barnes ocean

benchmark

p
er

ce
n

t

Capacity
Coherence 

Figure 7: Varying cache misses in Splash2 benchmarks.
From Hennessy and Patterson

Sharing Characteristics

0

5000

10000

15000

20000

25000

fft lu barnes ocean

benchmark

co
u

n
t

0 sharers 
1 sharer
2 sharers
3 sharers
4 sharers

Figure 8: When run on four processors, most cache lines are
shared between 0 or 1 CPU.

Figure 10 shows wall-clock execution time of the bench-
marks running both with and without the MAR. All times
were measured on a 2.20GHz Intel Xeon. Benchmarks were
run to completion. For the MAR tests, the MAR is up-
dated throughout execution and cache/directory state is re-
constructed upon completion. The detailed DRAM, Hub,
and Processor models are disabled, and gprof is used to ig-
nore time spent in cache simulation. For detailed simulation,
the detailed models are turned on, but the simulator is no
longer slowed by the MAR.

5



Scaling of
Computation

Scaling of
Communication

Scaling of
computation-to-
communication

FFT n log n
p

n
p

log n

LU n
p

√
n√
p

√
n√
p

Barnes n log n
p

≈
√
n log n√
p

≈
√
n√
p

Ocean n
p

√
n√
p

√
n√
p

Table 3: Communication and computation scaling of Splash 2 benchmarks

Ratio of Accesses to Touched Lines

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

fft lu barnes ocean

benchmark

co
u

n
t

total requests
touched lines

Figure 9: All benchmarks have either 1:100 or 1:1000
touched lines-to-accesses ratios

To help understand the time overhead of the MAR ver-
sus detailed modeling, consider that the current implemen-
tation of the MAR adds about 28.8% of overhead to a de-
tailed simulation of LU, but since the MAR allows us to skip
detailed memory and processor simulation during warmup,
the net result is a 20% speedup. This speedup can be
expected to improve when the O(sets ∗ (ways ∗ CPUS)2)
RECONSTRUCT-DIRECTORY algorithm is replaced with the
O(sets ∗ ways ∗ CPUS) version described in Section 3.3. In
addition, since the structure of the MAR allows each set to
be operated on independently, the reconstruction algorithm
can be parallelized when running on compatible hardware.

6. Future Work
Implementing the MAR and describing it to others has

prompted several new research directions. It appears that
one of the key benefits of the concept is the ease with which it
can be parallelized. As the implemention is refined, perhaps
with the scheme from 3.3, the independence of sets during
reconstruction should be a primary goal. Another area of re-
finement is space-efficiency. The current MAR makes liberal
use of memory, but larger workloads on more simulated pro-
cessors could require more judicious data structures to avoid
paging them to disk.

We would like to investigate whether the MAR and asso-
ciated structures could support an incremental approach to
update. That is, once we have reconstructed contents and
have meta-data, perhaps this data can be retained to help
speed subsequent replays.

lu fft Barnes Ocean

1

1.2

1.4

1.6

1.8

2
Speedup due to MAR

Benchmark

S
pe

ed
up

Figure 10: Speedup due to MAR. Normalized to execution
time of detailed simulation without MAR

Though the description of the MAR explains how it cor-
rectly implements cache coherence, the MAR has not been
tested “in vivo.” Validating the default simulation state with
that generated by the MAR is crucial before the MAR can be
used in long simulations.

There is concern that certain communication primitives in
the simulated application, such as join, could hurt the per-
formance of the MAR. In the case of spin-lock during warm-
ing, each processor streams requests into the MAR whereas a
detailed, system-level simulator could account for the sched-
uler allowing one processor to make progress on the critical
section before letting a different processor try to acquire the
lock. The MAR-based simulation result would be sequen-
tially consistent but not representative of a realistic execu-
tion. To correct this would require the simulator to be aware
of the primitives being used by the simulated application.
In a parallel-hosted implementation of the MAR, this aware-
ness would be essential to correct operation.

While this section has introduced issues with which the
developer must be aware, each appears tractable and we are
encouraged about the future of a MAR-like technique.

7. Conclusion
We have introduced the Memory Address Record (MAR)

and algorithms for its use. The MAR is shown to allow quick
and correct restoration of the caches and directory of a mul-
tiprocessor simulator. In no case does the MAR slow down
the simulation. In fact, we see up to 1.9X speedup in the case
of the Ocean scientific benchmark. Speeds are likely to im-
prove as the algorithms are refined and parallelized. When
combined with Rigorous Statistical Sampling, the MAR will
enable faster execution of multiprocessor simulations.

6



8. Acknowledgments
This paper stems from conversations with my advisor,

Krste Asanovic.

9. References
[1] Doug C. Burger and Todd M. Austin. The SimpleScalar

tool set, version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[2] David E. Culler and Jaswinder Pal Singh with
Anoop Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, 1999.

[3] M. Durbhakula, V. S. Pai, and S. V. Adve. Improving
the accuracy vs. speed tradeoff for simulating
shared-memory multiprocessors with ILP processors.
In 3rd International Symposium on High-Performance
Computer Architecture, January 1999.

[4] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, third edition, 2003.

[5] J. Laudon and D. Lenoski. The SGI origin: A ccNUMA
highly scalable server. In Proceedings of the 24th
International Symposium on Computer Architecture, June
1997.

[6] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow,
S. Huss-Lederman, M. D. Hill, J. R. Larus, and D. A.
Wood. Wisconsin Wind Tunnel II: A fast, portable
parallel architecture simulator. IEEE Concurrency,
8(4):12–20, October-December 2000.

[7] V. S. Pai, P. Ranganathan, H. Abdel-Shafi, , and S. V.
Adve. The impact of exploiting instruction-level
parallelism on shared-memory multiprocessors. IEEE
Transactions on Computers, 48(2), February 1999.

[8] D. M. Rao and P. A. Wilsey. An ultra-large scale
simulation framework. Journal of Parallel and Distributed
Computing, 2002.

[9] Rabin A. Sugummar. Multi-Configuration Simulation
Algorithms for the Evaluation of Computer Architecute
Desig ns. PhD thesis, University of Michigan, August
1993. Technical Report CSE-TR-173-93.

[10] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
programs: Characterization and methodological
considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, June 1995.

[11] Roland Wunderlich, Thomas Wenisch, Babak Falsafi,
and James Hoe. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical
sampling. In Proceedings of the 30th International
Symposium on Computer Architecture, June 2003.

7


