
Problem

● Parallelize (serial) applications that use files.

– Examples: compression tools, logging utilities, databases.

● In general

– applications that use files depend on sequential output,

– serial append is the usual file I/O operation.

● Goal:

– perform file I/O operations in parallel,

– keep the sequential, serial append of the file.

Results

● Cilk runtime-support for serial append with good
scalability.

● Three serial append schemes and implementations for
Cilk:

1. ported Cheerio, previous parallel file I/O API (M. Debergalis),

2. simple prototype (with concurrent Linked Lists),

3. extension, more efficient data structure (concurrent double-
linked Skip Lists).

● Parallel bz2 using PLIO.

Single Processor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

Single Processor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3

Single Processor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 4 5 6 7

Single Processor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

Single Processor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

Why not in parallel?!

Fast Serial Append

ParalleL file I/O (PLIO) support
for Serial Append in

Cilk

Alexandru Caracaş

Outline

● Example

– single processor & multiprocessor

● Semantics

– view of Cilk Programmer

● Algorithm

– modification of Cilk runtime system

● Implementation

– Previous work

● Performance

– Comparison

Multiprocessor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

Multiprocessor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 7

Multiprocessor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 5 7 8 9

Multiprocessor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 4 5 7 8 9 106

Multiprocessor Serial Append

1

5

12

92 6

1187

3 4

10

computation DAG

FILE (serial append)

1 2 3 4 5 6 7 8 9 10 11 12

File Operations

● open (FILE, mode) / close (FILE).

● write (FILE, DATA, size)

– processor writes to its PION.

● read (FILE, BUFFER, size)

– processor reads from PION.
● Note: a seek operation may be required

● seek (FILE, offset, whence)

– processor searches for the right PION in the ordered data
structure

Semantics

● View of Cilk programmer:

– Write operations
● preserve the sequential, serial append.

– Read and Seek operations
● can occur only after the file has been closed,
● or on a newly opened file.

Approach (for Cilk)

● Bookkeeping (to reconstruct serial append)

– Divide execution of the computation,

– Meta-Data (PIONs) about the execution of the computation.

● Observation

– In Cilk, steals need to be accounted for during execution.

● Theorem

– expected # of steals = O (PT
∞

).

● Corollary (see algorithm)

– expected # of PIONs = O (PT
∞

).

PION (Parallel I/O Node)

● Definition: a PION represents all the write operations to a
file performed by a processor in between 2 steals.

● A PION contains:

– # data bytes written,

– victim processor ID,

– pointer to written data.


1










FILE

PION

1 2 3 4 5 6 7 8 9 10 11 12

Algorithm

● All PIONSs are kept in an ordered data structure.

– very simple Example: Linked List.

● On each steal operation performed by processor P
i
 from

processor P
j
:

– create a new PION π
i
,

– attach π
i
 immediately after π

j
, the PION of P

j
in the order data

structure.

PIONs


1


k


j

Algorithm

● All PIONSs are kept in an ordered data structure.

– very simple Example: Linked List.

● On each steal operation performed by processor P
i
 from

processor P
j
:

– create a new PION π
i
,

– attach π
i
 immediately after π

j
, the PION of P

j
in the order data

structure.

PIONs


1


k


j


i

Algorithm

● All PIONSs are kept in an ordered data structure.

– very simple Example: Linked List.

● On each steal operation performed by processor P
i
 from

processor P
j
:

– create a new PION π
i
,

– attach π
i
 immediately after π

j
, the PION of P

j
in the order data

structure.


1


j


k

PIONs


i

Implementation

● Modified the Cilk runtime system to support desired
operations.

– implemented hooks on the steal operations.

● Initial implementation:

– concurrent Linked List (easier algorithms).

● Final implementation:

– concurrent double-linked Skip List.

● Ported Cheerio to Cilk 5.4.

Details of Implementation

● Each processor has a buffer for the data in its own PIONs

– implemented as a file.

● Data structure to maintain the order of PIONs:

– Linked List, Skip List.

● Meta-Data (order maintenance structure of PIONs)

– kept in memory,

– saved to a file when serial append file is closed.

Skip List

NIL

NIL

NIL

NIL

● Similar performance with search trees:

– O (log (SIZE)).

Double-Linked Skip List

NIL

NIL

NIL

NIL

● Based on Skip Lists (logarithmic performance).

● Cilk runtime-support in advanced implementation of
PLIO as rank order statistics.

PLIO Performance

● no I/O vs writing 100MB with PLIO (w/ linked list),

● Tests were run on yggdrasil a 32 proc Origin machine.

● Parallelism=32,

● Legend:

– black: no I/O,

– red: PLIO.

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

11

12

13

14

Number of Processors

E
xe

cu
tio

n
 T

im
e

 (
se

co
n

d
s)

Improvements & Conclusion

● Possible Improvements:

– Optimization of algorithm:
● delete PIONs with no data,
● cache oblivious Skip List,

– File system support,

– Experiment with other order maintenance data structures:
● B-Trees.

● Conclusion:

– Cilk runtime-support for parallel I/O
● allows serial applications dependent on sequential output to be

parallelized.

References

– Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. In Proceedings
of the 35th Annual Symposium on Foundations of Computer
Science, pages 356-368, Santa Fe, New Mexico, November
1994.

– Matthew S. DeBergalis. A parallel file I/O API for Cilk.
Master's thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, June
2000.

– William Pugh. Concurrent Maintenance of Skip Lists.
Departments of Computer Science, University of Maryland, CS-
TR-2222.1, June, 1990.

References

– Thomas H. Cormen, Charles E. Leiserson, Donald L. Rivest and
Clifford Stein. Introduction to Algorithms (2nd Edition). MIT
Press. Cambridge, Massachusetts, 2001.

– Supercomputing Technology Group MIT Laboratory for
Computer Science. Cilk 5.3.2 Reference Manual, November
2001. Available at
http://supertech.lcs.mit.edu/cilk/manual-5.3.2.pdf.

– bz2 source code. Available at http://sources.redhat.com/bzip2.

