Problem

- Parallelize (serial) applications that use files.
 - Examples: compression tools, logging utilities, databases.
- In general
 - applications that use files depend on sequential output,
 - **serial append** is the usual file I/O operation.
- Goal:
 - perform file I/O operations in parallel,
 - keep the sequential, serial append of the file.

Results

- *Cilk* **runtime-support** for serial append with good scalability.
- Three **serial append** schemes and implementations for *Cilk*:
 - 1. ported *Cheerio*, previous parallel file I/O API (*M. Debergalis*),
 - 2. simple prototype (with concurrent Linked Lists),
 - 3. extension, more efficient data structure (concurrent double-linked Skip Lists).
- Parallel bz2 using *PLIO*.

FILE (serial append)

FILE (serial append)

FILE (serial append)

FILE (serial append)

FILE (serial append)

computation DAG

Why not in parallel?!

Fast Serial Append

ParalleL file I/O (PLIO) support for Serial Append in Cilk

Alexandru Caracaş

Outline

- Example
 - single processor & multiprocessor
- Semantics
 - view of Cilk Programmer
- Algorithm
 - modification of *Cilk* runtime system
- Implementation
 - Previous work
- Performance
 - Comparison

FILE (serial append)

File Operations

- open (FILE, mode) / close (FILE).
- write (FILE, DATA, size)
 - processor writes to its PION.
- read (FILE, BUFFER, size)
 - processor reads from PION.
 - Note: a seek operation may be required
- seek (FILE, offset, whence)
 - processor searches for the right PION in the ordered data structure

Semantics

- View of *Cilk* programmer:
 - Write operations
 - preserve the sequential, serial append.
 - Read and Seek operations
 - can occur only after the file has been closed,
 - or on a newly opened file.

Approach (for Cilk)

- Bookkeeping (to reconstruct serial append)
 - Divide execution of the computation,
 - Meta-Data (PIONs) about the execution of the computation.
- Observation
 - In Cilk, steals need to be accounted for during execution.
- Theorem
 - expected # of steals = $O(PT_{\infty})$.
- Corollary (see algorithm)
 - expected # of PIONs = O (PT_{∞}).

PION (Parallel I/O Node)

- **Definition**: a PION represents all the write operations to a file performed by a processor in between 2 steals.
- A PION contains:
 - # data bytes written,
 - victim processor ID,
 - pointer to written data.

Algorithm

- All PIONSs are kept in an ordered data structure.
 - very simple Example: Linked List.
- On each steal operation performed by processor P_i from processor P_i:
 - create a new PION π_i ,
 - attach π_i immediately after π_j , the PION of P_j in the order data structure.

Algorithm

- All PIONSs are kept in an ordered data structure.
 - very simple Example: Linked List.
- On each steal operation performed by processor P_i from processor P_i:
 - create a new PION π_i ,
 - attach π_i immediately after π_j , the PION of P_j in the order data structure.

PIONS π_{i}

Algorithm

- All PIONSs are kept in an ordered data structure.
 - very simple Example: Linked List.
- On each steal operation performed by processor P_i from processor P_i:
 - create a new PION π_i ,
 - attach π_i immediately after π_j , the PION of P_j in the order data structure.

Implementation

- Modified the *Cilk* **runtime system** to support desired operations.
 - implemented **hooks** on the steal operations.
- Initial implementation:
 - concurrent Linked List (easier algorithms).
- Final implementation:
 - concurrent double-linked Skip List.
- Ported *Cheerio* to *Cilk* 5.4.

Details of Implementation

- Each processor has a **buffer** for the data in its own PIONs
 - implemented as a file.
- Data structure to maintain the order of PIONs:
 - Linked List, **Skip List**.
- Meta-Data (order maintenance structure of PIONs)
 - kept in memory,
 - saved to a file when serial append file is closed.

Skip List

- Similar performance with search trees:
 - O (log (SIZE)).

Double-Linked Skip List

- Based on Skip Lists (logarithmic performance).
- *Cilk* runtime-support in advanced implementation of PLIO as **rank order statistics**.

PLIO Performance

- no I/O vs writing 100MB with PLIO (w/ linked list),
- Tests were run on yggdrasil a 32 proc Origin machine.
- Parallelism=32,
- Legend:
 - black: no I/O,
 - red: PLIO.

Improvements & Conclusion

- Possible Improvements:
 - Optimization of algorithm:
 - delete PIONs with no data,
 - cache oblivious Skip List,
 - File system support,
 - Experiment with other order maintenance data structures:
 - B-Trees.
- Conclusion:
 - Cilk runtime-support for parallel I/O
 - allows serial applications dependent on sequential output to be parallelized.

References

- Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 356-368, Santa Fe, New Mexico, November 1994.
- Matthew S. DeBergalis. A parallel file I/O API for Cilk.
 Master's thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, June 2000.
- William Pugh. Concurrent Maintenance of Skip Lists.
 Departments of Computer Science, University of Maryland, CS-TR-2222.1, June, 1990.

References

- Thomas H. Cormen, Charles E. Leiserson, Donald L. Rivest and Clifford Stein. *Introduction to Algorithms* (2nd Edition). MIT Press. Cambridge, Massachusetts, 2001.
- Supercomputing Technology Group MIT Laboratory for Computer Science. *Cilk 5.3.2 Reference Manual*, November 2001. Available at http://supertech.lcs.mit.edu/cilk/manual-5.3.2.pdf.
- bz2 source code. Available at http://sources.redhat.com/bzip2.