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Abstract— The problem addressed is the distributed re-
configuration of a metamorphic robotic system composed of
an arbitrary number of two dimensional hexagonal robots
(modules) from specific initial to specific goal configurations.
The initial configuration considered is a straight chain of
robotic modules, while the goal configurations considered
satisfy a more general “admissibility” condition. A cen-
tralized algorithm is described for determining whether an
arbitrary goal configuration is admissible. We prove this
algorithm correctly identifies admissible goal configurations
and finds a “substrate path” within the goal configuration
along which the modules can move to reach their positions
in the goal. A second result of the paper is a distributed al-
gorithm for reconfiguring a straight chain into an admissible
goal configuration. Different heuristics are proposed to im-
prove the performance of the reconfiguration algorithm and
simulation results demonstrate the use of these heuristics.

Keywords—Metamorphic robots, distributed reconfigura-
tion

I. INTRODUCTION

A topic of recent interest in the field of robotics is the
development of motion planning algorithms for robotic sys-
tems composed of a set of robots (modules) that change
their position relative to one another, thereby reshaping
the system. A robotic system that changes its shape due
to individual robotic motion has been called self-organizing
[6] or self-reconfigurable [10].

A self-reconfigurable robotic system is a collection of in-
dependently controlled, mobile robots, each of which has
the ability to connect, disconnect, and move around adja-
cent robots. Metamorphic robotic systems [3], a subset of
self-reconfigurable systems, are further limited by requir-
ing each module to be identical in structure, motion con-
straints, and computing capabilities. Typically, the mod-
ules have a regular symmetry so that they can be packed
densely, i.e., packed so that gaps are minimized between
adjacent modules in a configuration that densely packs the
plane. In these systems, robots achieve locomotion by mov-
ing over a substrate composed of one or more other robots.
The mechanics of locomotion depends on the hardware and
can include module deformation to crawl over neighboring
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modules [5], [16] or to expand and contract to slide over sur-
faces [17]. Alternatively, moving robots may be constrained
to rigidly maintain their original shape, requiring them to
roll over or lift themselves around neighboring robots or
other surfaces [8], [12], [13], [14], [18], [19], [25], [26].

Shape changing in these composite systems is envisioned
as a means to accomplish various tasks, such as bridge
building, satellite recovery, or tumor excision [16]. The
complete interchangeability of the robots provides a high
degree of system fault tolerance. Also, self-reconfiguring
robotic systems are potentially useful in environments that
are not amenable to direct human observation and control
(e.g., interplanetary space, undersea depths).

The motion planning problem for a metamorphic robotic
system is to determine a sequence of robot motions required
to go from a given initial configuration (I) to a desired goal
configuration (G).

Many developers of self-reconfigurable robotic systems,
such as [4], [3], [6], [8], [10], [13], [14], [16], [17], 18], [24],
and [25], have devised motion planning strategies specific
to the hardware constraints of their prototype robots. Most
of the existing motion planning strategies rely on central-
ized algorithms to plan and supervise the motion of the
system components [1], [5], [10], [16], [17], [24]. Others use
distributed approaches which rely on heuristic approxima-
tions and require communication between robots in each
step of the reconfiguration process [11], [12], [14], [18], [25],
[26].

We focus on a system composed of planar, hexagonal
robotic modules as described by Chirikjian [5]. We consider
a distributed reconfiguration, given the assumption of ini-
tial global knowledge of G. For the purposes of this paper,
we use the terms concurrent, parallel, and distributed syn-
onymously. Our reconfiguration algorithm is distributed in
the sense that modules are independent and move individ-
ually using only local information. During the reconfigu-
ration, the modules move simultaneously, synchonized to a
global clock. Our distributed approach offers the benefits of
localized decision making and the potential for greater sys-
tem fault tolerance. Additionally, our strategy requires less
communication between modules than other approaches.
We have previously applied this approach to the problem
of reconfiguring a straight chain to an intersecting straight
chain [23].

In this paper we address the problem of distributed re-
configuration from a straight chain of robots to goal config-
urations that satisfy a more general “admissibility” condi-
tion. A centralized algorithm is described for determining
whether an arbitrary goal configuration is admissible, and
if so, for finding a substrate path along which the robotic



modules can move to reach the goal configuration. Then we
present a distributed algorithm for reconfiguring a straight
chain into an admissible goal configuration, using the path
found by the centralized algorithm. Different heuristics for
choosing the path are proposed to improve the efficiency of
the reconfiguration algorithm and the performance of these
heuristics is explored through simulation.

II. RELATED WORK
A. Centralized Reconfiguration Algorithms

Centralized motion planning algorithms have been devel-
oped to reconfigure both two and three dimensional meta-
morphic robots of various forms. Our planner is different
because it starts with a centralized algorithm that finds a
collision and deadlock free substrate path bisecting the goal
configuration (if such a path exists). Then, unlike the algo-
rithms presented in this section, multiple modules running
our distributed algorithm initiate movement concurrently
to perform the reconfiguration.

A number of centralized reconfiguration algorithms have
been developed for planar hexagonal robots. Chirikjian [5]
and Pamecha [16] present centralized algorithms that use
the distance between two configurations as a metric that
allows the choice of a single module to move in each round.
Other metrics for reconfiguration are presented in [2]. Up-
per and lower bounds on the number of moves for recon-
figuration between general shapes are given by Chirikjian
[5].

Nguyen et al. [15] present a reconfiguration algorithm
for planar hexagonal robots and show that the absence of
a single excluded class of initial configurations is sufficient
to guarantee the feasibility of motion planning for a system
composed of a single connected component.

Casal and Yim [1] present algorithms to reconfigure a
system of hexagonal robots in a hierarchical fashion, where
reconfiguration involves connectivity changes within and
between substructures. Their paper concentrates on the
decomposition algorithms and does not present algorithms
for motion planning within substructures.

Centralized motion planners for cubic robots are pre-
sented in [8], [17] and [19]. The modules in [17] are de-
formable, expanding and contracting to slide over adjacent
modules or some other substrate. In [8] and [19], the cubic
modules are non-deformable and move as a result of being
lifted or pivoting over other modules.

B. Distributed Reconfiguration Algorithms

A number of distributed algorithms have been proposed
for reconfiguring systems of metamorphic robots. The sim-
ilarities and differences between our algorithm and the al-
gorithms described in this section are discussed in Section
111

A distributed approach is taken by Murata et al. to re-
configure a system of planar hexagonal modules [12], and
a system of cubic modules [14]. In these algorithms, each
module senses its own connection type and classifies itself
by the number of modules it physically contacts. Modules

use a formula that relates their connection type to the set
of connection types in the goal configuration to quantify
their fitness to move. Modules communicate with physi-
cal neighbors to ensure that only the modules that have
fitness greater than the local fitness average move in the
same time step, choosing a direction at random. Modules
use random local motions to converge toward the goal con-
figuration, a slow process that appears impractical for large
configurations.

Hosokawa et al. [8] present a distributed algorithm to
reconfigure a collection of cubic modules. Their modules
use a uniform set of embedded rules to determine their
behavior based on the local environment and inter-module
communication.

A distributed approach to the reconfiguration of tetra-
hedral modules (i.e., Tetrobots, described in [7]) is pre-
sented in [11]. In this approach, each processor uses a dy-
namic subsystem model and communication between adja-
cent modules to compute kinematics, dynamics, and con-
trol input necessary to move one dedicated module to a
new position.

A reconfiguration algorithm for rhombic dodecahedral
modules is presented by Yim et al. [25]. In this algorithm,
each module uses local information about its own state (the
number and location of its current neighbors) and infor-
mation about the state of its neighbors obtained through
inter-module communication to heuristically choose moves
that lower its distance to the goal configuration.

Several heuristic approximation algorithms for reconfig-
uration of rhombic dodecahedral robots are presented by
Zhang et al. [26]. In their two phase approach, modules use
neighbor-to-neighbor communication in the first phase to
achieve a semi-global view of the initial configuration, using
as many rounds as necessary to avoid violation of module
motion constraints prior to each phase of movement.

III. OUR APPROACH

This paper will examine distributed motion planning
strategies for a planar metamorphic robotic system under-
going a reconfiguration from a straight chain to a goal con-
figuration satisfying certain properties. In our algorithms,
robots are identical, but act as independent agents, making
decisions based on their current position and the sensory
data obtained from physical contacts with adjacent robots.

Our purpose is to seek an understanding of the neces-
sary building blocks for reconfiguration, starting with al-
gorithms in which no messages need to be passed between
participating robots during reconfiguration. Reconfigura-
tion in certain scenarios, like the ones presented in this and
our earlier papers [23] and [22], can be accomplished using
algorithms that do not require any message passing. There-
fore, our algorithms are more communication efficient than
the distributed approaches of [8], [11], [12], [25] and [26].
Another contribution of our work is that our system model
abstracts from specific hardware details about the robots.

In this paper, we consider planar hexagonal robots like
those described by Chirikjian [3], using the same defini-
tion of lattice distance between robots in the plane. Our



proposed scheme uses a new classification of robot types
based on connected edges similar to the classification used
by Murata et al. [12] for connected vertices. In the algo-
rithms presented in this paper, each robot independently
determines whether it is in a movable state based on the
cell it occupies in the plane, the locations of cells in the
goal configuration, and on which sides it contacts neigh-
bors. Robots move from cell to cell and modify their states
as they change position. Since the robots know the coor-
dinates of the goal cells, we show that each of them can
independently choose a motion plan that avoids module
collision.

Unlike the distributed algorithms presented in [8], [12],
[25], and [26], our algorithm is deterministic, using a fixed
number of rounds for a particular choice of substrate path
and a particular goal configuration. Our distributed recon-
figuration will be initiated only if the goal configuration
satisfies particular admissibility conditions. Once started,
our distributed algorithm does not require inter-module
message passing to avoid violation of motion constraints,
module collision, or deadlock, as do the algorithms of [26].

In this paper we also present precise conditions for
admissible goal configurations based on the motion con-
straints of our robots. We present an algorithm that en-
sures these admissibility conditions and prove that this al-
gorithm correctly identifies admissible goal configurations.
The admissibility conditions presented in this paper differ
from those presented by Rus and Vona [17] and Nguyen et
al. [15]. In the first case, this difference is due to module
shape and motion constraints, and, in the second case, the
difference is due to assumptions on module motion, as will
be explained in Section V.

In Section IV we describe the system assumptions and
the problem definition. Section V contains a centralized
algorithm that determines whether or not a given config-
uration is admissible. Section VI presents and analyzes a
distributed algorithm for reconfiguring a straight chain to
an admissible goal configuration. In Section VII we present
simulation results comparing the performance of our algo-
rithm using different heuristics. Section VIII provides a
discussion of our results and future work.

IV. SYSTEM MODEL
A. Coordinate System

The plane is partitioned into equal-sized hexagonal cells
and labeled using the coordinate system shown in Fig. 1,
as in Chirikjian [3].

Given the coordinates of two cells, ¢; = (x1,y1) and cg =
(z2,y2), we define the lattice distance, LD, between them
as follows: Let Ax = x1 — 29 and Ay = y; — y2. Then

max(|Az|, |Ayl)
|Az| + Ay

if Axz-Ay <0,
LD(e1,e2) = { otherwise.
The lattice distance describes the minimum number of
cells a module would need to move through to go from cell
c1 to cell co.

Fig. 1. Coordinates in a system of hexagonal cells.

B. Assumptions About the Modules

Our model provides an abstraction of the hardware fea-
tures and the interface between the hardware and the ap-
plication layer.

- Each module is identical in computing capability and
runs the same program.
- Each module is a hexagon of the same size as the cells
of the plane and always occupies exactly one of the cells.
- Each module knows at all times:
e its location (the coordinates of the cell that it currently
occupies),
e its orientation (which edge is facing in which direction),
and
e which of its neighboring cells is occupied by another
module.

Before module M moves

After module M mov

substrate
Unoccupied cell

O Occupied cell
(Numbersin cell M indicateinitial and final orientation)

Fig. 2. Before (left) and after (right) module movement.

Modules move according to the following rules.

1. Modules move in lockstep rounds (synchronized by a
global clock).

2. In a round, a module M is capable of moving to an ad-
jacent cell, C1, if and only if (see Fig. 2 for an example)
(a) cell C; is currently empty,

(b) module M has a neighbor S that does not move
in the round (called the substrate) and S is also
adjacent to cell C7, and

(c) the neighboring cell to M on the other side of Cy
from S, Cs, is empty.

3. Only one module tries to move into a particular cell in
each round.

4. Modules cannot carry other modules, i.e., a module is
only allowed to move itself.

If the algorithm does not ensure that each moving mod-
ule has an immobile substrate, as specified in rule 2(b),



then the results of the round are unpredictable. Likewise,
the results of the round are unpredictable if the algorithm
does not ensure rule 3.

C. Problem Definition

We want a distributed algorithm that will cause the mod-
ules to move from an initial configuration, I, in the plane
to a known goal configuration, G.

V. ADMISSIBLE CONFIGURATIONS

In this section we define admissible configurations and
describe a centralized algorithm that tests whether a given
configuration is admissible.

A. Definition of Admissible Configuration

To simplify the presentation of admissible goal configu-
rations, assume [ is a straight chain oriented north-south,
no goal cell is to the west of I, and I and G intersect in the
southernmost module of I and nowhere else. The number
of modules in I and the number of cells in G is n. Figure
3 gives examples of orientations of I and G that satisfy
these assumptions in which n = 6. The assumptions con-
cerning the orientation of I and G can be made without
loss of generality because, if I is a straight chain that is
not oriented in this way, the algorithms presented in [23]
for straight chain to straight chain reconfiguration can be
used to reorient I in relation to G.

Unoccupied cell inG (O Occupied cell in1 O Occupied cell in 1 and G overlap

Fig. 3. Example orientations of I and G.

Let G1,Gs, ..., G, be the columns of G from west to
east such that each column is oriented north-south and
each is composed of a contiguous chain of goal cells. Figure
4(a) shows how the columns of G are labeled and gives an
example of a configuration of G in which each column is a
contiguous chain of goal cells. Figure 4(b) gives an example
of a configuration of G in which columns G3 and G5 are
composed of non-contiguous chains of goal cells.

Let p be a contiguous sequence of distinct cells,
C1,C2,...,Ck. Then

Definition 1: p is a substrate path if
« p begins with the cells in I, from north to south,
« subsequent cells are all in G, and
o the last cell is in the easternmost column of G (G,).

Definition 2: A segment of p is a contiguous subsequence
of p of length > 2. In a south segment, each cell is south of

Fig. 4. Two configurations of G: (a) each column is composed of
a contiguous chain of goal cells, and (b) columns G3 and G5 are
composed of non-contiguous chains of goal cells.

Fig. 5. Labels for north segment ending in ¢; (a) and south segment
ending in ¢; (b) (cells that must not be goal cells are shaded).

the previous cell and analogously for a north segment.

Definition 3: p is an admissible path if
1. pis east-monotone, meaning that each cell in p is adja-
cent to the previous, but not to the west (i.e., consecu-
tive higher numbered cells may not be on the northwest
or southwest side of a given cell),
2. for each north segment of p ending with ¢;,
(a) cells X;, Y;, and Z;, consecutive to the SE of ¢;,
are not goal cells (see Figure 5(a)) and
(b) ¢it1, Cit2, Cits, and c¢;+4 do not form any south
segments,
and
3. for each south segment of p ending with ¢;,
(a) cells X;, Y;, and Z;, consecutive to the NE of ¢;,
are not goal cells (see Figure 5(b)) and
(b) ¢it1, Cit2, Cit3, and cipq do not form any north
segments.

In the remainder of this paper, north and south segments
of p may be referred to as vertical segments when specific
direction of the segment is not important. Conditions 2(a)
and 3(a) of Definition 3 specify where a vertical edge may
be added to p relative to goal cells in the three columns
to the east. Conditions 2(b) and 3(b) say that any verti-
cal segment of p must be separated from any vertical seg-
ment in the opposite direction and to the east by at least
3 columns.

Definition 4: G is an admissible goal configuration if
there exists an admissible substrate path in G.

Intuitively, an admissible substrate path is a chain of
goal cells whose surface allows the movement of modules
without collision or deadlock, provided the choices of mod-
ule rotation and delay are appropriate. That is, provided
the motion planning algorithm allows for adequate space



between moving modules, there are no pockets or corners
on the surface of the substrate path in which modules will
become trapped.

The admissibility conditions for a substrate path are di-
rectly related to the degree of parallelism desired, i.e., how
closely moving modules can be spaced. If moving modules
are separated by only a single empty cell, they will become
deadlocked in acute angle corners when running our algo-
rithms [23]. However, acute angle intersections are very
commonplace in configurations of hexagonal robots. Thus,
we chose to make our algorithms applicable to a wide range
of goal configurations by separating moving modules by
two empty cells. Our definition of admissibility is therefore
based on configuration surfaces over which moving modules
with two empty cells between them can move without be-
coming deadlocked.

G G
(b)

—— Substrate path

3
@
Unoccupied cells

O Occupied cells

Fig. 6. Example admissible (a) and inadmissible (b) G.

Figure 6(a) depicts an example of an admissible config-
uration of G, where the line through I and G is an admis-
sible substrate path. Figure 6(b) depicts a configuration
of G with a substrate path that is inadmissible because
the south segment in column G4 violates Definition 3, part
3(a). Because any substrate path in the configuration of
G shown in Figure 6(b) has to include a south segment
in column Gy, there is no admissible substrate path for
this configuration and therefore this configuration of G is
inadmissible, by Definition 4.

Our definition of admissible classes of goal configurations
differs from that presented by Rus and Vona [17] because
the modules developed by these authors are cubic, with a
different set of motion constraints and mode of locomotion.
Even though our modules are two dimensional and hexago-
nal, like those of Nguyen et al. [15], our definition of admis-
sible classes of goal configurations is different than theirs
because our assumptions about module motion are differ-
ent. Nguyen et al. assume that a module moves by rigid
rotation around a vertex it shares with another module.
Our motion constraints are similar to those presented by
Chirikjian [3], where locomotion is accomplished by a com-
bined rigid body rotation and shape transformation pro-
duced by changing joint angles.

B. Algorithms to Detect Admissible Configurations and
Find Substrate Paths

As a first step in determining the admissibility of G, scan
G in columns from north to south, northwest to southeast,
and northeast to southwest, to determine if there exists an
orientation in which each column G; is contiguous. If there
is no orientation in which each column G; is contiguous,
then G is not admissible.

Our procedure for finding an admissible substrate path
in G proceeds by first constructing a directed graph H as
follows:

e Label the columns of G as described in Section V-A, with
the cells in each column G; labeled G; 1, G 2,..., from
north to south. Then cell G ; is also in I, but no other
goal cells are in [.

e Represent each goal cell as a node in the graph H. Add
an extra node to the graph in the cell directly north of
cell G711 and call this node G19. Because of the orienta-
tion of I and G, the cells in I form a south segment of
the substrate path which must be considered when deter-
mining if G is admissible. Initially there is an undirected
edge between each pair of adjacent goal cells.

e The cells to the north, south, northeast, and southeast of
G, ; are labeled N; ;, S; ;, NE; ;, and SE; ;, respectively
(note that some of these cells might not be goal cells and
thus are not represented in the graph).

e Algorithm DIRECT_EDGES

— First, every node in column G, is marked, as shown in
Figure 7(a).

— Each column west of column G,, (i.e., columns G
through G,,_1) is divided into three segments (labelled
in Figure 7(a)): (N) the north segment of the column
with no goal cells to the east (possibly empty), (C) the
central segment of the column, consisting of cells that
have goal cells to the east, and (S) the south segment
of the column with no goal cells to the east (possibly
empty).

— For each column, G,,,_1 down to Gy

1. Nodes in segment (C) are processed north to
south. If a node in segment (C) has one or more
marked neighbors to the east, it is marked and
given a directed edge to each marked neighbor.
The only exceptions are when a NE edge would
be directed toward a neighbor with an outgoing S
edge or where a SE edge would be directed toward
a neighbor with an outgoing N edge. These ex-
ceptions ensure that no acute angle corners will
be included in any substrate path.

2. Nodes in segment (S) are processed north to
south. Each node is marked and given a directed
edge to its north neighbor if the north neighbor
is marked and if the edge is a prefix of some ad-
missible path.

3. Nodes in segment (N) are processed south to
north. Each node is marked and given a directed
edge to its south neighbor if the south neighbor
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@Nodein north segment
@Nodein central segment
@Nodein south segment

{cell Gy
{OMarked goal cell
“\a Indicates edge direction

Fig. 7. Example execution of DIRECT_EDGES.

is marked and if the edge is a prefix of some ad-
missible path.

Algorithm DIRECT_EDGES constructs H by directing
edges in the undirected graph and marking the nodes that
are determined to have an admissible path to a goal cell in
the easternmost column. Figure 7(a)—(f) depicts an exe-
cution of DIRECT_EDGES, with execution progressing from
(a) to (f). In part (a), column G,, is marked. In part (b),
execution has progressed to column G,,—1 and the cells in
the central segment are marked and have edges directed
toward marked cells in G,,. In part (c), nodes in the
south segment of column G,,_; have been marked, from
the top down, with edges directed toward marked cells in
the central section. In part (d), nodes in the north seg-
ment of column G,,,_1 have been marked, from the bottom
up, with edges directed toward marked cells in the central
section. Execution has progressed to column G,,_s in part
(e) and the cells in the central segment have been marked

with edges directed toward marked cells in G,,_1. Part
(f) shows the graph H after DIRECT_EDGES has finished
execution.

Algorithm FIND_PATH, described below, is used to con-
struct an admissible substrate path.

e Algorithm FIND_PATH:

The input is the graph H after processing G with DI-
RECT_EDGES. If node G is marked, add this node to
the substrate path. Follow an outgoing edge from G'; o to
Gy, if G1 is marked, adding node G ; to the substrate
path.

The remainder of the algorithm proceeds according to the
following rules, stopping when any cell in column G, is
added to the substrate path:

1. If a node has a directed edge to only one marked
neighbor (either N, S, NE, or SE), then traverse
the edge in that direction and add the edge to the
substrate path.

For every N vertical segment ending in goal cell
Gij (1 <i<m—3), the cell NE of cell NE; ; is
unmarked if there is a S segment in column G;43. A
symmetric action is taken for a S vertical segment.

2. If anode has outgoing directed edges to two marked
neighbors (NE and SE), choose one edge, traverse
it, and add the edge to the substrate path (In Sec-
tion VII-A, we discuss heuristics that can be used
to choose either the NE or SE edge).

(@) (b)

<:> Goal cell <:> Non-goal cell

_¥ Subgraph edges directed by Direct_Edges
A Substrate path edges selected by Find_Path

Fig. 8. Snapshots of FIND_PATH execution, (a) before and (b) after
edge (ci,c;—1) is added to the substrate path.

If FIND_PATH adds a N or S edge in column G; (1 <i <
m — 3), then a particular cell in the graph two columns
to the east may be unmarked. For example, in Fig-
ure 8(a), edges (C,D), (Q,C), (P,Q), (B,C), (A,B), (A,P),
(ci—1,A) and (c¢;,¢;—1) have been directed by algorithm Di-
RECT_EDGES prior to the execution of FIND_PATH. Sup-
pose edge (c¢;,ci—1) has just been added to the substrate
path in part (a). Then in part (b), cell P is unmarked so
that the inadmissible substrate path containing edges (c;,
¢i—1), (ci—1,A), (A,P), (P,Q) and (Q,C) will not be chosen
by FIND_PATH.



C. Analysis of Algorithms DIRECT_EDGES and FIND_PATH

The time required to check if the columns of G are con-
tiguous is O(n), since every cell in each column must be
examined to look for “holes”. The running time of the al-
gorithm to find the graph H and to find an admissible sub-
strate path is O(n), since each node has a constant number
of (undirected) neighbors.

We require that algorithm FIND_PATH returns a path
that ends in column G, if and only if G is admissible.
We proceed with a sketch of the proof of correctness. For
those readers interested, the full proof can be found in [20].

Theorem 1: If G is admissible, then FIND_PATH returns
a path that ends in G,,.

We first show, in Lemma 1, that DIRECT_EDGES will
mark cells on all admissible paths leading to any cell in
column G,,.

Lemma 1: For every goal cell c, if there is an admissible
path from c to a cell in G,,,, then algorithm DIRECT_EDGES
marks c.

The proof of Lemma 1 uses induction on the order in
which DIRECT_EDGES scans goal cells, including a case
analysis on all possible orientations of an outgoing edge
at ¢, the next cell to be marked. We show that, if ¢ is a
prefix of an admissible path, then ¢ must be marked by
algorithm DIRECT_EDGES and an edge must be directed
from ¢ toward a marked goal cell to the NE, SE, N, or S.

Figure 9 depicts two snapshots of different subgraphs of
G taken during the execution of DIRECT_EDGES in which
a goal cell ¢; with a marked neighbor to the north is not
marked. In Figure 9(a), edges (C,D), (Q,C), (P,Q), (A,P),
and (¢;—1,A) have been directed consecutively by algorithm
DIRECT_EDGES. When the edge from cell ¢; to ¢;_1 is con-
sidered, it is not directed because including this edge in
any substrate path would violate the definition of an ad-
missible substrate path, Definition 3, part 2(b). In Figure
9(b), edge (ci,ci—1) is not directed because including this
edge in any substrate path would violate Definition 3, part
2(a). If cell Y was a goal cell in Figure 9(b), including edge
(¢i, ¢i—1) in a substrate path would also violate Definition
3, part 2(a). If cell X was a goal cell in this figure, then ¢;
would have a NE, not a N edge, so edge (¢;, ¢;—1) would
not be included in any admissible substrate path (similar
arguments with inverted snapshots can be made if the edge
from ¢; to ¢;—1 is a south edge). These are the only cases
in which a goal cell with a marked neighbor is not marked,
and in each case the goal cell ¢; that is not marked is also
not a prefix of any admissible substrate path.

Lemma 1 implies that if cell G; o is marked, then it is the
prefix of an admissible path that ends in column G,,. After
DIRECT_EDGES finishes, if cell G, is marked, algorithm
FIND_PATH builds a substrate path starting in cell G
and following directed edges until the path includes some
cell in column G,,.

The remainder of the proof of Theorem 1 involves show-

O Non—goal cell
_7 Subgraph edges directed by Direct_Edges
_.-¥ Subgraph edge not directed by Direct_Edges

O Goal cell

Fig. 9. Snapshots of DIRECT_EDGES execution depicting: (a) a situ-
ation in which a vertical edge is not added to H due to violation of
Definition 3, part 2(b), and (b) a situation in which a vertical edge
is not added to H due to violation of Definition 3, part 2(a). Initial
undirected edges not shown.

ing that at the time algorithm FIND_PATH adds vertical
edges, thereby unmarking goal cells, the substrate path it
has constructed to that point is still a prefix of an admis-
sible path that ends in column G,,. To be rigorous, this
proof requires us to show that when a north edge is added
to the substrate path in column Gj;, causing a goal cell to
be unmarked by FIND_PATH in column G, 2, the goal cells
in columns G; through G;;4 must be in a configuration
like that shown in Figure 8(b). Therefore, an admissible
substrate path will still exist after a north edge is added (a
similar argument holds for a south edge).

Theorem 2: If algorithm FIND_PATH returns a path end-
ing in column G,,, then G is admissible.

The proof of Theorem 2 uses induction on the order in
which goal cells are added to the substrate path, including
a detailed case analysis of the goal configuration to the west
when each possible edge direction is added, to show that
the substrate path satisfies the conditions in Definition 3.

Theorems 1 and 2 imply that algorithm FIND_PATH will
return only an admissible substrate path and will find an
admissible substrate path if one exists in G. In other words,
the algorithms presented in this section will correctly iden-
tify admissible configurations of G.

VI. DISTRIBUTED RECONFIGURATION
ALGORITHM

In this section, we present the distributed reconfigura-
tion algorithm that performs the reconfiguration of I to
G after an admissible substrate path is found using the
algorithms in the previous section. This algorithm is de-
terministic, since each module knows its final position at
the start. The algorithm is distributed because each mod-
ule uses local contact information and its current location
to determine its ability to move in each round of the ex-
ecution. There is no other inter-module communication
during the execution.



A. Algorithm Assumptions

1. Each module knows the total number of modules in the
system, n, and the goal configuration, G.

2. Initially, one module is in each cell of I.

3. I is a straight chain.

4. G is an admissible configuration and there is a partic-
ular admissible substrate path that is known to all the
modules.

5. I and G overlap in goal cell G 1, as described in Section
V-A.

To simplify the presentation of our reconfiguration algo-
rithm, we assume the coordinates of G are ordered at each
module as follows:

e The coordinates of cells on the substrate path are stored
in a list, in the order in which the cells occur on the
directed path from G to G,,.

e The coordinates of cells in G that are north and south
of the substrate path are stored in separate lists in the
order that these cells will be filled by modules in I (see
figure 12 for an example).

B. Distributed Reconfiguration Algorithm

The algorithm works in synchronous rounds. In each
round, each module calculates whether it is free and all
free modules move simultaneously. In figure 10, the mod-
ules labeled trapped are unable to move due to hardware
constraints and those labeled free represent modules that
are allowed to move in our algorithm, possibly after some
initial delay. The modules in the other category are re-
stricted from moving by our algorithm, not by hardware
constraints.

e VRPRE
DCCE

D)

N Indicates non—contact edge

><; Indicates contact edge

Fig. 10. Contact patterns possible in algorithm.
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Modules in [ initially calculate their position in I, di-
rection of rotation, possible delay and final coordinates in
G by determining their lattice distance from cell Gy ;. A
module calculates the goal cell it will occupy by comparing
its position in I to the length of the arrays of coordinates
on, north, and south of the substrate path.

Let p be the admissible substrate path, starting with the
cell that has an edge incoming from cell G ;. Modules
in positions < |p| fill in the substrate path first. After p
is filled, modules alternate rotation directions, filling the
columns projecting north and south of p from east, G, to
west, G1. Figure 12 has numbered goal cells showing how
initial module positions correspond to final goal positions.

As in our previous paper[23], modules use specific pat-
terns of rotation and delay in our algorithm, as listed below.
1. (1,0)-bidirectional: modules alternate direction with
delay of 1 time unit after free for modules in positions
> 1 rotating clockwise (CW) and no delay after free for
modules rotating counterclockwise (CCW).
2. 2-unidirectional: modules rotate same direction with
delay of 2 after free for modules in positions > 1.

Reconfiguration Algorithm
e For modules in positions 1 through |p|:

- Modules use 2-unidirectional pattern, starting in CW
direction.

e For modules in positions > |p|:

- Modules use (1,0)-bidirectional pattern until all cells
on one side of p are filled. After this, modules use
2-unidirectional pattern, with either CW or CCW
direction, depending on whether there are cells re-
maining to be filled on the north or south side of p.

e Once a module starts moving, it moves in every round
thereafter until it occupies the goal cell it has calculated
as its final position. When a module is in the goal cell it
should occupy, it stops.

e Once a module stops in the goal cell it should occupy for

a round it never moves out of that goal cell.

Figure 12 depicts an example execution of the reconfig-

uration algorithm.

C. Analysis of Reconfiguration Algorithm

The distributed reconfiguration algorithm described in
this section starts with a straight chain to (not necessarily
straight) chain reconfiguration, with the first |p| modules
filling in the admissible substrate path, p. From the proof
sketch in Section V-C, it can be seen that the moving mod-
ules (separated by 2 spaces) will not become deadlocked
(i.e., by moving into a position where they have a contact
pattern that is not “free” (cf. Figure 10)) prior to reaching
their calculated goal positions. Since the modules filling in
p all move south on the east side of I, it is not possible
for them to change order and collide. Once the modules in
p are in place, other moving modules are separated by p,
ruling out possible collisions.

VII. SIMULATION RESULTS

Our simulation experiments were inspired by the work of
Pamecha et al. [16], where configurations of similar shape
but varying number of modules were used to evaluate their
algorithm. Direct comparison of the complexity of the al-
gorithms presented in this paper with the results obtained
by the centralized reconfiguration algorithm of Pamecha et
al. is not possible due to the fact that their simulations
involved the reconfiguration of arbitrary shapes of I to ar-
bitrary shapes of G.

We developed an object-oriented discrete event simula-
tor to test the reconfiguration algorithms. Initially, the
goal coordinates are specified and each module in I per-
forms the calculations to determine its target goal posi-
tion, depending on its initial position. During each round,



the simulator checks the local status of every module, and
then moves all eligible modules in the same step, thereby
accurately simulating a real distributed system.

A. Effect of Heuristics in FIND_PATH

We first experimented with running our algorithm on
various shapes using different numbers of modules, testing
the effect on performance of varying the heuristic choice in
rule 2 of the FIND_PATH algorithm. Performance is mea-
sured in terms of number of rounds and number of moves
needed for the reconfiguration.

The shapes experimented on included: 1) wedges of sim-
ilar orientation and variable size, 2) rectangles that length-
ened on the E-W axis while remaining fixed on the N-S
axis, and 3) diamonds of similar orientation and variable
size. These shapes were chosen because they are simple and
yet illustrative of how heuristics can affect the performance
of the reconfiguration algorithm.

The first heuristic (SN for “select north”) chose the NE
edge whenever there was a choice of NE or SE edges, bias-
ing the substrate path to “hug” the north side of G. The
second heuristic (SS) used a “seesaw” pattern, selecting
the edge in the opposite direction as the edge last selected
when there was a choice. The third heuristic (GR) used
a greedy strategy in which the edge to the NE or SE was
selected based on whichever choice most evenly divided the
next column to the east.

Figure 11 illustrates the paths found by the SN heuristic,
the SS heuristic, and the GR heuristic for a wedge of 29
cells, a rectangle of 21 cells, and a diamond of 26 cells.
Heuristic GR was able to more evenly split GG into halves
for each shape when n was sufficiently large.

SN SS GR

4

Fig. 11. Example paths found for SN, SS, and GR heuristics.
Figure 12 shows twelve snapshots of the execution of
the reconfiguration algorithm on a wedge of eleven cells
after the GR heuristic is used to find the substrate path.
Time is advancing from snapshot (a) to (1). Figure 12(a)
shows the initial positions of the modules in I in relation
to the goal positions. Parts (b) through (d) show the 2-
unidirectional pattern with CW rotation used by modules
that will fill in the substrate path. In parts (e) through
(h), modules use the (1,0)-bidirectional pattern of rotation
and delay to fill in the goal cells above and below the sub-
strate path. Finally, in parts (i) though (1), modules finish

filling in the goal cells below the substrate path using the
2-unidirectional pattern with CCW rotation.

unoccupied goal cell
() occupied non—goal cell

(© round number
(O occupied goal cell
&) unoccupied goal cell on substrate path . occupied goal cell on substrate path

Fig. 12. Example execution of the reconfiguration algorithm.

In Figures 13 and 14(a), we depict the results obtained
with wedges of similar orientation and increasing size. Fig-
ures 13 and 14(b) show the results of similar experiments
on lengthening rectangles and Figures 13 and 14(c) show
the results for diamond shapes. These figures show that
the number of moves was nearly the same for each heuris-
tic for a given value of n and, for each shape, the number
of moves increased more than linearly for increasing val-
ues of n. For each of the shapes, when n > 9, heuristic
GR used fewer rounds than did the SN or SS heuristics.
Performance, in terms of number of rounds used, improves
when the substrate path evenly divides G because modules
can alternate direction, allowing more modules to move in
parallel.

Therefore, while any admissible directed path of marked
nodes may be chosen as the substrate path, heuristics can
improve the number of rounds, and, to a lesser extent, the
number of moves, required for reconfiguration.

B. Simulation on Realistic Shapes

Metamorphic robotic systems need to assume different
useful shapes. Possible useful shapes include bridges to
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Fig. 15. Metamorphic system as bridge (left) and support for build-
ing (right).

span rivers or rough terrain and buttresses to support col-
lapsing buildings or temporary constructions such as emer-
gency flood levees (see Figure 15). In this section, we
present the results of simulation experiments involving the
reconfiguration of systems composed of varying numbers of
modules into useful structures. Since the greedy heuristic
had the best performance in terms of number of rounds
when tested on simple shapes, we used the greedy heuris-
tic when finding a substrate path in all experiments in this
section.

Figure 16(a) shows three examples of the bridge shape
used in our experiments, depicting the basic bridge pattern
for 11, 18 and 25 modules. The shaded modules repre-

sent the substrate path chosen by our algorithm using the
greedy heuristic. As shown in Table I, we continued the ex-
periment by increasing the number of modules simulated
to over 50. The extension of the bridges for higher number
of modules follows the pattern depicted in Figure 16(a).
Figure 16(b) shows two examples of the tall buttress
shape used in our experiments, depicting the basic pattern
for 19 and 24 modules. The shaded modules represent the
substrate path chosen by our algorithm using the greedy
heuristic. As shown in Table I, we continued the exper-
iment by increasing the number of modules simulated to
about 50. The extension of the buttresses for higher num-
ber of modules follows the pattern depicted in Figure 16(b).

SN

(a)

Fig. 16. Example bridge shapes (a) and tall buttress shapes (b).

Table I shows that the number of rounds used in the
reconfigurations from chains to more “realistic” shapes in-



TABLE 1
NUMBER OF ROUNDS AND MOVES USED FOR BRIDGE AND BUTTRESS.

| Shape [[ Modules | Rounds [ Moves |

Bridge 11 36 89
18 61 239

25 86 466

32 111 770

39 136 1151

46 161 1609

53 186 2145

Tall Buttress 19 74 269
24 95 418

29 116 597

34 137 806

44 178 1311

creases in a linear fashion as did the number of rounds
for “simple” shapes in the last section. The increase in the
number of moves as the number of modules increases is also
similar to that shown for the “simple” shapes. Clearly, fill-
ing in each of these “realistic” shapes from the bottom up
would be preferable if gravity were a concern in the recon-
figuration. The substrate paths chosen do not attempt to
follow this bottom-up pattern. The shapes considered in
this section also do not lend themselves to effective use of
the heuristics in FIND_PATH, resulting in low overall paral-
lelism in these simulations. However, these shapes do repre-
sent “real world” applications for metamorphic robots and
we have demonstrated that our algorithm can effectively
perform the reconfigurations.

In [23], we showed that our distributed algorithm for
straight chain to chain reconfiguration in a system of hexag-
onal robots, given our system assumptions, takes O(n)
rounds and O(n?) moves. The experimental results we
present in this section suggest that our straight chain to ad-
missible goal reconfiguration algorithms have similar com-
plexity.

VIII. CONCLUSIONS AND FUTURE WORK

The algorithms presented in this paper rely on total
knowledge of the goal configuration. Each module precom-
putes all aspects of its movement once it has sufficient local
information to reconstruct the entire initial configuration.
We proved the correctness of our centralized algorithm for
finding a substrate path and tested the performance of our
distributed reconfiguration algorithm through simulation.

The orientation of the initial chain to the admissible goal
shape limits the possible choices for the point of contact be-
tween the initial and goal configurations and may not be
an efficient planning technique in many situations. In our
recent work [21], we present algorithms that do not place
such a strict orientation criteria on the initial positions of
the chain and the admissible goal configuration. The algo-
rithms presented in [21] use heuristics to improve the time
used for reconfiguration by choosing substrate paths that
allow faster reconfiguration. For example, if the substrate
path is a straight chain to the SE or NE, it can be filled us-
ing a pattern in which modules alternate direction, as was
done in our straight chain to straight chain algorithms[23].
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Although we do not consider the presence of obstacles in
this paper, we do consider reconfiguration in the presence
of obstacles in a more recent paper [21]. We are currently
working on improvements to these “obstacle-robust” algo-
rithms.

Since we restrict the initial configuration to a straight
chain, it is rather simple for the modules to reconstruct
the entire initial configuration. We believe that a more
flexible approach will be helpful in designing reconfigu-
ration algorithms for more irregular configurations, more
asynchronous systems, and those with unknown obstacles.
Part of such a flexible approach will include the ability
for modules to detect and resolve collisions and deadlock
situations when they occur, rather than precomputing tra-
jectories that avoid these situations. We have some initial
ideas for ways to deal with module collision and deadlock
on the fly, which we leave for future work.

Our algorithms assume that the modules are capable of a
combined rigid body rotation coupled with changing joint
angles, enabling them to crawl into and out of tight spaces
(e.g., between two stationary modules). If the modules are
rigid and have to roll around other modules, they would
not be capable of moving into and out of such small spaces.
The modification of our algorithms for alternate hardware
specifications is left for future work.

Other open problems that we have not addressed in this
paper include the generalization of our algorithms to three
dimensional modules and planar modules in three dimen-
sions, inclusion of force and load-bearing capabilities into
module assumptions, and consideration of other hardware
constraints on module movements.
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