6.895 Advanced Distributed Algorithms Fall 2002 Taught by Prof: Nancy Lynch

End-to-End Communication and Routing

Presented by Boris Paskalev

1. Afek, Y; Awerbuch, B; Gafni, E

Slide –The Key to Polynomial End-to-End Communication, Journal of Algorithms 22, 158-186 (1997)

The Problem:

This presentation talks about the task of end-to-end communication in dynamic networks.

We are considering a delivery of a message in a finite time by a sender, to a receiver. The messages are received in order, without duplication or omissions. In addition the protocol does not require that all the data to be transferred is available before the communication starts (the start of protocol execution). This is the data could be generated in real time (streaming data).

The main focus of this presentation is on the paper presented above (1.)

What is a dynamic communication network?

The scope of the paper is a network where links can fail and recover multiple times. The assumption is that there is point of time when the sender and receiver will not be separated by a cut of failed links.

The Classical Solution – using “fixed” communication paths.

This problem represents realistic network representation where links could fail and recover unpredictably. The classical solution for dynamic networks is based on the easier problem where links never fail and one can construct a fixed communication path between a sender and receiver. The dynamic solution just creates new communication path when it detects that the old path has failed and then resends all packages using the new path. This approach could not cover a highly dynamic network with many failures and recoveries and rapidly changing topology.

In addition there is no need to have an existing path between sender and receiver in order to deliver a message. The only requirement is that there does not exists a partition of the network, where the sender and receiver are in different sets and all communication links between those two sets will remain failed forever. Which means that we assume that at some point the two “disjoined” sets will be connected by a link and the messages will be able to reach their receiver.

Previous results.

Previous protocols required that both message size and memory needed grow with the number of data items transmitted. Which makes the space and communication complexity to be unbounded in terms of the size of the network.

The best known (bounded) performance before this paper (1.) under the same assumptions required O(1) space per link and had exponential communication complexity.

What is the provided performance?

The paper provides a polynomial complexity end-to-end communication protocol in dynamic networks. For a network with n-process and m-link the worst case number of messages send is O(n2m) for each data item delivered. The main idea of the protocol is a based on the SLIDE protocol (see below). If the size of the messages transferred is D then the protocol provides O(nD) communication complexity and amortized O(n) message complexity. Previous versions (not using the slide protocol) of this paper provided O(n9) and O(nm) message complexities. The solution we are going to look at is a factor of n slower, but is substantially simpler and more streaming data oriented.

The end-to-end protocol presented, uses slide with majority election and oblivious package movement in the network. To support oblivious movement of data, each package has additional control bits and data field.
Model and Problem Statement (Section 2)

Communication network seen as undirected graph. G=(V,E), |V| = n, |E| =m. We consider the nodes of the graph to be processors and the edges link.

The process run the same message driven program and are not required to have unique IDs

The undirected links are 2 directed links in opposite directions. A link has constant capacity (number of messages transmitted at a particular instance of time). The paper uses O(n) capacity for the links but argues that the O(n) model is easily reduced to O(1) capacity by maintaining a buffer of O(n) for outstanding messages for each link. The links deliver using FIFO. The communication is asynchronous, so there is no bound on message transmission delays over the link.

Non-viable directed link is a link that stops to deliver messages. Which means the delay for the first not delivered message is infinite, and will remain the same for all messages send over this link there after.

Every message transport in the network is bound by a send and a receive event. The events has its time of occurrence according to a global time, unknown to the nodes.

Viable link is assumed to have both of its links to be viable. Which means that if connectivity between sender and receiver exist then connectivity between receiver and sends exist as well.

Virtual Link – is directed hypothetical link to be used to deliver a data destined for the receiver and placed into the network by the sender. To receive a predictable performance the virtual link is required to behave as a direct link, namely:

Safety: The sequence of data items outputted by the receiver is a prefix of the sequence of data items input by the sender.

Liveness: If the sender is eventually connected to the receiver, then each data item input by the sender is eventually output by the receiver.

Complexity Measures:

Message- total number of messages (tokens) sent in the worst case between two successive data item output events at the receiver.

Communication –Total number of bits send in the worst case between two successive data item output events at the receiver.

Space – The max amount of space (in bits) per incident link required by a node’s program throughout the protocol.

Bounded protocols have their communication and space complexity independent of the number of data items, depending only on the network size and the data item size.

Polynomial protocol has its communication and space complexity upper bounded by polynomials of the size of the network

The Slide Algorithm:

Slide provides an efficient and simple method for delivering tokens across an unreliable network. It allows packets to move obliviously and permits deadlocks by packets delayed fro indefinite periods of time. For balancing the flow of packets a buffer hierarchy is used. This provides an assurance a specific packet will reach its destination if enough copies of this packet are put into the network.

Each processor maintains for each incident incoming link an array of slots numbered 1 through n. Each array stores tokens arriving on its associate link.

Tokens from an array can be sent to any outgoing link.

!!! The condition for sending tokens is: from any slot i of processor v to slot j at the (v,u) array at processor u, that j<i.

To satisfy this condition each processor maintains a variable (bound) with the upper bound of the highest slot available in the array at the other side of the link. It includes the upper bound for the array plus the number of tokens on the link plus 1.

All tokens send are from slots with higher number than the bound.

Every time a token is removed from an array a signal is send to the incoming link associated with this array. Since the only source of tokens for an array is the processor on the other side of the link, then to maintain the bound a processor just increments the bound when it sends a token and decrements it when it receives a signal for removing a token. The bound is initialized to 1 initially.

New tokens enter only at sender at specific slot at level n. The receiver has always a vacant slot of level 1 (all other nodes, receiving slot at level 1, are redundant as they can’t sent from such a slot), and removes and outputs any token it receives.

Tokens travel from sender to receiver by sliding from higher to lower number slots, so they make at most n hops.

The protocol maintains for each link 2n slots, which bounds the total number of packets in slots and in transit to 2nm which is the capacity of the slide protocol L, which is O(nm)

Sender and simple nodes only differ in that the S can input new messages into the system, which means it has an extra additional array where an external process inputs new tokens (into slot n), then those tokens like any other tokens can be send over any link. The receiver outputs any tokens it receives and never sends tokens.

Correctness Prove:

P1. Each token makes at most n hops (slides)

P2. at any time t the number of tokens in the network is bound by 2nm

P3. In any time interval in which new new tokens are inserted into the network, at most O(n2m + new*n) token-passes can occur. There are tokens and returning signaling tokens in the network, the returning signals are at most the number of data tokens.

P4 If the sender and receiver are eventually connected, the sender will eventually input a new token.

Former prove of all those could be found in section 4.1 of the paper. There is no novelties or something radically new there.

The algorithms below all use the slide algorithm as building blocks.

The Majority Algorithm

1. S sends consecutively 2*L + 1 duplicates of the data item to R. To output the first data item R waits for L+1 data items and outputs one of them, and for each subsequent data item R waits for the next 2 * L + 1 data items takes the majority and outputs.

2. Slide can delay up to L data items

3. The receiver is ensured of receiving enough data items to allow output of the next data item

Safety Property: At any time the output of the receiver is a prefix of the input of the sender.

Liveness: If the sender and the receiver are eventually connected, then the receiver eventually outputs any data item given to the sender.

The message complexity is: O(n2m)

Since every bit is duplicated O(n2m) times then the communication Complexity is O(n2mD) bits where D is the size in bits of a data item.

The space complexity of every node except the receiver is O(nD) and the receiver is O(nmD).

The Labels Algorithm

2 slide protocols from S to R and from R to S. The R to S is used by R to return to S tokens it received.

L=O(nm) max number of tokens a single slide can delay.

Let I denote a set of O(nm) labels, and free_I represent the set of labels that currently does not appear in the network. free_I also represents the set of new labels that S could pick from for new data items. Initially I = free_I.

R keeps track for each label in I whether R can accept a new data item with this label or not. Initially R can accept all labels. Later the label could be changed by the R from acceptable to not acceptable once it outputs the data item. If the R receives a token that is not acceptable he just ignores it.

Structure

	Label marking the token
	Data Item
	Piggy-backed Reset Label

The S always keeps track of the number tokens from each label send and received, and can reuse a label after S receives back all tokens with a particular label (S should also inform R that this label is again acceptable).

S sends data item to R with label i from free_I . S stops sending these tokens either when the first such token is received back from R or L+1 such tokens are send by S.

Since each slide can delay up to L tokens than a set 3L+3 labels will be enough for the running of the protocol.

Life-cycle of labels”

1. Being in Free_I

2. Removed from Free_I to label tokens

3. Pending reset

4. Piggy-backed to tokens in order to be reset at the receiver.

5. After all tokens resetting a label return to S, the label is returned to Free_I

Claim. At any time missingt <= 3L This is because missing is incremented when a token is send, and an input event could from the S side can occur only if missing<=2L, so it is obvious that missing <=3L+1 for any t. Which is the same assaying that the buffer at the receiver side has at most 3L+1 tokens.

At any time sending and receiving are <= 3L+1, Which is obviously after the above claim. So we can conclude that I >= 6L+3 provides the Free_I is never empty.

The message complexity of the labels algorithm is O(n2m).

Communication complexity is O(n2m(D+ logn))

Space complexity is O(nD + N logn)

The Data Dispersal Algorithm

The algorithm assumes large data items with respect to the network.

S uses the Information Dispersal Algorithm to chop the data into 2*L +1 each of size O(D/(L+1)) bits D is the size of the data item. All packages are sent with their own Serial Number as required by IDA. This allows the protocol to tolerate the loss of at most L packets that can be delayed in the network. Then the R can reconstruct the data from L+1 packets.

To make sure that we do not use old packets that were delayed by the network we add the same labels to each packet for a particular data item. Then we output packages as we did in The Majority Algorithm: wait for L+1 packages for the first output data item and then R waits 2*L +1 for each successive data item (using majority voting).

For each new data item S should use a label that is not present in the network. We use second slide from R to S so S knows what is in the network (as in the Labels Algorithm). As the capacity of each slide is L, 2*L +1 different labels will do the job.

Communication Complexity of DDA is O(nD) bits per data item if it is applied to large enough data items.

S have a counter for each label from I this counter holds the number of tokens labeled with the label in the network.

IDA chops into 2L+1 so the prime p needed should be p>4nm+1. Since m<=n2 (graph property) we could say p>4n3 +1.

The size of p determines the smallest possible data item.

Since for any x there is a prime q: x<=q<=2x there is always a prime that could be represented in log(8n3 + 2) bits (rounded up). To be able to use IDA we need each packet to be at least one full number over the set Zp, the min size of data item is

Omega(nm logn).

Correctness.

Safety: At any time an output of the receiver is a prefix of the receiver.

Lema For any time t, missing <= 4L+1

Liveness If the sender and the receiver are eventually connected then the receiver will eventually output any data item input by the sender.

