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Abstract

An efficient dynamic storage allocator is important
for time-critical parallel programs. In this paper, we
present o fast and simple parallel allocator for fixed
size block on shared-memory multiprocessors. We show
both theoretically and empirically that the allocator in-
curs very low lock contention. The allocator is tested
with parallel simulation applications with frequent al-
location and release requests. The results confirm that
our allocator is highly efficient and is scalable to more
Processors.
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1 Introduction

We present an efficient special-purpose storage allo-
cator for shared-memory multiprocessors. In particu-
lar, we emphasize on the time efficiency and the scala-
bility of a parallel allocator. To justify the emphasis on
time rather than space, it is noticed that the primary
reason for most programmers to switch from unipro-
cessor to multiprocessor is to gain some speedups for
the applications, rather than to look for larger memory
capacity.

We have made the following assumptions:

1. Shared-memory architecture, which is based on a
centralized memory that can be accessed by each
processor directly.

2. Frequent allocation and deallocation of blocks of
fized sizes. For example, in parallel discrete event

simulation (PDES) [5], a message or an event is
often implemented as a fixed-size block. A PDES
typically comprises a series of creation and pro-
cessing of events, which require the allocation and
release of fixed-size blocks respectively.

We introduce the algorithm of our parallel allocator
in Section 2. Some analysis of the algorithm are also
presented. We propose a very efficient implementation
of the algorithm in Section 3. Section 4 compares the
performance and the scalability of our allocator with
some other parallel allocators.

2 The Algorithm
2.1 Some Considerations

Consider the execution of a parallel program in
which allocation and release requests of fixed-size
blocks are issued frequently. A global free list (or global
pool) G of such blocks can be maintained in the mem-
ory. Exclusive access to G must be ensured to avoid
data races. This can be realized by using a lock. This
simple algorithm however is inadequate because alloca-
tion requests and release requests can never be serviced
in parallel. Moreover, each such request always in-
volves two lock operations—to acquire and to release a
lock—which can be quite expensive. The performance
can deteriorate further when there is a large number
of processors, or the allocation and release requests are
issued more frequently by the program.

The lock contention can be alleviated by maintain-
ing a local free list (or local pool) Ip; to be accessed by
processor p;. In this arrangement, no lock operation
needs to be involved for a process running on p; to ac-
cess Ip;. Lock operations will only be needed when a
process accesses G.



It is this concept of multiple pools that our algo-
rithm is based on. Our algorithm, which will be fur-
ther elaborated in the next section, has been carefully
designed in order to achieve a very low lock contention
even in the worst case condition. Furthermore, each al-
location and release request can be serviced in almost
constant time with a very small constant factor.

2.2 TheMechanism

There are two major components in our algorithm:

(1) A global pool G. Exclusive access to the global
pool is realized by using a lock.

(2) A set of P local pools, P being the total number
of processors. Specifically, each processor p; is as-
signed a local pool Ip;, which is initially empty. A
process running on p; is allowed to access only Ip;
and G. This guarantees exclusive access to each
local pool.

The following parameters, whose values are positive
integers, define the capacity of each local pool and the
transfers between the global pool and local pools:

Definition 2.1.
e m is the capacity of each local pool (i.e., it can hold
at most m free blocks), where m > 1.
® g is the number of blocks per transfer from the
global pool to any local pool, where 1 < my < m.
o mg is the number of blocks per transfer from any
local pool to the global pool, where 1 < mg < m.

In the following description, we assume that all al-
location and release operations are performed on pro-
cessor p;. The allocation procedure begins by checking
if lp, is empty. If Ip, is empty, the procedure requests
mq blocks from G. It then returns a block from Ip;.

The release procedure begins by checking if Ip; is
full, i.e., it holds m blocks. If lp, is full, the procedure
returns mg blocks to G. The block to be released is
then returned to Ip;.

With this algorithm, it is easy to see that lock op-
erations need not always be involved when servicing
allocation or release requests. Moreover, the informa-
tion related to a local pool Ip; can be cached by the
processor p;. This implies that the time taken to ser-
vice a request is normally not affected by the services
to other requests that are running in parallel on other
processors.

In the next section, we examine the effects of the
parameters m, m, and mg on the frequency of the
lock operations. In particular, with the aim of mini-
mizing the lock contention in the worst case condition,
we obtain the relation m, = mg = ¢ when m is even.
We will introduce an efficient implementation of our
algorithm which conforms to this relation in Section 3.

2.3 Minimizing the Lock Contention

Observe that the parameters mo, mg and m can
affect the number of lock operations involved. For ex-
ample, assume that a process running on processor p; is
going to issue n consecutive allocation requests. If Ip;
is already empty and m, = 1, it can be verified that
each of these n requests will involve lock operations
(since Ip,; will be empty after servicing every request).
It can also be verified that under the same assumptions
but mg =k, only [7] of the requests will involve lock
operations.

2.3.1 The Relation among m, m, and mg

We need to introduce a few notations before continuing
our analysis. Consider only the services of allocation
and release requests running on processor p;. Let 7 ;
be the jth service which involves lock operations. Let
¢;,; be the number of services of allocation and release
requests between 7; ; and 7; ;41 (exclusive). By defi-
nition, none of these services involves lock operations.
Let ¢pin denote the minimum value of ¢;; for any 4
and j.

We first derive an upper bound of the total number
of accesses to the global pool by all processors.

Lemma 2.2. If processor p; receives a total of S; re-
quests in executing a parallel program, it will make no

more than [ %ii +1 | accesses to the global pool.

Proof. We divide the S; requests into several parti-
tions, where each consists of ¢, + 1 requests, ex-
cept the last partition which may consist of less than
Omin + 1 requests. From the definition of @y, it is
clear that in each partition there exists no more than
one request that involves lock operations.

There is a total of [#] partitions. This means
that p; will make no more than [ ¢mi 1| accesses to
the global pool. |

Theorem 2.3. Assume that a parallel program makes
a total of S requests. The total number of accesses to
the global pool by all processors is bounded above by

-2 + P.

Proof. Assume that there are P  processors
p1,P2,---,pp, each receives Si,S2,...,S5p requests
respectively. Let M; be the total number of ac-
cesses to the global pool made by processor p;, and
M = Ef:l M; be the total number of accesses to the
global pool made by all processors.

From Lemma 2.2, we have M = Ele M;

YLl < Shleds) + Po<
(S8 S0/ (bmin + )] + P = | 55| + P C




To minimize the lock contention, we need to mini-
mize M = Lﬁj + P. Since both S and P are fixed
for a single run of a parallel program, the only choice
is to maximize ¢, Lemma 2.4 derives the relation

among @min, M, My and mg.

Lemma 2.4. ¢, = min(mey,mg, m—mq, m—mg)—
1. In other words, if a processor has just accessed the
global pool upon a request, it guarantees not to access
the global pool when handling the next min(mgy, mg, m—
Mq, m —mg) — 1 requests.

Proof. Consider two services 7; j and 7; j+1, which both
involve lock operations as defined previously. In the al-
gorithm, a service 7; ; will involve lock operations only
under one of the following conditions: (a) 7;; services
an allocation request when Ip; is empty, or (b) 7; ; ser-
vices a release request when Ip; is full. Therefore, we
need to consider the following four cases:
Case 1. Both 7;; and 7; ;41 belong to condition (a)
Case 2. 7;; and 7; j+1 belong to conditions (a) and (b)
respectively
Case 3. 7;; and 7; j+1 belong to conditions (b) and (a)
respectively
Case 4. Both 7; ; and 7; ;41 belong to condition (b)
Consider Case 1. The local pool Ilp; has my — 1
blocks just after 7;; and is empty just before 7 jy1.
In this case, the minimum of ¢; ; is achieved if p; ser-
vices consecutively m, allocation requests just after
Tij- Servicing the first my — 1 requests reduces the
number of blocks in Ip; from m, —1 to 0 and does not
involve any lock operation. 7; ;41 will service the m-th
request. Therefore, ¢; ; = my — 1.
Other cases can be analyzed similarly. Table 1 sum-
marizes the results obtained.

Case | Lower bound of ¢; ;
1 mq —1
2 (m—mg,)—1
3 (m—mg) —1
4 mg — 1

Table 1: Lower bounds of ¢;,; for various cases. For the
proof of Lemma 2.4.

Therefore, by definition, ¢, is simply the mini-
mum of the lower bounds of ¢; ; for the four various
cases:

Omin = min(mgy —1,(m —mgy) — 1,
(m —mg) — 1,mg — 1)

= min(mg,mg,m — mg,m —mg) — 1

N A min(m-m,,m) s

Figure 1: The value of min(mg, m — my ), which reaches

its maximum when m, = %

Theorem 2.5. The algorithm incurs the lowest lock
contention in the worst case when

m .
me = Mg = — when m is even
=72

and

{ ma = [2] or 2]

mg =[] or [F] when m is odd

Proof. From Theorem 2.3 and Lemma 2.4, we need to
maximize ¢pp = min(mg, mg,m — mqy,m —mg) — 1
in order to minimize the lock contention. It is clear
that maximizing ¢, is equivalent to maximizing
min(mgy, m — mg) and min(mg, m —mg).

First consider the case when m is even. The value of
min(mg, m—my) is plotted in Figure 1. The peak value
of the expression is obtained when m, = 7. Similarly,
min(mg, m —mg) reaches its maximum when mg = 3.
Using a similar method to tackle the case when m is
odd, the value of ¢y, is found to reach its maximum
when mgy =[] or [3],and mg = [Z]or [F]. W

2.3.2 Guidelines for Choosing m

We have considered the proper values of m, and mg for
any given value of m in the previous section. To choose
the proper value for m, we need to take the following
two conflicting requirements into consideration:

1. From Theorem 2.5, we should maximize m in order
to lower the lock contention.

2. It can be shown that our allocator requires at least
M + P-m blocks in total for proper program execu-
tion, where M is the maximum number of blocks
required by the program at any instant during the
execution!. Clearly, the additional P - m blocks

1 Assume that the program holds M blocks at time ¢. In the
worst case, each local pool is full (i.e., holding m blocks) in time
t. Summing these up, M + P - m blocks are required by the
program.



represent an overhead, and we therefore should
keep m as small as possible to reduce memory con-
sumption.

The two goals above are conflicting with each other.
We require small m to achieve good space efficiency and
large m to achieve good time efficiency. It is however
not difficult to choose a suitable m for typical applica-
tions given the underlying machine architectures. For
example, if we have 16 processors, and each block has
a size of 16 bytes. We can choose, say, m = 1024. This
imposes additional P - m = 16 %« 1024 = 16k blocks,
which is equivalent to 16k x 16bytes = 256kbytes of
memory. A 16-processor machine nowadays typically
has at least a few gigabytes of memory. A payoff of
only 256kbytes for a better performance on such ma-
chines is definitely worthwhile.

In the next section, we describe an efficient imple-
mentation which conforms to mq = mg = 3 when m
is even.

3 An Efficient Implementation
3.1 Local Pools

In this implementation, each local pool maintains
the following components:

(1) Two stacks of free blocks. Each of the stacks is im-

plemented as a linked list of free blocks. For con-
venience, they are referred to as Active stack and
Backup stack respectively. Each stack is allowed
to hold at most % blocks. To support this imple-
mentation, each block is tagged with a pointer to
another block.
We control the storage of the free blocks according
to this principle: the Active stack is allowed to
keep blocks if and only if the Backup stack is full.
In other words, if the local pool has no more than
3 blocks, all blocks will be kept in the Backup
stack; if it has k > % blocks, we keep k— 73 blocks
in the Active stack and % blocks in the Backup
stack.

(2) A counter recording the total number of mem-
ory blocks residing in the local pool. The counter
helps the allocation and release procedures to de-
cide quickly either the Active stack or the Backup
stack it needs to access to.

3.2 Global Pool

The global pool maintains an array of pointers to
several stacks of memory blocks. Each pointer refers
to either a list of % blocks or null.

(a) (b)
Figure 2: (a) A tandem queueing network and (b) a
super-ping simulation.

The array is treated as a stack which allows push
and pop operations. When a local pool requests for 7
blocks from the global pool, it pops the top entry in
the stack—which is a list of % free blocks—to the local
pool. When a local pool returns % blocks to the global
pool, it pushes the list of blocks onto this stack. Each
push or pop operation takes a constant amount of time
to complete. To avoid data races, lock mechanism is

needed to coordinate the push and pop operations.

4 Performance

To evaluate the time efficiency, two parallel simula-
tion programs which can be configured to make use of
various allocators have been implemented. In a dis-
crete event simulation, various events are generated
and processed frequently. Therefore, the generation
and removal of events must be done efficiently to re-
duce the time required to perform the simulation. This
amounts to requiring an efficient implementation of al-
location and release routines for fixed size blocks. Par-
allel simulation programs are thus realistic test suites
for parallel allocators.

Both simulation programs are implemented using
the Cilk language [1,4], and adopt the safetime ap-
proach for parallel simulation proposed in [2].

1. Tandem Queueing Networks, as illustrated in Fig-
ure 2(a). We simulate a tandem network with 17
stages while each stage has 4 servers (i.e., k = 4)
(which is a configuration used in [3] to benchmark
a simulation algorithm).

2. Super-Ping Simulation, as illustrated in Fig-
ure 2(b). A total of 1000 LPs are simulated in
our experiment.

The allocators which are evaluated in the experi-
ment are:

1. [Method VH] The allocator using our algorithm.
A value of m = 512 has been chosen. The global
pool is initialized to hold P lists of free blocks
while each list holds 7 free blocks, where P is the
number of processors.



The initial number of block lists in the global pool
is set to be P-m, P being the number of processors.
Whenever the global pool runs out of free blocks,
additional P'Tm blocks will be requested from the
system?.

2. [Method GP] Global free list (or global pool).
Only one global free list is maintained. Exclusive
access to the pool is realized by using a lock.

3. [Method CM] The Cilk allocator that is packaged
along with the Cilk distribution [6]. The alloca-
tor adopts a variation of the segregated free list
scheme [9]. In this scheme, an allocator maintains
an array of free lists, each holding free blocks of a
particular size. The current implementation main-
tains an array of free lists, and a lock is used to
ensure atomic access to the lists. Therefore, lock
operations will always be involved in servicing each
allocation or release request.

4. Vo’s vmalloc() allocator [8,9]. The allocator is
shown to be consistently among the fastest for a
number of test applications. The allocator allows
different “regions”—subsets of the overall heap
memory—to be managed by different methods. In
our empirical study, we define regions that follow
the discipline to obtain raw memory with UNIX
system call sbrk(), and use the special purpose
method Vmpool which is suitable for allocating
fixed size blocks efficiently. We have also made
necessary modification to the source codes to par-
allelize the allocator.

In the current implementation of vmalloc(), no
region can be concurrently accessed. In order not
to violate this constraint, we open for each pro-
cessor p; a region R;. Consider the allocation and
release requests received by p;. When servicing an
allocation request, p; simply returns a block from
R;. For a release request, we have two choices:
we can return the block either to the region where
it is allocated from, or simply to R;. They are
elaborated below:

(a) [Method VMSR] Return the block to the re-
gion where it is allocated from. To realize
this approach, we maintain a free list F; for
every processor p;, and a lock L; to guard
every access to each free list F; in order to
avoid race condition.

When servicing a request of releasing
block B, we first determine the region R;

2Since the programs are written in Cilk, in the current imple-
mentation we request larger space from the Cilk allocator.

where B is allocated from. If i # j, we
push B to the free list Fj. Otherwise (i.e.,
i = j), we push B as well as all the blocks
in F; back to R;. This guarantees that a block
will always be released to the region where it
is allocated from.

(b) [Method VMDR] Return the block to the re-
gion associated with the processor. We main-
tain neither a free list nor a lock in this case,
but simply return the block to be released to
R;. Since no lock operations and fewer in-
structions are involved as compared with the
previous algorithm, this algorithm should be
more time-efficient. However, since the algo-
rithm does not guarantee that a block will
always be released to the region where it is
allocated from, we cannot use vmcompact ()
to release a region’s free space back to the
system.

4.1 Results

The simulation programs run on a 4 proces-
sor 250MHz UltraSPARC Enterprise 3000 Sun SMP
with 512MB of memory. The results are summarized in
Figure 3. The charts illustrate the average allocation
time and the average deallocation time using various
parallel allocators for the two simulation programs.

From the charts, it is clear VH is superior to other
methods in almost all cases. It results in the fastest
overall performance, followed by VMDR. In the exper-
iments, VH is also among the most scalable allocators.
With some of the methods (such as VH and VMDR),
the time for servicing a request sometimes drops when
the number of processors increases. This can probably
be explained by the fact that some allocators spend
extra time to manage a global pool (or global region)
when running on one processor, while they spend less
time to manage several local pools (or local regions)
with less blocks per pool. Furthermore, it is likely that
there are many more cache misses using a single pro-
cessor than using multiple processors.

The experiments verifies the claim that our allocator
is highly efficient and is scalable to more processors.

5 Conclusion

We have presented a fast, simple, and highly scalable
parallel allocator for fixed size blocks. We have also
analyzed the algorithm and showed that the lock con-
tention incurred by the allocator is very low. Since the
algorithm is notable for being fast and highly scalable,
it is well suited for many time-critical applications. For
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Figure 3: The average allocation time and release time for super-ping and tandem network simulations. The figures are
measured using the Sun’s high-resolution clock. Each average is computed from more than 100,000 samples.

example, the algorithm can be used in parallel simula-
tion programs for event allocation and deallocation.

Our algorithm has been tested with two benchmark
simulation applications. In the experiment, our allo-
cator is compared with some of the existing allocators.
The results show that our allocator has the least service
time in most cases.
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