
A K-Mutual Exclusion Algorithm for Wireless Ad Hoc
Networks

Jennifer E. Walter Guangtong Cao Mitrabhanu Mohanty
Computer Science Department, Texas A&M University, College Station, TX 77840-3112

e-mail: fjennyw,g0c7670,mmohantyg@cs.tamu.edu

ABSTRACT
A fault-tolerant token based distributed k-mutual exclusion

algorithm which adjusts to node mobility is presented. The

algorithm requires nodes to communicate with only their

current neighbors, making it well-suited to the ad hoc en-

vironment. A \token forwarding" modi�cation to the basic

algorithm is shown to lower the time each node waits to en-

ter the CS and to allow the tokens to circulate more evenly

among participating processors.

1. INTRODUCTION
In an ad hoc mobile network, a pair of processors commu-

nicates by transmitting messages either over a direct wire-

less link, or over a sequence of wireless links including one

or more intermediate processors to pass the message along.

Direct communication is possible only between pairs of pro-

cessors that lie within one another's transmission radius.

Wireless link \failures" occur when previously communicat-

ing nodes move such that they are no longer within transmis-

sion range of each other. Likewise, wireless link \formations"

occur when nodes that were too far separated to communi-

cate move such that they are within transmission range of

each other. Characteristics which may distinguish wireless

ad hoc networks from existing distributed networks include

frequent and unpredictable topology changes, limited energy

supplies, and highly variable message delays. These charac-

teristics make ad hoc networks challenging environments in

which to implement distributed algorithms.

Related work on distributed algorithmic development for

ad hoc networks includes numerous routing protocols (e.g.,

[8, 9, 11, 13, 18, 20, 21, 25, 26, 27], wireless channel allo-

cation algorithms (e.g., [14]), leader election algorithms [15,

23], and protocols for broadcasting and multicasting (e.g., [8,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POMC ’01 Newport, Rhode Island USA
Copyright 2001 ACM 1-58113-397-9/01/08 ...$5.00.

12, 24, 30]). Dynamic networks are �xed wired networks that

share some characteristics of ad hoc networks, since failure

and repair of nodes and links is unpredictable in both cases.

Research on dynamic networks has focused on total ordering

[19], end-to-end communication, and routing (e.g., [1, 2]).

The k-mutual exclusion problem involves a group of n pro-

cesses, each of which intermittently requires access to an

identical resource or piece of code called the critical section

(CS). At most k, 1 � k � n, processes may be in the CS at

any given time. Providing shared access to resources through

mutual exclusion is a fundamental problem in computer sci-

ence, and is therefore worth considering for ad hoc networks.

Since wireless mobile nodes are resource poor, they may need

to share resources while restricting concurrent access.

The contribution of this paper is a generalization of the 1-

mutual exclusion algorithm presented in [32] to a topology

sensitive distributed k-mutual exclusion algorithm (called

the KRL algorithm), which induces a logical directed acyclic

graph (DAG) on the network, dynamically modifying the

logical structure to correspond to the actual physical topol-

ogy in the ad hoc environment. The KRL algorithm pre-

sented here includes new techniques to promote fair access

to the CS and to maintain the DAG with multiple tokens.

The algorithm ensures that all requesting processors even-

tually gain access to the CS once the network stabilizes and

communication links are reestablished. A modi�cation to

the basic KRL algorithm is shown to decrease the time per

CS entry at each node to nearly half of the time taken in

the basic algorithm under particular loads on the system by

continuously forwarding tokens throughout the network.

The next section discusses related work. In Section 3, we

brie
y describe our system assumptions and problem state-

ment. Section 4 describes the k-mutual exclusion algorithm.

A sketch of correctness is presented in Section 5. Simulation

results are presented in Section 6 and our conclusions are

given in Section 7.

2. RELATED WORK
Distributed k-mutual exclusion algorithms are generally

classi�ed according to the method by which they grant ac-

cess to the CS. In permission based algorithms (e.g., [16,

28]), a processor requesting access to the CS must ask for

and be granted explicit permission from all or some subset

of the processors in the system. In token based algorithms

(e.g., [5, 22, 31]), the possession of a unique token or tokens

allows access to the CS. We feel that token based algorithms

are a better choice for dynamic ad hoc networks because less

direct inter-processor communication is required, an impor-

tant consideration when link status is constantly uncertain.

Each of the existing distributed, token based algorithms

assume that the network is reliable and fully connected,

allowing any processor to directly communicate with any

other. We claim that these assumptions make them poorly

suited to the ad hoc environment, where links form and fail

as a consequence of mobility.

The token based 1-mutual exclusion algorithm of [32],

from which the algorithm we present was adapted, provides

a synthesis of ideas from several papers. The partial re-

versal technique from [13], used to maintain a destination

oriented DAG in a packet radio network when the destina-

tion is static, is used in [32] to maintain a token oriented

DAG with a dynamic destination. Like the algorithms of [7,

10, 29], each processor in this algorithm maintains a request

queue containing the identi�ers of neighboring processors

from which it has received requests for the token.

The KRL algorithm maintains k tokens in the system as

in [5, 31]. When k = 1, the lowest node is always the current

token holder, making it a \sink" toward which all requests

are sent. When k > 1, there may be multiple sinks in the

system. However, our algorithm ensures that all non-token

holding processors will always have a path to some token

holding processor. In the KRL algorithm, each node dynam-

ically chooses its lowest neighbor as its preferred link to a

token holder (cf. [32]). Nodes sense link changes to immedi-

ate neighbors and reroute requests based on the status of the

previous preferred link to the token holder and the current

contents of the local request queue. All requests reaching a

token holder are treated symmetrically, so that requests are

continually serviced while the DAG is being re-oriented and

blocked requests are being rerouted. In this multiple token

algorithm, it is possible for processors to receive requests

while they are in the CS. If this happens, the processors

may satisfy these requests immediately if they hold multiple

tokens, increasing concurrent access to the CS.

We have improved the KRL algorithm by modifying it

so that processors that receive the token or leave the CS

and have no pending requests immediately send the token

to some other neighbor. To keep the tokens from becoming

localized in certain areas of the network, we require a token

holder with no requests pending to send the token to a dif-

ferent neighbor than the one it last sent the token to when

possible.

3. SYSTEM ASSUMPTIONS
The system contains a set of n independent mobile nodes,

communicating by message passing over a wireless network.

Each mobile node runs an application process and a mutual

exclusion process that communicate with each other to en-

sure that the node cycles between its REMAINDER section

(not interested in the CS), its WAITING section (waiting for

access to the CS), and its CRITICAL section. Assumptions

on the mobile nodes and network are:

1. the nodes have unique node identi�ers in the range

0 : : : n � 1,

2. communication links are bidirectional and FIFO,

3. a link-level protocol ensures that each node is aware of

its neighbors, i.e., the set of nodes with which it can

currently directly communicate, by providing indica-

tions of link formations and failures, and

4. incipient link failures are detectable, providing reliable

communication on a per-hop basis.

The only restriction we place on node failures is that not all

current token holders fail during an execution. Also, parti-

tions of the network are allowable, since the portion of the

network that includes at least one token holder can continue

running the algorithm with the subset of tokens that parti-

tion holds.

Each node has a mutual exclusion process, modeled as a

state machine (see Figure 1), with the usual set of states,

some of which are initial states, and a transition function.

Each state at processor i contains a local variable that holds

the node identi�er and a local variable that holds the iden-

ti�ers of all nodes in direct wireless contact with node i, the

current neighbors of i.

node i

Application Process

Network

K-Mutual Exclusion Process

ReleaseCSRequestCS

Recv(m)LinkUp Send(m) LinkDown

EnterCS

Figure 1: System architecture.

A step of the mutual exclusion process at node i is trig-

gered by the occurrence of an input event. The e�ect of a

step is to apply the process' transition function, taking as in-

put the current state of the process and the input event, and

producing as output a (possibly empty) set of output events

and a new state for the process. Referring to Figure 1, the

application I/O events at the mutual exclusion process are:

1. RequestCSi: (input) request for access to CS.

2. ReleaseCSi: (input) release of CS.

3. EnterCSi: (output) permission to enter CS.

The network I/O events at the mutual exclusion process are:

1. Recvi(j;m): (input) message m from node j received

at i.

2. LinkUpi(l): (input) link l incident on i has formed.

3. LinkDowni(l): (input) link l incident on i has failed.

4. Sendj(j;m): (output) node i sends message m to j.

We require that any k-mutual exclusion algorithm satis�es

the following properties:

1. k-mutual exclusion: At any time during the execution

of the algorithm, at most k processes can be in the CS.

2. no starvation: Once link failures cease, if k�1 proces-

sors are in the CS and a processor is waiting to enter

the CS, then at some later time that processor enters

the CS.

For the second property, the hypothesis that link changes

cease is needed because an adversarial pattern of link changes

can cause starvation.

4. KRL ALGORITHM
In this section we �rst give a general overview of the op-

eration of the KRL algorithm. Then we present examples of

algorithm operation. Lastly, we present modi�cations to the

algorithm that are intended to improve the overall fairness

by ensuring that tokens are forwarded when not in use. The

complete list of local data structures at each node and the

pseudocode for the algorithm can be found in the appendix.

4.1 Overview of algorithm
A DAG is maintained on the physical wireless links of the

network throughout algorithm execution as the result of a

three-tuple, or triple, of integers representing the \height" of

the node, as in [13]. Links are considered to be directed from

nodes with higher height toward nodes with lower height,

based on lexicographic ordering of the three tuples. A link

between two nodes is outgoing at the higher height node and

incoming at the lower height node. A total ordering on the

height of nodes in the network is ensured because the last

integer in the triple is the unique identi�er of the node. For

example, if the height at node 1 = (2, 3, 1) and the height

at node 2 = (2, 2, 2), then the link between these nodes

would be directed from node 1 to node 2. Initially at node

0, height = (0, 0, 0) and, for all i 6= 0, i's height is initialized

so that the directed links form a DAG in which every non-

token holder has a directed path to some token holder and

every token holder has at least one incoming link.

Node i's height triple is included with every message sent

by the mutual exclusion process on processor i, 0 � i < n,

where n is the number of participating processors. The three

types of messages recognized by the algorithm are Request,

Token, and LinkInfo. The purpose of each type of message

should become clear in the discussion and examples below.

The algorithm maintains k tokens in the system. Initially

the token holders are nodes 0 : : : k � 1. We assume that

k < n.

As described in the last section, the mutual exclusion al-

gorithm is event-driven. When the application process on

node i makes a request for the CS, i's identi�er is enqueued

on its own request queue (Qi). Request messages received

at node i from \higher" physical neighbors causes the mu-

tual exclusion process at i to enqueue the identi�ers of those

neighbors on Qi in the order in which the Requests were re-

ceived. Non-token holding node i sends a Request message

to its lowest neighbor whenever an identi�er is enqueued on

an empty request queue at i. When i receives a Token mes-

sage, it dequeues the top element on its request queue and

either gives permission for its application process to enter

the CS (if its own identi�er was just dequeued) or sends a

Token message to its neighboring node whose identi�er was

just dequeued.

Each token recipient i modi�es the �rst two integers in

its height triple if necessary each time it receives a Token

message so that its height is lower than the height of the

node that sent the Token message. This is not necessary

when the node receiving the Token message has lower values

in the �rst two integers of its height triple than the sending

node.

Non-token holding nodes must ensure that they have at

least one \lower" neighbor at all times because requests for

the token are always sent on outgoing paths. If a non-token

holding node �nds itself with no \lower" neighbor, it uses

the partial reversal technique of Gafni and Bertsekas [13] to

change the �rst two integers in its height triple, raising its

height in relation to � 1 of its neighbors and creating at

least 1 outgoing link. Each time a node raises its height, it

sends LinkInfo messages to all its neighbors. Request queue

entries are deleted when the link to the requester fails or

reverses. The reason requests are not lost as a result of

these deletions is that a processor never deletes its own id

from its request queue. Therefore, the request always has

a chance to \repropagate" on a new route toward a token

holder.

Token holders must ensure that they have at least one

\higher" neighbor at all times so that Request messages can

be delivered to them. If a token holder �nds itself with no

\higher" neighbors, it uses the \reverse" of the Gafni and

Bertsekas partial reversal technique [13] to change the �rst

two integers in its height triple, lowering its height in relation

to � 1 of its neighbors and creating at least 1 incoming

link. Each time a node lowers its height (including when it

receives a Token message), it sends LinkInfo messages on all

its outgoing links.

4.2 Example of static KRL Operation
An illustration of algorithm operation on a static network

(in which links do not fail or form) is depicted in Figure

2. Snapshots of the system con�guration during algorithm

execution are shown, with time increasing from 2(a) to 2(f).

In Figures 2, 3, 4, and 5, the direct wireless links are shown

as dashed lines connecting circular nodes. The arrow on each

wireless link points from the higher height node to the lower

height node. The request queue at each node is depicted

as a rectangle, the height is shown as a 3-tuple, and the

token holders (k = 2) as shaded circles. The solid arrows

(local variable next) represent links over which either Token

or Request messages have most recently been sent. Note

that when a node holds a token, its next pointer is directed

towards itself.

2

1

3

4

0
(0, −2, 0)

(0, −3, 2)

(0, 0, 1) (0, −4, 4)

(e)

(0, −1, 3)

2

1

3

4

0
(0, −2, 0)

(0, −3, 2)

(0, 0, 1)
4

4

(0, 1, 4)

(d)

(0, −1, 3)
0

3

1

4

2

(0, −2, 0)

(0, −3, 2)

(0, 0, 1)
(0, 1, 4)(c)

(0, −1, 3)

(f)

4
1

(−1, 0, 1)

3
0

2

(0, −4, 4)

(0, −3, 2)

(0, −2, 0)

(0, −1, 3)

2

2

0

2

4

3

1
(0, 2, 1)

(0, 2, 2)

0

1

1

(0, 0, 0)

(0, 1, 4)

(0, −1, 3)
0

3

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

2

2
3 3

(0, 0, 0)

(0, 1, 3)

(a) (b)

Figure 2: Operation of KRL algorithm on static net-
work with 2 tokens.

In Figure 2(a), nodes 2, 3, and 4 have requested access to

the CS (note that nodes 2, 3, and 4 have enqueued them-

selves on Q2, Q3, and Q4, respectively) and nodes 2 and 3

have sent Request messages to node 0, which enqueued them

on Q0 in the order in which the Request messages were re-

ceived. Node 4 sent a Request to node 1, since node 1 is

node 4's lowest neighbor. Part (b) depicts the system at a

later time, where node 1 sent a token to node 4 and has

also requested access to the CS, sending a Request message

to node 4 (note that 1 is enqueued on Q1 and Q4). Node 0

sent a token to node 3, following the token with a Request on

behalf of node 2 (note that 0 is enqueued on Q3). Observe

that the logical direction of the links between node 0 and

node 3 and between node 1 and node 4 change from being

directed away from nodes 3 and 4 in part (a), to being di-

rected toward nodes 3 and 4 in part (b), when nodes 3 and 4

receive Token messages and lower their heights. Notice also

the next pointers of nodes 0 and 3 and nodes 1 and 4 change

from both nodes 0 and 3 having next pointers directed to-

ward node 0 and both nodes 1 and 4 having next pointers

directed toward node 1 in part (a) to both nodes 0 and 3

having next pointers directed toward node 3 and both nodes

1 and 4 having next pointers directed toward node 4 in part

(b).

Figure 2(c) shows the system con�guration after node 4

has released the CS and has sent a Token message to node 1.

Node 3 has also release the CS and has sent a Token message

to node 0. Node 0 then sent the token to node 2. At this

point in the execution there are no pending requests, as can

be seen by the empty request queues.

Part (d) shows the system con�guration after the host

application at node 4 has made a request for CS entry and

node 4 has chosen its lowest neighbor, node 2, as next and

sent a Request to node 2.

In part (e), node 4 receives a Token message from node

2, lowers its height and enters the CS. Node 1 has received

a LinkInfo message from node 4 and senses that it has no

incoming links.

In part (f), node 1 has lowered its height to be lower than

all of its neighbors. This ensures that some future request

may reach node 1.

In a static network, no node will have to raise its height.

To see why, consider the operation of the algorithm in the

absence of link changes. Nodes will lower their height (if

necessary) when tokens are received or when they hold a

token and have no incoming links. But this will cause no

neighboring nodes to raise their height, since any a�ected

non-token holding neighbors will gain an outgoing link.

4.3 Example of dynamic KRL algorithm op-
eration

Now we consider the execution of the KRL algorithm on a

dynamic network. The height information allows each node

i to keep track of the current logical direction of links to

neighboring nodes, particularly to the node chosen to be

nexti. If the link to nexti changes and jQij > 0, node i must

reroute its request.

Identi�er j on the request queue at node i is deleted if

link (i; j) fails or if i raises its height so that the link to j

is outgoing. In the �rst case, node j will be alerted with a

network input event, and in the second case, i will send a

LinkInfo message to j. In either case, j will be noti�ed that

its request for the CS will not be satis�ed unless it sends a

new Request message.

Figure 3(a) shows the same snapshot of the system exe-

cution as is shown in Figure 2(a), with time increasing from

3(a) to 3(e). Figure 3(b) depicts the system con�guration

after node 3 has moved in relation to the other nodes in the

system, resulting in a network that is temporarily not token

oriented, since node 3 has no outgoing links. Node 0 has

adapted to the lost link to node 3 by removing 3 from its

request queue. Node 2 takes no action as a result of the loss

of its link to node 3, since the link to next2 was not a�ected

and node 2 still has one outgoing link. In part (c), node 3

has adapted to the loss of its link to node 0 by raising its

height and has sent a Request message to node 1. Parts (d)

and (e) show the system after node 0 has sent a token to

0

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

2

(0, 0, 0)3
(0, 1, 3)

3

(b)

2

0

2

1
4

(0, 0, 0)3

(0, −1, 2)

(0, 1, 4)

(e)

(0, 0, 1)

(0, −1, 3)

0

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

2

(0, 0, 0)3

3
2

(1, 1, 3)

3

(c)

0

2

1
4

(0, 0, 0)3

3

(1, 1, 3)

1

3 (0, −1, 2)

(0, 1, 4)(0, 2, 1)

(d)

0
3

2

1
4 4

4
(0, 2, 2)

(0, 3, 4)
(0, 2, 1)

(0, 1, 3)

2

2
3 3

(0, 0, 0)

(a)

Figure 3: Operation of KRL algorithm on dynamic
network with 2 tokens.

node 2 and node 4 has sent a token to node 1, which then

sent it to node 3.

4.4 KRL with token forwarding
This section describes a modi�cation to the KRL algo-

rithm designed to increase the circulation of tokens during

execution. Within a connected component of the network,

a token is idle at node i when there is a non-token holding

processor j in its WAITING section at the same time i is in

its REMAINDER section with jQij = 0.

Figure 4 shows why tokens are frequently idle in the KRL

algorithm. The �gure gives a snapshot of KRL execution

in which there are 2 token holders, nodes 3 and 5. Nodes 4

and 6 have made requests and have sent Request messages to

node 5. The application process at node 5 is currently in the

CS, so node 5 has enqueued the identi�ers of node 6 and node

4 on its request queue. The application process at node 3 has

already released the CS and node 3 is in its REMAINDER

section with an empty request queue. Therefore, node 3

holds an idle token. Node 3 will not send its token to any

other node until it receives a Request message. Meanwhile,

nodes 6 and 4 must wait their turns for the token being used

by node 5.

We try to alleviate the idle token problem by having each

token holder forward the token to other parts of the network

in case no processor close to it needs access to the CS. The

strategy we use is to mimic the action taken by processors

when forwarding a request for a token, i.e., choose the \low-

est" neighboring node and send the token to that neighbor.

6

4

4
6

2
(0, 0, 2)

3
0

(0, 0, 0)

1

4

5

6 (0, −1, 3)

(0, 0, 1)

(0, −1, 4)

(0, −2, 5)

(0, −1, 6)

Figure 4: Idle token problem in KRL algorithm.

Choosing the lowest height neighbor results in the lowest

number of link reversals because the lower the height of a

neighbor, the fewer outgoing links that neighbor will need

to reverse when it receives the token. Nodes keep track of

which of their neighbors they have forwarded tokens to or

received tokens from when their request queue is empty by

marking the link as \visited".

(a)

V

V

(b)

V

V

V

2
(0, 0, 2)

3
0

(0, 0, 0)

(0, −1, 3)
1

(0, 0, 1)

3
0

(0, −2, 0)

2
(0, −3, 2)

1
(0, −4, 1)

(0, −5, 3)

Figure 5: Operation of KRL algorithm with token
forwarding.

Figure 5 illustrates this modi�cation during an execution

of the algorithm. In Figure 5(a), node 3 is a token holder

but no neighbor of node 3 needs access to the CS. Figure

5(b) shows a snapshot of the algorithm execution after the

application process on node 3 has released the CS, and the

token has been forwarded through processors 0, 2, 1, and 3 to

the left portion of the network. The V on each wireless link

signi�es that the link has been marked \visited" by both the

node forwarding and the node receiving the token. If node

3 receives the token at a later time, while it has an empty

request queue, it will mark all its links as \unvisited" and

start the forwarding process over.

The pseudocode detailing the modi�cations to the KRL

algorithm can be found in the appendix.

5. CORRECTNESS OF KRL ALGORITHM
The following theorem holds because there are only k to-

kens in the system at any time.

Theorem 1. The algorithm ensures k-mutual exclusion.

The full proof of no starvation for the KRL algorithm

can be found in [33]. To save space, we will just give an

overview of the argument in this paper. To prove the KRL

algorithm ensures no starvation, we �rst show that, after

link changes cease, eventually processors will stop raising

their heights and the DAG will be token oriented. Then we

show that any sequence of propagated requests, or \request

chain", beginning at any requesting processor will eventually

include some token holder. Lastly, using a variant function

argument, we show that a token will be delivered to every

requesting node. Essentially, this proof is identical to the

proof of correctness in [32].

Theorem 2. If link changes cease, then every request is

eventually satis�ed.

The token forwarding modi�cation described in the last

section to circulate idle tokens in the network will not violate

the correctness of the algorithm. To see why, consider that

there are a �nite number of processors in the network and

that the token cannot inde�nitely \outrun" a request chain.

Therefore, every request chain must eventually include some

token holder and the proof of correctness holds.

6. SIMULATION RESULTS
We simulated a 30 node system under various scenarios

using an object-oriented discrete event simulator �rst devel-

oped and tested in [32]. We chose to simulate on a 30 node

system because for networks larger than 30 nodes the time

needed for simulation was very high. Also, we envision ad

hoc networks to be much smaller scale than wired networks

like the Internet. Typical numbers of nodes used for simu-

lations of ad hoc networks range from 10 to 50 [3, 4, 6, 17,

20, 30].

In our experiments, each CS execution took one time unit

and each message delay was one time unit. Requests for

the CS were modeled as a Poisson process with arrival rate

�req. Thus the time delay between when a node left the CS

and made its next request to enter the CS is an exponential

random variable with mean 1

�req
time units.

Link changes were modeled as a Poisson process with ar-

rival rate �mob. Thus the time delay between each change

to the graph is an exponential random variable with mean
1

�mob
time units. Each change to the graph consisted of the

deletion of a link chosen at random (whose loss did not dis-

connect the graph) and the formation of a link chosen at

random.

In each execution, we measured the average waiting time

for CS entry, that is, the average number of time units that

nodes spent in their WAITING sections. We also measured

the average number of messages sent per CS entry.

We varied the load on the system (�req), the degree of mo-

bility (�mob), and the \connectivity" of the graph. Connec-

tivity was measured as the percentage of possible links that

were present in the graph. Note that a clique on 30 nodes

has 435 (undirected) links. In the graphs of the results in

this section, each plotted point represents the average of �ve

repetitions of the simulation. Thus, in plots of average time

per CS entry, each point is the average of the averages from

�ve executions, and similarly for plots of average number of

messages per CS entry.

The KRL simulation starts with nodes with identi�ers

ranging from 0 to k � 1 holding tokens. We initially ad-

justed the height of each token holder to ensure that it had

at least one incoming link. A connected graph whose initial

edges were chosen at random with the desired number of

links was generated, node heights and link directions were

initialized, and then the algorithm and performance mea-

surements were started. During periods of mobility, link

changes were not allowed to change the percent connectivity

of the initial graph more than 10% in either the positive or

negative direction.

0.001 0.001

0.001

0.01 0.01

0.01

0.1 0.1

0.1

1 1

1

0 0

0

10
10

5

20

20

10

30

30

15

40

40

20

50

25

30

35

40

(c)

(b)(a)

T
im

e
U

ni
ts

/C
S

E
nt

ry
T

im
e

U
ni

ts
/C

S
E

nt
ry

LoadLoad

Load

T
im

e
U

ni
ts

/C
S

E
nt

ry

KRL, 20% Connectivity

KRL, 80% Connectivity

KRLF, 20% Connectivity
KRLF, 80% Connectivity

Figure 6: Load vs. time/CS entry for (a) zero, (b)

low (1 link change every 500 time units), and (c)

high (1 link change every 50 time units) mobility,

k = 3 (KRL = basic k-mutual exclusion algorithm,

KRLF = KRL with token forwarding).

Figure 6 plots the average number of time units elapsed

between host request and subsequent entry to the CS against

values of �req increasing from 10�3 (the mean time units

between requests is 103) to 1 (the mean time units between

requests is 1), from left to right along the x axis. We chose

1 for the high load value of �req because at this rate each

node would have a request pending almost all the time. The

low load value of �req = 10�3 represents a much less busy

network, with requests rarely pending at all nodes at the

same time. Plots are shown for runs with 20% (87 links)

and 80% connectivity (348 links).

0.001 0.001

0.001

0.01 0.01

0.01

0.1 0.1

0.1

1 1

1

1 1

10

10 10

100

100 100

1000

1000 1000

KRL, 20% Connectivity

KRL, 80% Connectivity

KRLF, 20% Connectivity
KRLF, 80% Connectivity

(c)

(b)(a)
LoadLoad

Load

M
es

sa
ge

s/
C

S
E

nt
ry

M
es

sa
ge

s/
C

S
E

nt
ry

M
es

sa
ge

s/
C

S
E

nt
ry

Figure 7: Load vs. messages/CS entry for (a) zero,

(b) low (1 link change every 500 time units), and (c)

high (1 link change every 50 time units) mobility,

k = 3 (KRL = basic k-mutual exclusion algorithm,

KRLF = KRL with token forwarding).

In Figures 6 and 7, part (a) displays results when the graph

is static, part (b) when �mob = 50�2 (low mobility), and

part (c) when �mob = 50�1 (high mobility). Our choice for

the value of the low mobility parameter corresponds to the

situation where nodes remain stationary for up to a minute

after moving and prior to making another move. Our choice

for the value of the high mobility parameter represents a

much more volatile network, where nodes remain static for

only a few tens of seconds between moves.

Figures 6 and 7 show that KRLF (KRL algorithm with

forwarding) results in executions with lower average time

per CS entry, using less than half the time per CS entry as

KRL uses when the mean time between requests is 10 time

units. At this load, the KRLF algorithm actually uses fewer

messages per CS entry when nodes are mobile, as can be seen

in Figure 7, parts (b) and (c). Figure 7 shows that for loads

ranging from 0.1 to 1, the KRLF algorithm is comparable,

in terms of number of message per CS entry, to the KRL

algorithm. At the lowest loads, KRLF uses more messages

due to the continuous circulation of tokens, demonstrating

that the token forwarding strategy is wasteful when load

is low. However, increasing token circulation in the network

appears to have performance bene�ts, particulary at medium

to high loads.

Figures 8 and 9 focus on a �xed load and show the time

per CS entry and messages per CS entry in an execution

10 20 30 40 50 60 70

Connectivity

T
im

e
U

ni
ts

/C
S

 E
nt

ry

80
15

20

25

30

35

40

45

50

KRL, High Mobility

KRL, Low Mobility
KRL, Zero Mobility

KRLF, Zero Mobility

KRLF, Low Mobility

KRLF, High Mobility

Figure 8: Connectivity vs. time units/CS entry for

zero, low (1 link change every 500 time units), and

high (1 link change every 50 time units) mobility, k
= 3, mean time between requests = 10 time units
(KRL = basic k-mutual exclusion algorithm, KRLF

= KRL with token forwarding).

where the mean time between requests is 10 time units for

networks ranging from 44 links (10% connectivity) to 348

links (80% connectivity).

Figure 8 shows that at connectivities ranging from 10%

to 80%, the KRL algorithm performs better in terms of time

per CS entry as mobility increases. However, there is a cost

for the improvement in time per CS entry because more

messages are sent as mobility increases in KRL, as can be

seen in Figure 9.

From the comparisons of the basic KRL algorithm to that

of KRLF in Figure 8, we can see that at this �xed load,

the KRLF version takes less than half the time used by the

KRL algorithm per CS entry. Also, the KRLF algorithm is

not sensitive to network connectivity at this load. Figure 9

shows that the KRLF algorithm also uses fewer messages per

CS entry than the KRL algorithm at the highest mobility

and at a load of 0.1.

From these results, it appears the KRLF algorithm has

advantages over the KRL algorithm, particularly at mid-

range system loads. The token forwarding stategy is more

costly, in terms of number of messages sent, only at the

lowest system loads.

7. CONCLUSION AND DISCUSSION
We have presented a topology sensitive k-mutual exclu-

sion algorithm for mobile ad hoc networks. We directed the

reader to the full proof that this algorithm provides mutually

exclusive access to a critical section for up to k nodes at a

time and that every request will eventually be satis�ed if link

10 20 30 40 50 60

Connectivity

M
es

sa
ge

s/
C

S
 E

nt
ry

70 80
0

5

10

15

20

25

30

KRL, High Mobility

KRL, Low Mobility
KRL, Zero Mobility

KRLF, Zero Mobility

KRLF, Low Mobility

KRLF, High Mobility

Figure 9: Connectivity vs. messages/CS entry for

zero, low (1 link change every 500 time units), and

high (1 link change every 50 time units) mobility, k
= 3, mean time between requests = 10 time units
(KRL = basic k-mutual exclusion algorithm, KRLF

= KRL with token forwarding).

failures cease. We also have developed a token forwarding

technique to improve the fairness of the algorithm.

Through simulation, we showed that at mid-range loads,

the token forwarding technique does improve the time per

CS entry without using more messages than the basic KRL

algorithm when nodes are mobile.

We are working on heuristic modi�cations to the token

forwarding strategy, in which a processor adjusts the num-

ber of hops a token is forwarded based on its view of the

load on the system. In this scheme, if a processor perceives

that there is a low load on the system, it will not forward

the token. We also plan to compare the performance of the

KRLF algorithm to a \static" distributed k-mutual exclu-

sion algorithm running on top of an ad hoc routing protocol.

8. REFERENCES
[1] Y. Afek, E. Gafni, and A. Rosen. The slide mechanism

with applications in dynamic networks. In Proc. of
11th Annual Symp. on Prin. of Dist. Computing,
pages 35{46, 1992.

[2] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial
end to end communication. In Proc. of 30th Annual
Symp. on Found. of Comp. Sci., pages 358{363, 1989.

[3] S. Basagni, I. Chlamtac, and V .R. Syrotiuk, \A
Distance Routing E�ect Algorithm for Mobility
(DREAM)," Proc. ACM/IEEE International
Conference on Mobile Computing and Networking
(MOBICOM '98), pp. 76{84, 1998.

[4] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and
J. Jetcheva, \A Performance Comparison of Multi-Hop

Wireless Ad Hoc Network Routing Protocols,"
Proc. ACM/IEEE International Conference on Mobile

Computing and Networking (MOBICOM '98),
pp. 85{97, 1998.

[5] S. Bulgannawar and N. H. Vaidya. A distributed
k-mutual exclusion algorithm. In Proc. of 15th IEEE
Intl. Conf. on Distributed Computing Systems, pages
153{160, 1995.

[6] R. Casteneda and S. R. Das, \Query Localization
Techniques for On-Demand Routing Protocols in Ad
Hoc Networks," Proc. ACM/IEEE International
Conference on Mobile Computing and Networking
(MOBICOM '99), pp. 186{194, 1999.

[7] Y. Chang, M. Singhal, and M. Liu. A fault tolerant
algorithm for distributed mutual exclusion. In Proc. of
9th IEEE Symp. on Reliable Dist. Systems, pages
146{154, 1990.

[8] C. Chiang and M. Gerla. Routing and multicast in
multihop, mobile wireless networks. In Proc. of
ICUPC '97, pages 546{551, 1997.

[9] M. S. Corson and A. Ephremides. A distributed
routing algorithm for mobile wireless networks. ACM
J. Wireless Networks, 1(1):61{81, 1997.

[10] D. M. Dhamdhere and S. S. Kulkarni. A token based
k-resilient mutual exclusion algorithm for distributed
systems. Information Processing Letters, 50:151{157,
1994.

[11] R. Dube, C. D. Rais, K. Wang, and S. K. Tripathi.

Signal stability based adaptive routing (SSA) for
ad-hoc mobile networks. IEEE Personal
Communications, pages 36{45, Feb. 1997.

[12] A. Ephremides and T. V. Truong. Scheduling
broadcasts in multihop radio networks. IEEE Trans.
on Communications, 38(4):456{460, 1990.

[13] E. Gafni and D. Bertsekas. Distributed algorithms for
generating loop-free routes in networks with frequently
changing topology. IEEE Transactions on
Communications, C-29(1):11{18, 1981.

[14] M. Gerla and T.-C. Tsai. Multicluster, mobile,
multimedia radio network. Wireless Networks, pages
255{265, 1995.

[15] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T.
Tampakas, and R. B. Tan, \Fundamental Control
Algorithms in Mobile Networks," Proc. ACM
Symposium on Parallel Algorithms and Architectures,
pp. 251{260, 1999.

[16] S. T. Huang, J. R. Jiang, and Y. C. Kuo. K-coteries
for fault-tolerant k entries to a critical section. In Proc.
of IEEE Intl. Conference on Distributed Computing
Systems, pages 74{81, 1993.

[17] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek,
and M. Degermark, \Scenario-Based Performance
Analysis of Routing Protocols for Mobile Ad-Hoc
Networks," Proc. ACM/IEEE International
Conference on Mobile Computing and Networking
(MOBICOM '99), pp. 195{206, 1999.

[18] D. B. Johnson and D. A. Maltz. Dynamic source
routing in ad hoc wireless networks. In T. Imielinski
and H. Korth, editors, Mobile Computing, pages
153{181. Kluwer Academic Publishers, 1996.

[19] I. Keidar and D. Dolev. EÆcient message ordering in
dynamic networks. In Proc. of 15th Annual Symp. on
Prin. of Dist. Computing, pages 68{76, 1996.

[20] Y. B. Ko and V. H. Vaidya. Location-aided routing

(LAR) in mobile ad hoc networks. In Proc. of 4th

ACM/IEEE Intl. Conf. on Mobile Computing and
Networking, pages 66{75, 1998.

[21] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K.
Pradhan. A cluster-based approach for routing in
dynamic networks. In Proc. of ACM SIGCOMM
Computer Communication Review, pages 372{378,
1997.

[22] K. Makki, P. Banta, K. Been, N. Pissinou, and
E. K. Park. A token based algorithm for distributed k
mutual exclusion. In Proc. of 4th IEEE Symp. on
Parallel and Distributed Processing, pages 408{411,
1992.

[23] N. Malpani, J. L. Welch, and N. H. Vaidya, \Leader
Election Algorithms for Mobile Ad Hoc Networks,"
Proc. Fourth International Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications, pp. 96{103, 2000.

[24] E. Pagani and G. P. Rossi. Reliable broadcast in
mobile multihop packet networks. In Proc. of
ACM/IEEE International Conference on Mobile

Computing and Networking (MOBICOM '97), pages
34{42, 1997.

[25] V. Park and M. S. Corson. A highly adaptive
distributed routing algorithm for mobile wireless
networks. In Proc. of INFOCOM '97, pages
1405{1413, 1997.

[26] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. In Proc. of 2nd IEEE
Workshop on Mobile Computing Systems and
Applications, pages 90{100, 1999.

[27] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing for
mobile computers. In Proc. of ACM SIGCOMM Symp.
on Communication, Architectures and Protocols, pages
234{244, 1994.

[28] K. Raymond. A distributed algorithm for multiple
entries to a critical section. Information Processing
Letters, 30(1989):189{193, 1989.

[29] K. Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Transactions on Computer
Systems, 7(1):61{77, 1989.

[30] E. M. Royer and C. E. Perkins, \Multicast Operation
of the Ad-Hoc On-Demand Vector Routing Protocol,"
Proc. ACM/IEEE International Conference on Mobile

Computing and Networking (MOBICOM '99),
pp. 207{218, 1999.

[31] P. K. Srimani and R. L. N. Reddy. Another distributed
algorithm for multiple entries to a critical section.
Information Processing Letters, 41(1992):51{57, 1991.

[32] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual
exclusion algorithm for ad hoc mobile networks.
Accepted to ACM and Baltzer Wireless Networks
journal, special issue on DialM papers, 2001.

[33] J. E. Walter. A k-mutual exclusion algorithm for ad

hoc mobile networks. Technical report 00-022, Texas

A&M University, 2000,

http://www.cs.tamu.edu/people/jennyw/kmutex.ps.gz.

APPENDIX: KRL ALGORITHM
Each processor maintains a number of local data structures
as part of the mutual exclusion process, including:

� status: Indicates whether node is in the WAITING, CRIT-
ICAL, or REMAINDER section. Initially, status = RE-
MAINDER.

� N : The set of all nodes in direct wireless contact with node
i. Initially, N contains all of node i's neighbors.

� myHeight: A three-tuple (h1; h2; i) representing the height
of node i. Links are considered to be directed from nodes
with higher height toward nodes with lower height, based
on lexicographic ordering. E.g., if myHeight1 = (2, 3, 1)

and myHeight2 = (2, 2, 2), then myHeight1 > myHeight2
and the link between these nodes would be directed from
node 1 to node 2. Initially at node 0, myHeight0 = (0,

0, 0) and, for all i 6= 0, myHeighti is initialized so that
the directed links form a DAG in which every node has
a directed path to some token holder and in which every
token holder has at least one higher neighbor. myHeighti is
included with every message sent by a the mutual exclusion
process on processor i.

� height[j]: An array of tuples representing node i's view of

myHeightj for all j 2 Ni. Initially, height[j] = myHeightj ,
for all j 2 Ni. In node i's viewpoint, if j 2 N , then the link
between i and j is incoming to node i if height[j] > my-

Height, and outgoing from node i if height[j] < myHeight.

� tokenHolder: Flag set to true if node holds token and set to
false otherwise. Initially, tokenHolder = true if 0 � i < k,
and tokenHolder = false otherwise.

� totalTokens: Number of possible tokens in the system, k.

� numTokens: Counter of tokens held at a node. Initially,
numTokens = 0 if i � totalTokens and numTokens = 1
otherwise.

� next: Indicates the location of the token in relation to i.
When node i holds the token, next = i, otherwise next is
the node on an outgoing link. Initially, next = i if 0 � i <
k, and next is an outgoing neighbor otherwise.

� Q: \Request queue", containing identi�ers of requesting
neighbors and i if RequestCSi was last application input
event. Operations on Q include Enqueue(), which en-

queues an item only if it is not already on Q, Dequeue()

with the usual FIFO semantics, and Delete(), which re-
moves a speci�ed item from Q, regardless of its location.
Initially, Q = ;.

� receivedLI[j]: Boolean array indicates whether LinkInfomes-
sage has been received from node j, to which a Token mes-
sage was recently sent. Any height information received
from a node j for which receivedLI[j] = false will not be

recorded in height[j]. Initially, receivedLI[k] = true for all
j 2 Ni.

� forming[j]: Boolean array set to true when link to node j
has been detected as forming and reset to false when �rst
LinkInfo message arrives from node j. Initially, forming[j]
= false for all j 2 Ni.

� formHeight[j]: An array of tuples storing value of myHeight

when new link to j �rst detected. Initially, formHeight[j]
= myHeight for all j 2 Ni.

Pseudocode for KRL Algorithm
Each of the following modules is assumed to be executed

atomically.
When node i requests access to the CS:

1. status := WAITING

2. Enqueue(Q; i)
3. if (not tokenHolder)
4. if (jQj = 1) ForwardRequest()

5. else GiveTokenToNext()

When node i releases the CS:

1. if (jQj > 0) GiveTokenToNext()
2. status := REMAINDER

3. if (myHeight > height[k],8k 2 N)

4. LowerHeight()

When Request(h) received at node i from node j:

// h denotes j's height when message was sent

1. if (receivedLI[j])
2. height[j] := h // set i's view of j's height

3. if (myHeight < height[j]) Enqueue(Q; j)
4. if (tokenHolder)
5. if ((jQj > 0) and ((status = REMAINDER) or

((status = CRITICAL) and (numTokens > 1))))

6. GiveTokenToNext()
7. else // not tokenholder

8. if (myHeight < height[k], 8 k 2 N)

9. RaiseHeight()

10. else if ((Q =[j]) or ((jQj > 0)

and (myHeight < height[next]))
11. ForwardRequest() //reroute request

When Token(h) received at node i from node j:

// h denotes j's height when message was sent

1. tokenHolder := true

2. numTokens++
3. height[j] := h
4. if (myHeight > h)

5. Send LinkInfo(h.h1,h.h2 - 1,i)
to all outgoing k 2 N except j

6. myHeight.h1 := h.h1
7. myHeight.h2 := h.h2 - 1 // lower my height

8. Send LinkInfo(h.h1,h.h2 - 1, i) to j

9. if (jQj > 0) GiveTokenToNext()
10. else next := i

When LinkInfo(h) received at node i from node j:

// h denotes j's height when message was sent

1. N := N [fjg
2. if ((forming[j]) and (myHeight 6= formHeight[j]))
3. Send LinkInfo(myHeight) to j
4. forming[j] := false

5. if (receivedLI[j]) height[j] := h

6. else if (height[j] = h) receivedLI[j] := true

7. if (myHeight > height[j]) Delete(Q; j)
8. if (tokenHolder)
9. if (myHeight > height[k],8k 2 N)

10. LowerHeight()
11. if ((myHeight < height[k],8k 2 N) and

(not tokenHolder))
12. RaiseHeight()

13. else if ((jQj > 0) and (myHeight < height[next]))

14. ForwardRequest() // reroute request

When failure of link to j detected at node i:

1. N := N � fjg
2. Delete(Q; j)
3. receivedLI[j] := true

4. if (not tokenHolder)
5. if (myHeight < height[k],8k 2 N)

6. RaiseHeight() // reroute request

7. else if ((jQj > 0) and (next 62 N))

8. ForwardRequest()
9. else if (myHeight > height[k],8k 2 N)

10. LowerHeight()

When formation of link to j detected at node i:

1. Send LinkInfo(myHeight) to j
2. forming[j] := true

3. formHeight[j] := myHeight

Procedure ForwardRequest():
1. next := l 2 N : height[l] � height[j] 8 j 2 N
2. Send Request(myHeight) to next

Procedure GiveTokenToNext():
1. next := Dequeue(Q)

2. if (next 6= i)
3. numTokens--
4. if (numTokens = 0)

5. tokenHolder := false

6. height[next] := (myHeight.h1,myHeight.h2�1, next)
7. receivedLI[next] := false

8. Send Token(myHeight) to next

9. if ((numTokens = 0) and (jQj > 0))

10. Send Request(myHeight) to next
11. else // next = i
12. status := CRITICAL

13. Enter CS

Procedure RaiseHeight():

1. myHeight.h1 := 1 + mink2Nfheight[k].h1g
2. S := fl 2 N : height[l].h1 = myHeight.h1g
3. if (S 6= ;) myHeight.h2 := minl2Sfheight[l].h2g � 1

4. Send LinkInfo(myHeight) to all k 2 N
5. for (all k 2 N such that myHeight > height[k]) do

6. Delete(Q; k)

7. if (jQj > 0) ForwardRequest()

Procedure LowerHeight():

1. myHeight.h1 := maxk2Nfheight[k].h1g � 1

2. S := fl 2 N : height[l].h1 = myHeight.h1g
3. if (S 6= ;) myHeight.h2 := maxl2Sfheight[l].h2g+ 1

4. Send LinkInfo(myHeight) to all incoming k 2 N

Pseudocode for KRL with token forwarding
For every node, we add the following local data structure:

� visited[j]: boolean array indicating whether a token has

been circulated to node j. Initially set to false for all j 2

N .

For every node, we add and modify the modules listed
below. All other modules remain the same.
When node i releases the CS:

1. if (jQj > 0) GiveTokenToNext()
2. else

3. PickLowest&ForwardToken()
6. status := REMAINDER

When Token(h) received at node i from node j:
// h denotes j's height when message was sent

1. visited[j] := true

2. tokenHolder := true

3. numTokens++
4. height[j] := h
5. if (myHeight > h)

6. Send LinkInfo(h.h1,h.h2 - 1,i)
to all outgoing k 2 N except j

7. myHeight.h1 := h.h1
8. myHeight.h2 := h.h2 - 1 // lower my height

9. Send LinkInfo(h.h1,h.h2 - 1, i) to j

10. if (jQj > 0) GiveTokenToNext()
11. else

12. PickLowest&ForwardToken()

When formation of link to j detected at node i:

1. Send LinkInfo(myHeight) to j
2. forming[j] := true

3. formHeight[j] := myHeight
4. visited[j] := false

Procedure PickLowest&ForwardToken():
1. if (visited[j] = true 8j 2 N)

2. visited[j] := false 8j 2 N
3. next := l 2 N : ((height[l] � height[j])

and (visited[j] = false) 8 j 2 N)

4. visited[next] := true

5. numTokens--
6. if (numTokens = 0)

7. tokenHolder := false

8. height[next] := (myHeight.h1, myHeight.h2�1, next)
9. receivedLI[next] := false

10. Send Token(myHeight) to next

