
Efficient Detection of Determinacy Race in
Transactional Cilk Programs

Xie Yong

Singapore-MIT Alliance



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

2

Outline

► Definition determinacy race in transactional Cilk

► Algorithm T. E. R. D.

► Implementation Cilk runtime system & cilk2c

► Performance Time: O(Tα(v, v)),  Space: O(v)

Empirical: 15 times slowdown vs. serial execution

► Conclusion & Future Work

► Performance of Transactional Cilk

Impossibility of achieving linear speedup



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

3

Definition of Determinacy Race

► Atomization of Cilk program

► Efficiency     Size of transaction 

► Only if correctness is not affected

► Kai’s definition:

► Atomic-thread atomization

► Detection: NP-complete

t1

t2l

t1

t2

l

t3

List Insertion (read & write “head”)



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

4

Definition of Determinacy Race

X

Y

Z

read l

write l

write l

X

Y

Z

write l

read l

write l

X

Y

Z

read l

read l

write l

X

Y

Z

write l

write l

read l



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

5

TERD Algorithm

Record access: 14 shadow spaces

read-read-1[l], read-read-2[l],

read-write-1[l], read-write-2[l],

writ-read-l[l],       write-read-2[l],

write-write-1[l],     write-write-2[l],

last-read[l],         last-parallel-read[l],

last-write[l], last-parallel-write[l],

trans-id-read[l], trans-id-write[l]



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

6

TERD Algorithm

► Extension of SP-bags algorithm

► Disjoint-Set data structure 

Spawn procedure F:

SF Make-Set(F)

Return from F’ to F:

PF Union(SF,PF’)

Sync in procedure F:

SF Union(SF,PF)

PF      ØØØØ

Transaction_Begin:

Current-transaction-id ++



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

7

TERD Algorithm

Read memory location l by Transaction T Procedure F:

If (trans-id-read[l]!=T && trans-id-write[l]!=T)

trans-id-read[l]   T

Eval-Read (l,T,F)

Eval-Read (l,T,F)

// check and report determinacy race

// update record (shadow spaces)   



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

8

TERD Algorithm

Eval-Write (l,T,F)

// check and report determinacy race

// update record (shadow spaces)   

write memory location l by Transaction T Procedure F:

If (trans-id-write[l]!=T)

trans-id-read[l]   T

trans-id-write[l]   T

Eval-Write (l,T,F)



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

9

TERD Algorithm

P

Z
S

S

X’ Y’

S

X Y

Basic idea:



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

10

TERD Algorithm

T : serial execution time

v : number of shared locations being monitored

α : inverse of Ackermann’s function

Time: O( T α(v, v) )

Space: O( v )



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

11

Transactional Nondeterminator

Implemented T.E.R.D. in Cilk runtime system

Cracked Cilk compiler “cilk2c”

Tested 15 times slowdown vs. serial execution

9.6310.6 sec1.1 secL.U. (512x512)

14.1831.2 sec2.2 secC.K. (5, 8)

3.219.6 sec3.1 secFib (30)

SlowdownSerial (with
T.D.)

Serial (no T.D)Programs



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

12

Transactional Cilk Performance

T1 : total work for serial execution, parallel execution ???

T∞ : critical path length, parallel execution ???

Best case: no abort/retry, or abort/retry does not affect TP

Worst case: T1 (no parallelism, although many spawns)

T1/P >> T∞
Randomized Work-Stealing

���� Linear Speedup ???



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

13

Linear Speedup: Impossible

T∞

1

1
1
1

…
T∞

T∞

1

1
1
1

…

…

Proc1 Proc2 Proc2 Procp

trapped



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

14

Linear Speedup: Impossible

There exists a transactional Cilk program with T1 as the

serial execution time and T∞ as the minimum time 

required by the execution of infinite number of 

processor, where T∞ is O(p1/2), and T1/p >> T∞ the 

execution time on p processor is greater or equal 

to p1/2 (T1/p) – not linear speedup



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

15

Linear Speedup: Impossible

Xn = 

Yn = 

p is total number of processors

Xn is the number of working processors

Yn is the number of trapped processors

Xn +1

Xn

1- ((p-2)/(p-1))p-Xn-Yn

otherwise
Yn

Yn +1

((p-Xn)/(p-1))p-Xn-Yn

otherwise

n is from 1 to T∞ , X1 = 1 , Y1 = 0



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

16

Linear Speedup: Impossible

E[Xn] =  -2n/p + n/8 + n2/16p + n2/4p2 

n = T∞ = p1/2

E[Xn] =  O(p1/2)

Note that, E[Xn] always increasing 



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

17

Conclusion & Future Work

Determinacy race definition: Semantics ?

Algorithm and data-structure for maintaining relationship 
between transactions: linear time

More Language features: inlet, wildcard, etc

Performance of transactional Cilk: ☺☺☺☺



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

18

Backup Slides



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

19

Backup Slides

TERD algorithm & proof, lemma



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

20

N-queens Problem

Cilk char *nqueens(char *board, int n, int row)

{ char *new_board;

... 

new_board = malloc(row+1);

memcpy(new_board, board, row);

for (j=0; j<n; j++) {

... 

new_board[row] = j;

spawn nqueens(new_board, n, row+1);

... 

}

sync;

}



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

21

N-queens Problem

No blocking case



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

22

N-queens Problem

blocking case



December 10, 2003 Copyright © Xie Yong, 2003
All rights reserved

23

N-queens Problem

summary


	�ÿ�S�l�i�d�e� �1
	�ÿ�S�l�i�d�e� �2
	�ÿ�S�l�i�d�e� �3
	�ÿ�S�l�i�d�e� �4
	�ÿ�S�l�i�d�e� �5
	�ÿ�S�l�i�d�e� �6
	�ÿ� � � �E�x�t�e�n�s�i�o�n� �o�f� �S�P�-�b�a�g�s� �a�l�g�o�r�i�t�h�.�.�.
	�ÿ� � � �D�i�s�j�o�i�n�t�-�S�e�t� �d�a�t�a� �s�t�r�u�c�t�u�r�e

	�ÿ�S�l�i�d�e� �7
	�ÿ�S�l�i�d�e� �8
	�ÿ�S�l�i�d�e� �9
	�ÿ�S�l�i�d�e� �1�0
	�ÿ�S�l�i�d�e� �1�1
	�ÿ�S�l�i�d�e� �1�2
	�ÿ�S�l�i�d�e� �1�3
	�ÿ�S�l�i�d�e� �1�4
	�ÿ�S�l�i�d�e� �1�5
	�ÿ�S�l�i�d�e� �1�6
	�ÿ�S�l�i�d�e� �1�7
	�ÿ�S�l�i�d�e� �1�8
	�ÿ�S�l�i�d�e� �1�9
	�ÿ�S�l�i�d�e� �2�0
	�ÿ�S�l�i�d�e� �2�1
	�ÿ�S�l�i�d�e� �2�2
	�ÿ�S�l�i�d�e� �2�3

