
The Fault Span of Crash Failures

GEORGE VARGHESE AND MAHESH JAYARAM

Washington University, St. Louis, Missouri

Abstract. A crashing network protocol is an asynchronous protocol whose memory does not survive
crashes. We show that a crashing network protocol that works over unreliable links can be driven to
arbitrary global states, where each node is in a state reached in some (possibly different) execution,
and each link has an arbitrary mixture of packets sent in (possibly different) executions. Our theorem
considerably generalizes an earlier result, due to Fekete et al., which states that there is no correct
crashing Data Link Protocol. For example, we prove that there is no correct crashing protocol for
token passing and for many other resource allocation protocols such as k-exclusion, and the drinking
and dining philosophers problems. We further characterize the reachable states caused by crash
failures using reliable non-FIFO and reliable FIFO links. We show that with reliable non-FIFO links
any acyclic subset of nodes and links can be driven to arbitrary states. We show that with reliable
FIFO links, only nodes can be driven to arbitrary states. Overall, we show a strict hierarchy in terms
of the set of states reachable by crash failures in the three link models.

Categories and Subject Descriptors: C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks; C.2.6 [Computer-Communication Networks]: Internetworking; D.4.4 [Operating
Systems]: Communications Management; D.4.5 [Operating Systems]: Reliability; F.1.2 [Computation
by Abstract Devices]: Modes of Computation

General Terms: Theory

1. Introduction

We consider asynchronous network protocols that work with faulty components:
links that can lose and permute packets, and nodes that can crash and restart.
Many network protocols that are commonly deployed (e.g., HDLC, IP, the OSI
and DECNET Routing protocols [Tannenbaum 1996]) come under this cate-

Extended abstracts of the results in this paper appeared in Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing (PODC’96). ACM, New York, 1996, pp. 247–256
and Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing
(PODC’97). ACM, New York, 1997, pp. 179 –188.
G. Varghese was supported by National Science Foundation (NSF) grant NCR 94-05444 and an ONR
Young Investigator Award.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/0300-0244 $05.00

Journal of the ACM, Vol. 47, No. 2, March 2000, pp. 244 –293.

gory.1 Crash failures, where a node crashes in the middle of a protocol, are a
common cause of protocol failures.

Many existing protocol specifications do not require the nodes executing the
protocol to have nonvolatile memory. Thus, if a node crashes and restarts, it can
lose all memory of its previous state in the execution. Instead, after the restart, a
node comes up in an initial state in which all protocol variables are set to
prespecified initial values. This may seem strange to the reader because nonvol-
atile memory (e.g., disk) appears to be quite cheap and provides useful protec-
tion against crash failures.

However, many early protocol implementations were on stand-alone devices
(e.g., bridges, routers) that did not have a disk. Adding a disk was precluded by
the expense, and sometimes by the physical configuration (e.g., internal buses) of
the device. Thus many network protocols like IP and HDLC do not require that
nodes have nonvolatile memory (NVM). Recently, cheaper electronic forms of
NVM (e.g., NVRAM) have become available. However, even these have prob-
lems. Some require a battery that may fail; others wear out after being written,
say, 10,000 times. Many existing router products use NVRAM only to store
management parameters and not to store all protocol state variables. Thus,
results about protocols that do not use NVM are interesting, because many
existing protocols are in this category.

One sensible way to restart is to rely on bounds on message lifetimes, say, T. If
a node waits for some multiple of T after restarting, it can avoid getting confused
by responses to pre-crash messages. Such an approach was used in the ARPA-
NET routing protocol [McQuillan et al. 1980] and in the first timer-based
transport protocol [Watson 1981]. A disadvantage is that message lifetimes in a
large network are high, leading to a noticeable rebooting delay. Thus, in this
paper, we assume an asynchronous model in which there are no time bounds on
message delay or node computation. This is reasonable when time bounds are
either too high or too risky to use.

A second possible way to restart is to choose, after a crash, random incarnation
numbers that, with high probability, are not present in the network. This
approach was advocated for DEC’s NSP transport protocol [Digital Equipment
Corporation 1983]. However, choosing truly random numbers after a crash is a
somewhat delicate problem.2

An earlier result by Baratz and Segall [1988] showed that the widely deployed
Data Link protocol HDLC could work incorrectly if nodes did not keep
nonvolatile memory and the links could lose messages. Later, Fekete et al. [1993]
showed that no Data Link protocol could work correctly under these assump-
tions. Attiya et al. [1995] proved a similar result regarding Transport protocols.
In this paper, we investigate the power of crash failures for protocols other than
Data Link and Transport protocols. Our first theorem generalizes the Data Link
result in Fekete et al. [1993] to a statement that applies to arbitrary protocols.
Thus, our theorem can also be used to show new results besides the Data Link

1 Some routing protocols depend on time bounds and thus are not strictly asynchronous. However,
there are subcomponents of these protocols that do not depend on time bounds for their correctness,
and hence can be considered to be asynchronous.
2 Choosing a pseudorandom number based on the node address causes repeated numbers; we can use
the clock value as a seed only if the clock survives the crash.

245The Fault Span of Crash Failure

result: For instance, the impossibility of token passing or resource allocation with
crash failures and no NVM.

From a theoretical viewpoint, our paper essentially characterizes the fault span
of crash failures in a particular network model. The fault span is the set of global
states that a set of faults can drive a system into. The fault-span defines the
power of crash failures—the larger the fault-span, the more dangerous the effect
of crash failures. Our results indicate that the fault-span of crash failures (in a
network model that applies to many practical settings) is very large. Knowledge
of the fault-span can help a protocol designer: the designer must be prepared to
deal with all possible states in the fault-span. In particular, if the fault-span
includes all combinations of node and link states, the protocol must essentially be
self-stabilizing. We show that this is indeed the case for the combination of crash
failures and links that can lose messages (unreliable FIFO links). Such links are a
good model of many real physical links.

In order to test the sensitivity of our result to the link model used, we go
further and investigate the fault span with two other common link models:
reliable FIFO and reliable non-FIFO. In both models, the link will not lose
messages; however, reliable non-FIFO links can permute messages. Reliable link
models are appropriate when the probability of message loss is small compared
to that of node crashes, and non-FIFO links are a good abstraction of links that
model networks in which there are multiple paths, which allow packets to be
received out-of-order.

We show that the fault span for these two models is very different from that of
the CAML model, and that the three models fall into a natural complexity
hierarchy in terms of the “power” of faults in each model. This is illustrated in
Figure 1. Note that the figure does not separate the model for crash failures with
unreliable FIFO links from the model for crash failures with unreliable non-
FIFO links. This is because we will show that the fault span for these two models
is identical.

The rest of this paper is organized as follows: We describe our results
intuitively in the next section. Our formal treatment begins with a model in
Section 3, some useful notation in Section 4, and continues with a formal
statement of the main results in Section 5. Before we prove these results, we
describe applications of these results in Section 6. We begin our proofs by
introducing notation for send and receive sequences in Section 7. We prove that

FIG. 1. Summary of fault span results in this paper.

246 G. VARGHESE AND M. JAYARAM

crash failures and unreliable links can drive protocols to arbitrary states in
Section 8.

Next, we prove that crash failures and reliable FIFO links can drive the nodes
to arbitrary states in Section 9. We then prove that crash failures and reliable
non-FIFO links can drive any acyclic component of a protocol to arbitrary states
in Section 10. We describe counterexample protocols in Section 11 to show that
our fault span hierarchy is strict. We show how to design correct crash resilient
protocols in Section 12. We state our conclusions in Section 13.

2. Intuition behind Main Theorems

In what follows, we will not distinguish between crashes and restarts. What we
call a crash can be imagined to be a crash that is immediately followed by restart.
Intuitively, a crashing protocol is a protocol in which the nodes have no
nonvolatile memory (NVM); thus after a crash event, a node goes to a
prespecified initial state.3 Formal definitions are given later in the context of the
I/O Automaton model.

In this section, we describe the intuition behind the main results. We start by
comparing the power of three link models used and providing an intuitive
statement of the three results. We then sketch an important construction
underlying the Data Link impossibility result of Fekete et al. [1993], and show
how to generalize the construction to a new construction that we call concatena-
tion. We then describe intuitively how concatenation can be used to present the
results for all three link models. We note that the formal proofs for general
graphs that we present later are much more complicated than the simple two
node sketches we present below. However, once the basic intuition is grasped,
the formal proofs are easier to follow.

2.1. NAMING AND COMPARING LINK MODELS. We will use CAML model (for
Crashing, Asynchronous, Memoryless, and Lossy) to denote the combination of a
asynchronous protocol subject to crash failures, that has no access to NVRAM,
and works over unreliable FIFO links. We will use CAMO model to denote a
similar combination (the O stands for out-of-order) except that we substitute
reliable non-FIFO links for unreliable FIFO links. Finally, we use CAM model to
denote a similar system using reliable FIFO links.

We can understand the relative power of the different models more clearly by
looking at an example. Suppose we have a two-node protocol and the link from
say Node S to say Node R contains the sequence of packets p1 p2 p3 such that p1
is at the head of the link.4 Suppose we would like to remove packet p2 and leave
the rest of the state unchanged as far as possible.

In the CAML model, this is easily done by losing packet p2. In the CAMO
model, as the links are reliable we cannot lose p2 directly. Since links are
non-FIFO, we can first reorder packets so p2 is at the head of the link, receive p2
at Node R and then “lose” p2 by crashing Node R. This does remove p2 from the
link but leaves Node R in its initial state. In the CAM model, as links are reliable

3 Thus we model as a single event the crash and the subsequent clean-up and restart; since no
protocol activity occurs until restart is over, there is no loss of generality.
4 The convention used throughout the paper is that whenever a sequence of packets on a link is
written, the leftmost packet in the sequence denotes the packet at the head of the link.

247The Fault Span of Crash Failure

and FIFO, the only way to remove p2 is to receive p1 as well as p2, and then to
lose the packets by crashing Node R. Thus, we see that the three models CAML,
CAMO, and CAM have progressively decreasing power.

We note that our results in the CAMO and CAM models depend on the ability
to crash a node after it receives a packet but before it sends any further packets.
Some models of distributed computation allow a node to receive a packet and
send packets in a single atomic action, which would preclude this ability. In a real
system, however, while a packet reception can trigger the sending of other
packets, these packets can only be queued to outbound link queues and cannot
be immediately sent on the link. A subsequent crash would result in the loss of
these packets. Our model of computation will reflect this aspect of real systems
by treating packet reception and packet sending as separate atomic events.

2.2. PREVIEW OF RESULTS. Before we state, the results for the three models
we first describe some terminology which is useful in describing the results. We
stated earlier that crashes and lossy links can drive asynchronous protocols to
“essentially arbitrary” global states. We clarify what we mean by “arbitrary” by
defining possible node and link states.

Define a possible packet on a link to be a packet that could have been
produced on that link in some finite execution. Also define a possible node state
of a node to be a state reachable by the node in some finite execution. We now
define a possible global state to be an assignment of: (a) A possible node state to
every node, and (b) an arbitrary sequence of possible packets for every link.

Possible states are not more restrictive than truly arbitrary protocol states
because we can always modify a protocol to get rid of unreachable node states
and to ignore invalid packets. Such checks do not prevent arbitrary combinations
of possible node states and possible packets on links, where each node state and
packet can be drawn from a different global state. This is shown in Figure 2
where the possible global state is constructed by “cutting and pasting” from
Global States 1 and 2 shown above. Note that the state of the leftmost node is
drawn from Global State 1, the state of the rightmost node from Global State 2,
and the packets on links are an arbitrary permutation of packets drawn from the
corresponding links in Global States 1 and 2.

FIG. 2. Possible global, acyclic, and node states constructed from two different global states. These
correspond to the reachable global states of the CAML, CAMO, and CAM models, respectively.

248 G. VARGHESE AND M. JAYARAM

For the CAML model, our result, stripped of the formal framework, essentially
states: any crashing protocol that works in the CAML model can be driven into any
possible global state. Thus, the CAML model is essentially equivalent to arbitrary
memory corruption at nodes and arbitrary packets on links.

Before we state the results for the CAMO model we define the notion of a
possible global acyclic state.5 Consider a network of protocol nodes and commu-
nication links. Given an acyclic subset of links and nodes within the network, we
define a possible global acyclic state to be an assignment of a possible node state
to each node in the acyclic subset and an arbitrary sequence of possible packets
to each link in the acyclic subset. The result for the CAMO model states: Any
crashing protocol that works in the CAMO model can be driven into any possible
global acyclic state. Thus, given any subset of links and nodes within the network
such that there is no cycle within them, we can drive the state of each node and
link in that subset to any possible state. However, we cannot control the state of
the remaining nodes and links that are not in the subset. Thus, clearly the fault
span of the CAML model is greater than that of the CAMO model. This is shown
in Figure 2 where the possible acyclic state can only specify possible states for
two nodes and one link; the state of the bottom link is shown as *** to indicate
that this link cannot be controlled.

To characterize the fault span of the CAM model, we define a possible global
node state to be an assignment of a possible node state to each node. The result
for the CAM model states: Any crashing protocol that works in the CAM model
can be driven into any possible global node state. The state of the links cannot be
controlled. Note that the fault span of the CAMO model is clearly greater than
that of the CAM model. This is shown in Figure 2.

Thus, for a two-node node protocol with two unidirectional links connecting
the two nodes: In the CAML model, we can drive both nodes and both links to
arbitrary states; in the CAMO model, we can drive both nodes and any one link
to arbitrary states; in the CAM model, we can drive both nodes to arbitrary
states. These results are consistent with Figure 1.

2.3. CONCATENATION CONSTRUCTION. The Data Link impossibility result of
Fekete et al. [1993] that we will call the FLMS result) shows that there is no
correct crashing Data Link protocol. In a typical Data Link protocol like HDLC,
after a sender crash the sender sends a reset or handshake packet and initializes
its state after receiving a handshake response from the receiver. The protocol can
fail because a sequence of past crashes can initialize the receiver–sender link
with a sequence of “old” packets. This sequence includes an ack that fools the
sender into thinking that all its sent messages have arrived, when, in fact, they
have not.

Our example construction begins with a construction that underlies the FLMS
result. We describe the intuition for a two node protocol only. Consider a
two-node protocol with a pair of unidirectional links between the nodes. Fix a
link L. A send sequence on link L is a sequence of packets that was sent on link
L in some finite execution. For example, Figure 3 shows an example execution of
a two-node protocol and a send sequence on the receiver–sender link. Notice

5 When clear from the context, we will sometimes drop the term “global” when referring to possible
global states.

249The Fault Span of Crash Failure

that this sequence contains all packets sent on link L from the start of the
execution.

Essentially, the FLMS construction shows that in the CAML model, one can
find a series of crashes that leave a two node protocol in a state where all nodes
are in initial states (i.e., in states that nodes revert to after a crash), and all links
are empty except for a single link that has the entire sequence sent in a particular
execution. This is illustrated in Figure 4.

The essence of the basic FLMS construction is shown in Figure 5. A series of
alternating crashes are used to force a node R to send the first i packets of the
sequence of normal crashless packets. This causes the other node S (after
another crash) to send the packets needed to force node R to send the first i 1
1 packets before crashing again. By continuing inductively, we force the receiver
to emit the entire sequence of packets it would have emitted in an execution. At
this point we stop the construction, and crash the sender and receiver. The result
is that the link from the receiver to sender has the complete sequence of packets
sent in an execution. (This is sufficient to cause Data Link protocols to fail
because the complete sequence could include the responses to any initial
handshake packets, as well as all the data acks. Thus, even if all the sender’s

FIG. 4. What the FLMS construction produces. The i at nodes represents the initial state of the
corresponding node. P is a send sequence for the link.

FIG. 5. The essence of the FLMS construction to initialize a link with a sequence of old packets
from a past incarnation.

FIG. 3. An example of a send sequence
on a link.

250 G. VARGHESE AND M. JAYARAM

initial packets are lost, including the first data item, the sender will be fooled into
thinking all is well.)

Our first step is to generalize the FLMS construction to show that we can
initialize a link with a concatenation of two send sequences P and Q, where P
and Q are send sequences from two possibly different executions of the same
crashing protocol. The construction is depicted in Figure 6.

For two nodes, we can construct the concatenation, say, PQ, in the same way
as the FLMS construction, except that we construct P and Q at the same time.
Recall that P is constructed inductively by having the first i packets in P being
produced, which causes S to send a sequence that in turn causes R to produce
the first i 1 1 packets of P, and so on. Assume that at the same time as we
produce the first i packets of P, we crash R and produce the first i packets of Q.
Then, as before, we crash S, receive the first i packets of P, and cause S to emit
the packets required for R to produce the first i 1 1 packets of P. But in the new
construction we crash S again, cause it to receive the first i packets of Q and emit
the packets required for R to produce the first i 1 1 packets of Q. Thus, two
independent FLMS constructions are dovetailed. This is illustrated in Figure 7
using solid lines for the packets of P and dashed lines for the packets of Q.
Contrast this figure to the FLMS construction in Figure 5.

There are some subtleties to the construction that we have glossed over. First,
if the two sequences have different lengths, at some point we must stop extending
one of the two sequences and keep increasing the longer sequence. Second, the
construction does not generalize well to multiple nodes and different topologies.
In our formal development, we will use a different construction (that essentially

FIG. 7. How the concatenation construction works. The horizontal dashed lines represent crashes.
Notice how the construction dovetails two independent FLMS constructions for P and Q.

FIG. 6. Our main construction is one that produces a concatenation of two send sequences.
Compare with Figure 4.

251The Fault Span of Crash Failure

constructs the send sequence for all links of an execution at the same time) for
concatenation.

Notice that the construction so far does not depend on whether the link can
lose or permute packets. For non-FIFO links the definition of the concatenation
of two sequences is simply the union of the two sequences since order is
irrelevant for a non-FIFO link.

By doing the concatenation construction repeatedly, we can concatenate an
arbitrary number of send sequences. With this ability, we can produce an
arbitrary sequence of possible packets. This is because, by definition, any possible
packet occurs in some send packet sequence. Thus, we first concatenate the
required number of send packet sequences such that the sequence we require is a
subsequence. Then we use the fact that we can lose packets to get the required
sequence. Losing can be done directly in the CAML, but must be done indirectly
in the CAMO model by delivering the packet to be dropped and then crashing
the receiving node. Losing an arbitrary packet p is not possible for the CAM
model without losing all the packets ahead of p on the link.

We now proceed to intuitively describe how to use concatenation and loss to
derive the desired results for the CAML, CAMO, and CAM models. We show
the results only for the two node case; the construction for general graphs is
more intricate and described later in the course of the formal proofs. Note that
similar mechanisms are used in reaching the goal state in all three models—for
example, concatenation and playout of the concatenated packets. The formal
proofs also reflect this similarity.

2.4. CONSTRUCTING ANY POSSIBLE STATE IN THE CAML MODEL. Once we
can construct an arbitrary sequence of possible packets on a link, we can
essentially drive a CAML system into any possible global state. This is illustrated
in Figure 8. Suppose we want to reach the goal state shown in the top frame.
Consider the subgoal of driving node R into state r from an initial state. Since r
is a possible state, there must be some sequence of packets L that can drive the
receiver from an initial state to state r. That leads directly to a second subgoal of
finding a sequence of packets M (on the reverse link this time) that can cause

FIG. 8. Driving a CAML system into any possible
state by loading one link with the appropriate
sequence of packets and by playing out these
packets.

252 G. VARGHESE AND M. JAYARAM

node S to emit the sequence L as well as the sequence Y we need for the goal
state.

Generating L is easy because L is a send sequence; thus, there must be some
sequence of packets that can drive node S to emit L. Getting the Y is slightly
more tricky. But we observe that any Y is a subsequence of some concatenation
C of send sequences. By generating each such send sequence and crashing node
S in between each generation, we get C, and finally obtain Y by losing packets.
Similarly, we have a third subgoal (similar to the first subgoal) to drive node S to
state s using some sequence N.

We finish (see last frame in Figure 8) the construction by “loading” the reverse
link with the sequence M N X (where M is at the head of the link). We now
playout some of these packets to achieve the desired goal. We first allow node S
to receive M and emit C and L. By losing the appropriate packets in C, we are
left with Y L on the S to R link, with L at the head of the link (see subgoal 2).
Then we crash node S and allow it to receive N and go to state s. Any packets
emitted by node S are lost. Finally, we allow node R to receive L (thereby
leaving Y on the forward link) and go to state r (see subgoal 1). Any packets sent
by node R are lost. This leaves the system in the goal state.

2.5. DRIVING CAMO TO ANY ACYCLIC STATE. We show how to drive a
protocol in the CAMO model to any acyclic state. We assume the concatenation
construction.

Suppose we want to reach the goal state shown in the top frame of Figure 9.
Thus, we want to control the state of all components except the link from R to S.
Consider the subgoal of driving node R into state r from an initial state. Since r
is a possible state, there must be some sequence of packets L that can drive the
receiver from an initial state to state r. While going to state r, node R emits the
sequence of packets O. Consider a second subgoal of finding a sequence of
packets M (on the reverse link) that can cause Node S to emit the sequence L
followed by the sequence Y we need for the goal state.

L is a send sequence, so there must be some send sequence of packets that can
drive node S to emit L. As in the case for CAML, Y is a subsequence of some
concatenation C of send sequences. By generating each such send sequence and
crashing node S in between each generation, we get C and finally obtain Y by
losing the extra packets at node R (as links are reliable in CAMO, so packets
must be lost at the receiving end of a link). Similarly, we have a third subgoal
(similar to the first subgoal) to drive node S to state s with some sequence N,
while allowing S to emit sequence O9.

As before, we use the concatenation construction to load the link from R to S
with M N. We then first allow node S to receive M and emit L Y (along with the
extra packets in C). Then we lose the extra packets in C to get L Y. Then, we
play out the sequence N that drives S to its final state s while emitting the
sequence O9. O9 is then moved to the front of the non-FIFO link and dropped at
R. Then L is played out, leaving the link with Y and driving the node S to state
r. Thus, we arrive at the final goal state. Note that we cannot control the state of
the link from R to S, which will contain the sequence of packets O sent by node
R. Thus, we have informally shown how to drive a two node protocol in the
CAMO model to any acyclic state.

253The Fault Span of Crash Failure

2.6. DRIVING CAM TO ANY NODE STATE. In this section, we discuss the
result for the CAM model in the same way as we did for the CAMO model. The
result for the CAM model states that the system can be driven to a state in which
the nodes have any possible state but the links cannot be controlled.

Suppose we want to reach the goal state shown in the top frame of Figure 10 in
which the nodes are at some possible states s and r. Consider the subgoal of
driving node R into state r from an initial state. Since r is a possible state, there
must be some sequence of packets L that can drive the receiver from an initial
state to state r. While going to state r, node R emits the sequence of packets O.
Consider a second subgoal of finding a sequence of packets M (on the reverse
link) that can cause node S to emit the sequence L. Actually, node S on
receiving M will emit a sequence L9 of which L is a prefix. But as we are not
concerned with the state of the links, the remainder of L9 can remain on the link
in the goal state. The reasoning for the existence of some such M is similar to the
reasoning for the other models. Similarly, we have a third subgoal (similar to the
first subgoal) to drive node S to state s with some sequence N, while allowing S
to emit sequence O9.

As before, we use the concatenation construction to load the link from R to S
with M N. We then first allow node S to receive M and emit L (along with the
extra packets in L9). Then we play out the sequence L which is the prefix of L9
to drive R to state r, while emitting the sequence O. Then the sequence N is

FIG. 9. Driving CAMO to any acyclic state.

254 G. VARGHESE AND M. JAYARAM

played out to S to drive S to final state s, while emitting the sequence O9. Thus,
we reach the goal state.

Note that we cannot control the state of the two links that have the sequence
of packets O and O9 respectively in the final state. Thus, we have informally
shown how to drive a two-node protocol in the CAM model to any node state.

3. Model

We use the Input/Output Automaton model of Lynch and Tuttle [1989] for
modeling protocols. This model is essentially a state machine model that allows
us to compose state machines representing links and nodes. We review the
essential notation here, but refer the reader to Lynch and Tuttle [1989] for more
details.

3.1. INPUT OUTPUT AUTOMATA (IOA). Informally, an IOA is a state machine
whose state transitions are given labels called actions. There are three kinds of
actions. The environment affects the automaton through Input actions that must
be responded to in any state. The automaton affects the environment through
Output actions; these actions can be controlled by the automaton to only occur in
certain states. Internal actions only change the state of the automaton without
affecting the environment.

Formally, an IOA is an automaton defined by a state set S , a action set A , an
action signature Z (that classifies the action set into input, output, and internal

FIG. 10. Driving CAM to any node state.

255The Fault Span of Crash Failure

actions), a transition relation R # S 3 A 3 S, and a set of initial states I # S.
An action a is said to be enabled in state s if there exist s9 [S such that (s, a,
s9) [R. Input actions are always enabled.

When an IOA “runs” it produces an execution. An execution fragment is an
alternating sequence of states and actions (s0, a1, s1, . . .), such that (si, ai,
si11) [R for all i $ 0. An execution fragment E is fair if any internal or output
action that is continuously enabled eventually occurs. The IOA model actually
specifies fairness in terms of equivalence classes and the definition really applies
to all actions in a class. For our purposes in this paper, we can consider each
internal and output action as being in a separate fairness class. Thus, unlike
conventional IOA descriptions, we will not spell out the fairness classes for any
IOA we describe. Finally, an execution is an execution fragment that begins with
a start state.

There is a notion of composition [Lynch and Tuttle 1989] that produces a
composite automaton out of constituent automata. Input and output actions of
the same name are performed simultaneously. Thus, when a node automaton i
performs a sendi, j(p) output action, if the link automaton between i and j has a
input action of the same name, then the link performs the corresponding input
action (typically to store p). The state of the composite automata is the
composition of the states of the constituent automata.

The schedule of an execution fragment a of A is the subsequence of a
consisting of all the actions with the states removed, and is denoted by sched(a).
We say that b is a schedule of A if b is the schedule of an execution of A. The
behavior of an execution fragment a of A is the subsequence of a consisting of
only the external (i.e., input and output) actions with the states and internal
actions removed. We say that b is a behavior of A if b is the behavior of an
execution of A. We define a fair schedule and a fair behavior analogously.

The following lemma states that it is always possible to extend a finite
execution of any automaton to a fair execution of the automaton.

LEMMA 3.1 (FAIR EXTENSION). If a is a finite execution of an automaton A,
then there exists an extension a9 of a that contains no more input actions and is a
fair execution of A.

3.2. MODELING CRASHING NETWORK PROTOCOLS. We model a protocol as a
composition of automata, one for each node representing the protocol agent at
that node, and one for each pair of neighboring nodes representing the unidirec-
tional communication link between the nodes. We model the network topology
using a directed graph G 5 (V, E) where n 5 uV u. Nodes of a protocol
communicate by sending and receiving packets. Fix a packet alphabet P. A
protocol for graph G 5 (V, E) is a tuple A 5 (A1, A2, . . . , An) of node
automata Ai for each i [V. Each node automaton Ai has output actions
sendi, j(p), p [P (to send packets to neighbor j) for each j such that (i, j) [E,
and input actions receivej, i(p), p [P (to receive packets from neighbor j) for
each j such that (j, i) [E.

A crashing automaton is an automaton X that has an input action, say, crash,
such that if s0 is the unique start state of X, then for all states s of X, (s, crash,
s0) is a transition of X. A crashing protocol for a graph G 5 (V, E) is a tuple
A 5 (A1, A2, . . . , An) of crashing node automata Ai for each i [V, where the
crash action for node i is called crashi.

256 G. VARGHESE AND M. JAYARAM

3.3. MODELING FIFO UNRELIABLE LINKS. Any unreliable FIFO link model
must satisfy the following reasonable properties: only packets that are sent are
received, the link obeys the FIFO property, and the link is live. For liveness, we
require that a packet that is sent an infinite number of times is received an
infinite number of times. Let us call any sequence of send and receive actions
which satisfies the above properties U-consistent. Let us call a link automaton
universal if its fair behaviors are all the sequences of actions which are U-
consistent.

Fekete et al. [1993] describe a universal link automaton, which we call
U-universali, j. We now describe our universal link automaton, Ui, j, which models
an unreliable FIFO link between nodes i and j.

Note that an unreliable data link without a liveness guarantees can easily be
modeled by just using a queue of packets and an action to lose packets. However,
extra complexity is needed to model a Data Link that will ensure liveness
properties, despite the possibility of losing packets. We use a small variation of
the link model in Fekete et al. [1993], which is proved in Fekete et al. [1993] to
be a universal link automaton. We prove in Jayaram [1996] that our link
automaton Ui, j is equivalent to the universal link automaton of Fekete et al.
[1993]. We prefer our variation because it isolates packet loss in a separate
action, which is more convenient for our proofs.

Ui, j has an input action sendi, j(p) by which node i sends a packet to node j. It
has a receivei, j(p) output action by which node j receives packet p. It also has an
internal losei, j action for losing packets. The state of Ui, j consists of a queue (i.e.,
a sequence), queuei, j, each element of which is a pair (p, k) where p is a packet
and k is an integer, an array counti, j of integers indexed by packet values, and an
array keepi, j of infinite sets of positive integers indexed by packet values. The
queue contains packets as well as the counts at which the packets were sent. The
second component is used by the lose action to identify packets to lose.

The initial states of the automaton are those states in which queuei, j is empty
and each entry counti, j[p] is zero. Thus each initial state is determined by keepi, j.
The actions of Ui, j are shown in Figure 11.

Intuitively, for each packet p, keepi, j[p] contains an infinite set of positive
integers that represent sending attempt numbers for sending p that are guaran-
teed to succeed. In order to enforce this, counti, j[p], counts the number of
attempts so far to send p. We tag every packet with its current attempt number
before placing it in the queue, and do not allow the packet to be lost if its

FIG. 11. Unreliable FIFO link automaton.

257The Fault Span of Crash Failure

attempt number is in the keep set for that packet. This ensures that an infinite
number of attempts to send p will result in an infinite number of deliveries of p.
Note that this is only a model. A real link will mimic this behavior by other
means, such as losing packets with a small loss probability.

The reader who wishes to can safely skip the details of how the counti, j array is
used to ensure liveness and think of the state of the link automaton as only the
sequence consisting of packets in queuei, j. This is because our proofs use finite
constructions that do not rely on the fairness properties of universal links. We
only provide the live Data Link specification for completeness; clearly one would
need the liveness properties to prove that a protocol is correct, though they are
not needed to show that a protocol is incorrect.

Recall that in our version of the IOA model, a fair execution is one in which
every continuously enabled internal or output action eventually occurs. Thus, in
the unreliable FIFO automaton, any continuously enabled lose or receive action
must eventually occur. We will sometimes use the fact that every finite execution
has a fair extension.

A crashing automaton A(U) for graph G 5 (V, E) is the composition of
crashing node automata Ai for all i [V and Ui, j for all (i, j) [E. This will
represent a generic system in the CAML model. Recall that CAML is a
shorthand for Crashing, Asynchronous, Memoryless, and Lossy.

3.4. RELIABLE NON-FIFO LINKS. A reliable non-FIFO link should satisfy the
following properties: only packets that are sent are received, and the link is
live—that is, if a packet is sent, it is eventually delivered. Once again, liveness is
a problem since a non-FIFO link can deliver packets in any order, and all packets
in the link are potentially enabled for delivery. So one must guard against the
eventuality of a packet remaining forever in the link while later packets get
delivered. Once again, modeling liveness adds some complexity to the model.

We now describe the link automaton, RNi, j, which models a reliable non-FIFO
link between nodes i and j. RNi, j has an input action sendi, j(p) by which node i
sends a packet to node j. It has a receivei, j(p) output action by which node j
receives packet p. The state of RNi, j consists of a set, seti, j, each element of
which is a pair (p, k) where p is a packet and k is an integer, an array counti, j of
integers indexed by packet values, and tagsi, j, an infinite two dimensional array of
positive integers indexed by packet values and integers. The array counti, j keeps
track of sequence numbers of packets and tagsi, j is an array just like the array
keep for unreliable FIFO links, which is used to ensure liveness of the link. A
proof of liveness of the reliable non-FIFO link is discussed in Jayaram [1996].
The set contains packets as well as the integers associated with the packets. This
integer is used by the receive action to identify the packet to deliver.

The initial states of the automaton are those states in which seti, j is empty, and
each entry counti, j[p] is zero. Thus, each initial state is determined by the array
tagsi, j, which must satisfy the following constraint: all values in the tagsi, j array
are unique. Intuitively, tagsi, j encodes the sequence in which the packets are
supposed to be received in an execution. The actions of RNi, j are shown in
Figure 12.

The liveness of the link follows from the fact that as each tag is finite, given
that (p, k) is in seti, j, only a finite number of events can elapse before p is
received. Also note that by initializing the tagsi, j array appropriately, one can get

258 G. VARGHESE AND M. JAYARAM

all possible live executions of a reliable non-FIFO link. In Jayaram [1996], we
prove the liveness properties in greater detail.

As in the case of the FIFO unreliable link, the reader can think of the link
state as only consisting of seti, j because the tags and count arrays are only used to
specify a live non-FIFO link.

A crashing automaton A(RN) for graph G 5 (V, E) is the composition of
crashing node automata Ai for all i [V and RNi, j for all (i, j) [E. This will
represent a generic system in the CAMO model. (Recall that the only difference
between the CAML and CAMO models is that in the CAMO model, the link
allows Out-of-order delivery but cannot lose packets.)

3.5. RELIABLE FIFO LINKS. A reliable FIFO link is equivalent to a lossless
queue of packets that has the following properties: Only packets that are sent are
received and the link obeys the FIFO property—that is, packets are received in
the order in which they are sent. Liveness is not an issue as the link is reliable
and there is no packet loss. We now describe the link automaton, Ri, j which
models a reliable FIFO link between nodes i and j.

Ri, j has an input action sendi, j(p) by which node i sends a packet to node j. It
has a receivei, j(p) output action by which node j receives packet p. The state of
Ri, j consists of a queue queuei, j, each element of which is a packet p. In the
initial state of the automaton queuei, j is empty. The actions of Ri, j are shown in
Figure 13.

A crashing automaton A(R) for graph G 5 (V, E) is the composition of
crashing node automata Ai for all i [V and Ri, j for all (i, j) [E. This will
represent a generic system in the CAM model.

4. Vector Notation for Global States

We use vector notation to succinctly describe and prove our results. The state of
the system is expressed using a node state vector and a link state vector. A node
state vector is a vector with a component for each node state. A link state vector
is a two-dimensional vector (matrix) that has a component for each link.

Fix a protocol automaton, say with unreliable FIFO links, A(U) for graph G 5
(V, E). Formally, if [N, L] denotes the state s of A(U), then for all i [V,
N[i] 5 s uAi and for all (i, j) [E, L[i, j] 5 the sequence consisting only of
packets in s uUi, j. More formally, if s uUi, j.queuei, j 5 (p1, k1)(p2, k2) . . . , then
L[i, j] 5 p1p2

. . . . By convention, we assume that the first packet of the
sequence (p1 in the above case) is at the “head” of the link. In Figure 14, we
illustrate the notation for a three-node ring. All vectors are written in bold in the
rest of the paper.

FIG. 12. Reliable non-FIFO link automaton.

259The Fault Span of Crash Failure

Similarly, consider a protocol automaton with reliable FIFO links, A(R), for
graph G 5 (V, E). If [N, L] denotes the state s of A(R), then for all i [V,
N[i] 5 s uAi and for all (i, j) [E, L[i, j] 5 the sequence consisting only of
packets in s uRi, j. More formally, if s uRi, j.queuei, j 5 p1p2

. . . , then L[i, j] 5
p1p2

. . . .
Finally, consider a protocol with reliable non-FIFO links, A(RN) for graph

G 5 (V, E). If [N, L] denotes the state s of A(RN) then for all i [V, N[i] 5
s uAi and for all (i, j) [E, L[i, j] 5 the set consisting only of packets in s uRNi, j.
More formally, if s uRN.seti, j 5 {(p1, k1), (p2, k2), . . .}, then L[i, j] 5 { p1,
p2, . . .}.

We now define the concatenation of link state vectors for FIFO links. K 5 L
M is the concatenation of link state vectors L and M if K[i, j] 5 the sequence
L[i, j] M[i, j], for all (i, j) [E.

For non-FIFO links, concatenation of link state vectors is defined as follows:
K 5 L M is the concatenation of link state vectors L and M if K[i, j] 5 the union
L[i, j] ø M[i, j], for all (i, j) [E.

Let N0 be the node state vector such that for every i [V, N0[i] is the unique
start state of node Ai. Let L0 be the link state vector such that for every i, j [E,
L0[i, j] 5 e, the empty sequence/set. The start state of A(U), A(R), A(RN) for
every execution is [N0, L0]. Given an execution a we use acts(a) to denote the
sequence of actions in a. We use actsi(a) to denote acts(a) uAi (the subsequence
of acts(a) projected on to Ai).

We describe state transitions as follows: We use the notation [N, L] V
b9 [N*, L*]

to denote that the finite sequence of actions b9 takes the system from state [N, L]

FIG. 13. Reliable FIFO link automaton.

FIG. 14. Vector notation for the state of a three-node ring.

260 G. VARGHESE AND M. JAYARAM

to state [N*, L*]. The notation denotes that, if there exists a finite schedule b that
takes the system to state [N, L], then there exists a finite schedule bb9 that takes
the system to state [N*, L*]. We will drop the superscript b9 and use the notation
[N, L] V [N*, L*] to denote that there exists some finite sequence of actions that
takes the system from state [N, L] to state [N*, L*]. The transition operation V is
transitive: If [N, L] V [N*, L*] and [N*, L*] V [N(, L(], then [N, L] V [N(, L(].

4.1. POSSIBLE STATES AND VECTORS. Given a finite execution a 5 s0 a1 s1 a2
s2

. . . an sn of A(U) let last_statej(a) denote snuAj, the state of node Aj in the
final state sn. Let the sequence of packets sent on link Uj, k in any finite
execution a of A(U) be sndj, k(a).

Let us define s as a possible node state of a node Aj of A(U) if s 5
last_statej(a) for some finite execution a of A(U). A possible node state vector of
A(U) is a node state vector in which each component is a possible node state.

A possible packet on a link Ui, j of A(U) is a packet which is sent on that link in
some execution of A(U). More formally, if p is a possible packet on link Ui, j of
A(U), then there exists a finite execution a of A(U) such that p [sndi, j(a). A
possible link state of a link Ui, j of A(U) is defined as any sequence of possible
packets for that link. A possible link state vector L of A(U) is a link state vector
such that for all (i, j) [E, L[i, j] is a possible link state of link Ui, j of A(U).
Finally, we define a possible state of A(U) as a state [N, L] such that N is a
possible node state vector and L is a possible link state vector.

Though we have defined the above terms for a system with unreliable FIFO
links, A(U), they are defined analogously for a system with reliable FIFO links
(A(R)), and a system with reliable non-FIFO links (A(RN)). The only differ-
ence in the case of a non-FIFO link is that the state of a link is expressed as a set
and not a sequence.

5. Results

In this section, we present the results for the three link models using the notation
we introduced. The formal proofs are provided later.

Consider a crashing protocol A for a graph G 5 (V, E) consisting of a set V
of nodes and a set E of links. The results for the three models are stated in terms
of the subcomponents of the graph G which can be controlled—that is, which can
be driven to some predetermined possible state in an execution. The remaining
components are “beyond control”—that is, in that execution they attain some
state that cannot be predetermined. In some sense, the power of the faults in the
different fault models is characterized by the maximal subset of the components of
G that can be controlled. We have informally described the fault spans of the
three models in Figure 1. We now give a formal statement.

As described in the introduction, each node and each link of a protocol in the
CAML model can be driven to any given possible state in an execution. In other
words, the entire graph G can be controlled. The following result is called the
Any State Theorem because it expresses the ability to drive a crashing protocol
to any possible state.

THEOREM 5.1 (UNRELIABLE FIFO ANY STATE). Let A be an arbitrary crashing
protocol, and let [N, L] be any possible state of A(U) for a graph G 5 (V, E). Then:

@N0 , L0] V [N, L# .

261The Fault Span of Crash Failure

In the CAM model, only the nodes can be controlled—that is, the subset of G
consisting of only the nodes can be driven to a given possible state. We call the
result for Reliable FIFO links the Any Node State Theorem because in this case
each node can be driven to any possible state.

THEOREM 5.2 (RELIABLE FIFO ANY NODE STATE). Let A be an arbitrary
crashing protocol, and let N be any possible node state vector of A(R) for a graph
G 5 (V, E). Then there exists a state [N, L] of A(R) such that

@N0 , L0] V [N, L# .

In the CAMO model, any acyclic subgraph of the components of G (including
links as well as nodes) can be driven to a given possible state. The result for
Reliable non-FIFO links is called the Any Acyclic State Theorem as in this case
any acyclic subgraph of components can be driven to any possible state.

THEOREM 5.3 (RELIABLE NON-FIFO ANY ACYCLIC STATE). Let A be an
arbitrary crashing protocol, and consider A(RN) for a graph G 5 (V, E). Consider
(Va, Ea), Va # V, Ea # E such that there is no cycle wholly among elements of Va ø
Ea. Consider also an assignment of any possible node state si for every node i [Va

and of any possible link state si, j for every link (i, j) [Ea. Then there exists a state
[N, L] of A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea and

@N0 , L0] V [N, L# .

6. Applications

In this section, we discuss the applications of the results described in Section 5.
The results in Section 5 are of interest in their own right, describing the fault
span of protocols under different fault models. However, we can also derive
other interesting results regarding impossibility of certain protocols as a direct
corollary of the results in Section 5. Some of these results are well known (the
Data Link Impossibility result) and some are new (the Token Passing and
Resource Allocation Impossibility results). However, all these results are easily
derived by applying the same Unreliable FIFO Any State theorem, Theorem 5.1.
Though these impossibility results are derived below for the most important case
of a crashing system with Unreliable FIFO links, some of the results remain valid
for the other link models as well. For example, the results regarding the
Impossibility of Token Passing and Resource Allocation protocols are also valid
in the weaker fault model of Reliable FIFO and Reliable non-FIFO links. We,
however, present proofs only in the context of Unreliable FIFO links.

To prove the impossibility of a protocol, it suffices to prove that there cannot
be a protocol which satisfies the required correctness criteria in the given model.
The correctness of protocols can be specified either in terms of sets of legal
executions or sets of legal behaviors. We describe how our theorem can be used to
prove impossibility results for two examples: a token passing protocol (correct-
ness in terms of executions) and a Data Link (correctness specified using
behaviors). We also show how the token passing proof can be extended to
showing that there is no crashing solution to the Dining or Drinking Philosophers
problem.

262 G. VARGHESE AND M. JAYARAM

6.1. TOKEN PASSING. We prove that it is impossible to have a reliable
crashing token passing protocol. We first define a token passing protocol and
state its correctness criteria. Then we prove impossibility using our first theorem.

We define a token passing protocol for a graph6 G 5 (V, E) as a crashing
protocol (see Section 3) T 5 (A1, A2, . . . , An) where n 5 uV u, and where for
all i [V, there exists a function tokeni that maps the states of Ai to true or false.
The function tokeni is used to indicate the presence (or absence) of a token in
node Ai. Let T(U) be a crashing automaton for T for graph G 5 (V, E).

T(U) is said to be correct if it satisfies two properties:

(T1) Safety. For all executions a of T(U) and any state s which occurs in a,
tokeni(s uAi) 5 true for at most one i [V.

(T2) Liveness. In any fair execution a of T(U), for all i [V, there exists
infinitely many states s such that tokeni(s uAi) 5 true.

The first property says there are no duplicate tokens in any reachable state.
The second property says that in any fair execution all nodes receive the token an
infinite number of times. Note that the definition allows states in which no node
has the “token”; for example, the “token” could be “on the links”. The proof of
the result given below is illustrated in Figure 15.

THEOREM 6.1 (TOKEN PASSING IMPOSSIBILITY). There exists no correct crashing
token passing protocol.

PROOF. Let T be a correct crashing token passing protocol for graph G. Let
T(U) be the crashing automaton for T corresponding to a graph G 5 (V, E). By
liveness (T2), there is a fair execution a which contains states si and sj such that
tokeni(siuA

i) 5 true and tokenj(sjuA
j) 5 true for i Þ j, i, j [V. Consider the

state s such that s uAi 5 siuA
i and s uAj 5 sjuA

j and s uAk 5 s0uAk for k Þ i, j and
k [V, and where s0 is the initial state of T(U). Clearly, s is a possible state of
T(U). Applying the Any State Theorem (Theorem 5.1), there exists a finite
execution a9 which takes T(U) from state s0 to state s, such that s violates the
safety property T1. Thus, T is not correct. e

It is easy to adapt this proof to the other link models as well because we have
only used the ability to control node states.

6 There is no restriction on the topology to rings though the results are equally valid for token rings.

FIG. 15. Token passing impossibility.

263The Fault Span of Crash Failure

6.2. RESOURCE ALLOCATION PROTOCOLS. Mutual exclusion is closely related
to the problem of resource allocation. Resource allocation problems (including
k-exclusion, Dining Philosophers, or Drinking Philosophers [Lynch 1996]) can be
described in terms of exclusion sets: an exclusion set is a collection of nodes that
are not allowed to have simultaneous access to some critical resource (safety).
For example, in the dining philosophers problem, processes that share a resource
are connected by an edge in the topology graph. Thus, sets containing a node and
its neighbors are exclusion sets. We model access to the resource by a Boolean
function criticali(s) which is true if node i can access its critical section.

Assume that there is one such exclusion set E # V with at least two nodes j
and k. Assume there is a liveness condition which shows that for each node i,
there is some execution which contains a state si such that criticali(si) is true.
Then, exactly as in token passing, we can use the Any State Theorem to drive the
resource allocation protocol to a state s in which both criticali(s) and criticalj(s)
are true. Thus, j and k are both in their respective critical sections in state s. This
violates the safety property. We omit formal details.

6.3. DATA LINK PROTOCOLS. A data link protocol D 5 (At, Ar) is a crashing
protocol for a graph G 5 (V, E) where V 5 {t, r} and E 5 {(t, r), (r, t)}. Fix
a message alphabet M. The node automaton At of D (transmitter automaton)
has an additional input action send_msg(m), m [M, and Ar (receiving
automaton) has an additional output action receive_msg(m), m [M. The action
send_msg(m) is used by At to send a message m to Ar which receives the message
by the action receive_msg(m). Let D(U) be the crashing automaton for D and
G 5 (V, E). We only present an informal rendering of the proof. A formal
proof can be found in Jayaram [1996].

Without crash actions, we would require that every message sent is received.
The specification with crash actions is more delicate (see Fekete et al. [1993]),
but it is sufficient to describe two reasonable correctness conditions that must be
satisfied even with crashes. Refer to Fekete et al. [1993] for the complete formal
correctness requirements. All behaviors of a correct data link automaton must,
however, satisfy the following two conditions:

(D1) If ai is a send_msg(m) action after which no crash action occurs in b, then
there is a later receive_msg(m) action in b. (Intuitively, this is saying that
after all crashes stop, all sent messages should be delivered.)

(D2) There is a correspondence function such that every receive_msg(m) action
corresponds to exactly one earlier send_msg(m) action. (Intuitively, this is
saying that any received message must correspond to a prior sent message.)

Define a quiescent state of the data link protocol D as a state after which there
are no further receive_msg actions if there are no further input actions. Next, we
claim that there is an execution a consisting of the sending and receiving of a
single message m (and no other input actions) that ends with a quiescent state.
Intuitively, if it did not end with a quiescent state, a could be extended and
deliver more messages without any corresponding sends.

The impossibility proof is then illustrated in Figure 16. Let the quiescent state
be s such that s uAt 5 a, s uAr 5 b, s uUt, r 5 Y, s uUr, t 5 X as shown in the figure.
Let i be the unique initial state of At. Let G(a) be the sequence of packets
received by the transmitter in a. Let s9 be equal to s except that s uAt 5 i and

264 G. VARGHESE AND M. JAYARAM

s9 uUr, t 5 G(a) X as shown in the figure. Because s9 is a possible state, we can
use the Any State Theorem to drive the protocol to state s9. Now we apply
actst(a) to this state (this is the schedule corresponding to the transmitter
actions in a). Clearly this schedule includes a send_msg(m) action with no
further input actions, and results in the removal of G(a) from the receiver-
transmitter link. However, it can also result in the transmitter sending further
packets; but we arrange for all these packets to be lost by the link. The result is
the quiescent state s. We can then extend this execution to produce a fair
execution in which there is a send_msg(m) with no subsequent receive_msg(m) or
crash actions, a contradiction.

The Data Link impossibility result shows that any crashing Data Link protocol
can be made to lose a message. However, our theorem can also be used to show
the possibility of other, possibly more pernicious, failure modes. For example,
most sliding window protocols use a sender window of say sequence numbers s to
s 1 w, where s is the lower edge of the sender window, and w is the window size.
Intuitively, this is the range of sequence numbers the sender is currently
transmitting but has not received acknowledgements for. The receiver keeps
track of the last number r it has received in sequence.

A basic invariant for correctness is that r [[s, s 1 w]. However, our theorem
shows that there is some sequence of crashes that can drive a standard Data Link
protocol (which has no NVRAM) into a state such that r [y [s, s 1 w]. For
example, the receiver could be expecting sequence number 20 while the sender is
sending sequence numbers in the range 1 through 17. This can lead to livelock
with the sender’s transmissions being persistently dropped at the receiver.

7. Send and Receive Sequences

In this section, we describe some additional notation that is used in the proofs in
the next few sections. We believe that the vector notation combined with the
additional terminology allows a natural and simple description of the construc-
tion underlying the proofs.

The following discussion applies to all three system models: a system with
unreliable FIFO links A(U), with reliable FIFO links A(R), and with reliable
non-FIFO links A(RN).

FIG. 16. Data link Impossibility.

265The Fault Span of Crash Failure

The results are given in terms of states of nodes and sequences of packets sent
or received in some execution of the system. We need further notation to
describe such states and sequences.

If a 5 s0 a1 s1 a2 s2
. . . an sn is a finite execution of the system, we will

denote by ak, k # n the portion of the execution s0 a1 s1 a2 s2
. . . ak sk. Thus,

an 5 a. Note that for all k # n, ak is also an execution.
For any given finite execution a 5 s0 a1 s1 a2 s2

. . . an sn, let NST(a) denote
the node state vector corresponding to the final state sn of the execution. Recall
that last_statej(a) denotes snuAj, the state of node Aj in the final state sn.

Let the sequence of packets received on link (i, j) in any finite execution a be
rcvi, j(a). Also let RCVi, j(a) be the link state vector such that RCVi, j(a)[i, j] 5
rcvi, j(a) and RCVi, j(a)[k, l] 5 e for (k, l) Þ (i, j). Let RCVj(a) be the link
state vector such that @i such that (i, j) [E, RCVj(a)[i, j] 5 rcvi, j(a) and for
every other (k, l), k, l Þ j, RCVj(a)[k, l] 5 e. Informally, RCVi, j is the vector
(matrix) whose (i, j)th element contains rcvi, j(a), and whose remaining ele-
ments are empty. Similarly, RCVj is the matrix whose column j is filled in with
rcv1, j(a) through rcvn, j(a), and whose remaining elements are empty. These
and allied definitions allow us to reason completely in terms of vectors instead of
sequences.

Recall from Section 4, that the concatenation of link state vectors for a FIFO
link is defined as the concatenation of the corresponding sequences for each
array element in the component link state vectors. Thus, K 5 L M is the
concatenation of link state vectors L and M if K[i, j] 5 the sequence
L[i, j]M[i, j], for all (i, j) [E. To allow convenient concatenation of a larger
set of link state vectors, we also introduce the concatenation operator P, where
P@i[SLi denotes the concatenation of all the link state vectors Li defined by
some index set S to which i belongs, and where the link state vectors are
concatenated in lexicographic order based on the index. S will typically represent
V the set of nodes, or E the set of edges.

Using this operator, note that RCVj(a 5 P@(i, j)[ERCVi, j(a). Intuitively,
RCVj(a) is a vector containing all the packets received by j on all its incident
links in execution a, with the other links being empty.

Finally for receive sequences let RCV(a) be the link state vector such that
@(i, j) [E, RCV(a)[i, j] 5 rcvi, j(a). Note that RCV(a) 5 P@j[VRCVj(a).
Intuitively, RCV(a) is a vector containing all the packets received by all nodes on
all incident links in execution a.

We define the terms for send sequences analogous to the terms for receive
sequences. Let the sequence of packets sent on link (j, k) in any finite execution
a be sndj, k(a). For (j, k) [E, let SNDj, k(a) be the link state vector such that
SNDj, k(a)[j, k] 5 sndj, k(a) and SNDj, k(a[l, m] 5 e for (l, m) Þ (j, k). Let
SNDj(a) be the link state vector such that @k such that (j, k) [E,
SNDj(a)[j, k] 5 sndj, k(a) and for all other (l, m), SNDj(a)[l, m] 5 e. Note
that SNDj(a) 5 P@(j, k)[ESNDj, k(a). Finally let SND(a) be the link state vector
such that @(j, k) [E, SND(a)[j, k] 5 sndj, k(a). Note that SND(a) 5
P@j[VSNDj(a). Note also the difference between say SNDj(a) and RCVj(a);
the former denotes what is sent from j to all its neighbors, while the latter
denotes what is received by j from all neighbors.

Figure 17 illustrates the difference between send and receive sequences. We
note the following relationship between rcvi, j(a) and sndi, j(a). If link (i, j) is

266 G. VARGHESE AND M. JAYARAM

unreliable FIFO, then rcvi, j(a) is a subsequence of sndi, j(a). This follows
because only a packet that has been sent in a link in an execution can be received
from that link in that execution. Moreover, as the link is FIFO and lossy, the
received packets may be any subsequence of the packets which were sent. If the
link (i, j) is reliable FIFO, then rcvi, j(a) is strictly a prefix of sndi, j(a). First,
packets are received in order because the link is FIFO. Second, because the link
is not lossy, the packets received must be a prefix of the packets sent. Finally, if
the link (i, j) is reliable non-FIFO, then the set of packets in rcvi, j(a) is a subset
of the set of packets in sndi, j(a). The reasoning is the same as for reliable FIFO
links. However, because the link is non-FIFO, packets may not be received in the
order in which they were sent.

8. Proofs for Unreliable FIFO

In this section, we present the proofs of the result for unreliable FIFO links. Our
proof for general graphs uses a different inductive technique (than the intuitive
proof described for two node graphs earlier) to build up a sequence on a link.
Rather than build up a sequence on a single link, it builds a sequence on all links
at the same time. This will become clear as the construction is outlined.

Our first three lemmas capture the three main facets of the CAML model. The
first lemma captures the effect of allowing Crashes without nonvolatile memory;
the second lemma captures the effect of allowing arbitrary packet loss on a link;
the third lemma captures the effect of asynchrony. We start with a Crash lemma
which is true for all three link models. The Crash lemma essentially states that
from any global state, we can always change the state of node i to its initial state
by crashing node i.

LEMMA 8.1 (CRASH). Consider any crashing automaton A(U), A(R), or A(RN)
for graph G. Then for all states [N, L], [N, L] V [N*, L] where N* is the same as N
except that for some i [V, N*[i] 5 the unique start state of Ai.

PROOF. Let X represent the crashing automaton. We must prove that if there
exists a finite execution a of X such that the final state of a is [N, L], then there
exists a finite extension a9 of a such that the final state of a9 is [N*, L]. Let the
last state of a be sn. Then we simply extend a to a9 by adding the action crashi

and the resulting state, say sn11. This is a valid extension because X is input
enabled, and so crashi is enabled at sn. It is easy to see that sn11 is the same as sn

except that sn11uAi is the unique start state of Ai. e

FIG. 17. Send and receive sequences. Note that the receive sequence does not include any packets
that were sent and lost on the link.

267The Fault Span of Crash Failure

We now state the loss lemma for unreliable links that shows that for any global
state and any link (i, j), we can lose an arbitrary subsequence of packets on the
link.

LEMMA 8.2 (UNRELIABLE FIFO LOSS). Consider a protocol A(U) for a graph
G 5 (V, E). Let L be a link state vector such that for some (i, j) [E, L[i, j] 5 Q,
where Q is a finite sequence of packets and Q9 is a subsequence of Q. Then for all
node vectors N, [N, L] V

b [N, L*], where L* 5 L except that L*[i, j] 5 Q9 and b
consists only of losei, j actions.

PROOF. The proof essentially consists of exhibiting a schedule consisting of
losei, j actions corresponding to the packets in Q that are not in Q9. The only
delicate point is that we cannot lose a packet if its attempt counter is in the keep
set for that packet (see model for a live unreliable link in Section 3). But that can
easily be handled by considering an equivalent execution that results in the same
state [N, L] but which begins with values in the keep array that allow us to lose
the desired packets. We omit formal details. e

We now state and prove a reliable FIFO Rotate Node lemma. This lemma
states that if a node j is supplied with all the packets it receives in some execution
a, then node j can go to its corresponding state at the end of a, and can be made
to send all the packets it sends in a. All other packets in the links (formalized by
a link state vector O) remain in the links, except that the O packets “rotate” to
the head of each link, and the sequences sent by j rotate to the tail of the links
outgoing from node j. This lemma expresses the effect of asynchrony and locality
in our model.

LEMMA 8.3 (UNRELIABLE FIFO ROTATE NODE). Consider a finite execution a
of A(U). For all node state vectors N and link state vectors O of A(U) and for any
j [V,

@N, RCV j~a!O# V
b

@N*, O SND j~a!#

where b 5 crashj actsj(a) and N* is the same as N except that N*[j] 5
last_statej(a).

PROOF. The proof essentially works by first crashing j and then having j
receive all the packets stored in RCVj(a). This causes j to emit all the packets in
SNDj(a) and end up in the state corresponding to the last state of execution a.
The reader who finds this intuitively clear may wish to skip the following
paragraph on a first reading.

We will verify that each node and link will be in the desired final state after
applying b. Consider node j first and b uAj 5 crashj actsj(a). Now crashj takes Aj

to its start state as Aj is crashing and b uAj is the sequence of actions in an
execution fragment which starts at the initial state and takes Aj to last_
statej(a) 5 N*[j]. Next, for all other nodes i Þ j, b uAi is the empty sequence
which leaves Ai at N[i] 5 N*[i].

Next, consider the links. First, consider the links for which node j is the
receiver. Thus, for any i such that (i, j) [E, b uUi, j 5 receivei, j(p1)receivei, j(p2)
. . . receivei, j(pl) where rcvi, j(a) 5 p1p2

. . . pl. If L* 5 O SNDj(a), then buUi, j

takes Ui, j to O[i, j] 5 L*[i, j]. Next consider any links for which node j is the

268 G. VARGHESE AND M. JAYARAM

sender. Thus, for any k such that (j, k) [E, b uUj, k 5 sendj, k(p92)sendj, k(p92)
. . . sendj, k(p9m), where sndj, k(a) 5 p91p92 . . . p9m. This takes Uj, k to L*[j, k].
Next, consider all other links. For (u, v) [E, u, v Þ j, b uUu, v is the empty
sequence which thus leaves Uu, v at O[u, v] 5 L*[u, v]. Note that RCVj(a)
[u, v] 5 e.

Thus, we have verified that b results in all nodes and links being in the states
specified by [N*, O SNDj(a)]. e

The next corollary states that by loading the links with the receive sequences
for all nodes in some execution a, we can cause every node j to emit the
sequence of packets that j emits in a. Once again, the old packets remain
unchanged.

COROLLARY 8.4 (UNRELIABLE FIFO ROTATE). Consider a finite execution a of
A(U). For all node state vectors N and link state vectors O of A(U),

@N, RCV~a!O# V @N*, O SND~a!# ,

where @j [V, N*[j] 5 last_statej(a).

PROOF. This corollary is proved by rewriting RCV(a) as P@j[VRCVj(a),
applying the Rotate Node lemma (Lemma 8.3) in turn to each node j [V. This
results in the link vector P@j[VSNDj(a) which can be rewritten as SND(a). e

The next lemma states that we can obtain the receive sequences corresponding
to an execution from the corresponding send sequences by losing the appropriate
packets. Recall that ak refers to the prefix of execution a that ends with the k 1
1-st state in a. (If a 5 s0 a1 s1 a2 s2

. . . an sn, then ak ends with state sk.)

LEMMA 8.5 (UNRELIABLE FIFO SEND TO RECEIVE). Consider an execution a
of A(U) of length n. For all node state vectors N and link state vectors O and for 0 #
k , n,

(a) [N, SND(ak) O] V [N, RCV(ak11) O].
(b) [N, SND(ak) O] V [N, RCV(ak) O].

PROOF. For every link Ui, j, (i, j) [E, rcvi, j(ak11) is a subsequence of
sndi, j(ak). This follows because the link Ui, j is unreliable FIFO and all packets
which are received on a link in an execution must be sent on the link before the
last receive. Thus by applying the Unreliable FIFO Loss lemma (Lemma 8.2) on
links Ui, j, @(i, j) [E, we prove part (a) that [N, SND(ak)O] V [N,
RCV(ak11)O]. For every link Ui, j, (i, j) [E, rcvi, j(ak) is a subsequence of
rcvi, j(ak11) and hence a subsequence of sndi, j(ak). Thus, the proof for part (b)
is similar to the proof for part (a). e

The next lemma shows that we can “pump” up the send sequence (on all links)
corresponding to a prefix ak of execution a, and produce a send sequence
corresponding to a longer prefix ak11. Once again, old packets “rotate” to the
front of the links.

LEMMA 8.6 (UNRELIABLE FIFO ROTATE WITH INCREMENT). Consider an exe-
cution a of A(U) of length n. For all node state vectors N and link state vectors O

269The Fault Span of Crash Failure

and for k , n,

@N, SND~ak!O# V @N*, O SND~ak11!#;

where for all j [V, N*[j] 5 last_statej(ak11).

PROOF. By the Send to Receive lemma (Lemma 8.5(a)), we get,

@N, SND~ak!O# V @N , RCV~ak11!O# .

By the Rotate corollary (Corollary 8.4), we get,

@N, RCV~ak11!O# V @N*, O SND~ak11!# .

Thus, the lemma is proved by transitivity of transitions. e

In what follows, recall that N0 is the node state vector where for all i [V,
N0[i] 5 unique start state of node Ai.

LEMMA 8.7 (UNRELIABLE FIFO ROTATE WITHOUT INCREMENT). Consider an
execution a of A(U) of length n. For all node state vectors N and link state vectors O
and for k , n,

@N, SND~ak!O# V @N0 , O SND~ak!# .

PROOF. By the Send to Receive lemma (Lemma 8.5(b)), we get

@N, SND~ak!O# V @N, RCV~ak!O# .

By the Rotate corollary (Corollary 8.4), we get,

@N, RCV~ak!O# V @N*, O SND~ak!# .

Also, by Lemma 8.1, applied to all i [V,

@N*, O SND~ak!# V @N0 , O SND~ak!# .

Thus, the lemma is proved by transitivity of transitions. e

For the next lemma, we define a link state vector L to be a concatenation of
send sequences for A(U), if there exist finite executions a1, a2, . . . , am of A(U)
such that: L 5 SND(a1)SND(a2) . . . SND(am).

Our next lemma states that any send sequence that is sandwiched in between
two link state vectors O and O* can be rotated to the leftmost position as long as
both O and O* are concatenations of send sequences.

LEMMA 8.8 (UNRELIABLE FIFO ANY ROTATE). Let O and O* each be a
concatenation of send sequences for A(U). Let a be a finite execution of A(U). Let
L 5 O SND(a)O* and L* 5 SND(a) O* O. Then

@N0 , L# V @N0 , L*# .

PROOF. We start by rewriting O and O* as a concatenation of send sequences
(possibly from different executions.) We are then left with a link state vector that
is a concatenation of send sequences which contains SND(a). To rotate a
concatenation of send sequences one step to the left (so that the leftmost send

270 G. VARGHESE AND M. JAYARAM

sequence moves to the right), we simply apply the Unreliable FIFO Rotate
without Increment lemma (Lemma 8.7) to the leftmost send sequence. We keep
rotating one step at a time until SND(a) is in the leftmost position.

More formally, by the definition of a send sequence, we can rewrite O 5
SND(a1) . . . SND(ak) where a1 . . . ak are different executions. Similarly, we
can rewrite O* 5 SND(ak11) . . . SND(an), where ak11 . . . an are also different
executions.

Thus

L 5 SND~a1! · · · SND~ak!SND~a!SND~ak11! · · · SND~an! .

We are going to rotate the first k send sequences to the left. To this end,
define the result of doing the first i 2 1 rotations for 1 # i # k as

Li 5 SND~a i! · · · SND~ak!SND~a!SND~ak11!

· · · SND~an!SND~a1! · · · SND~a i21! ,

and define

Lk11 5 L* 5 SND~a!SND~ak11! · · · SND~an!SND~a1! · · · SND~ak! .

Using Lemma 8.7, it follows that for i # k,

@N0 , Li] V [N0 , Li11].

Applying the last relation repeatedly for i 5 1, . . . k and using transitivity, we
have

@N0 , L1] V [N0 , Lk11].

The lemma follows because L1 5 L and Lk11 5 L*. e

Consider a send sequence SND(ak) corresponding to a prefix of an execution
a that is sandwiched in between two link state vectors O and O*. Suppose both O
and O* are a concatenation of send sequences. Then SND(ak) can be pumped up
to SND(ak11) without changing O and O*, or their relative positions.

LEMMA 8.9 (UNRELIABLE FIFO INCREMENT). Let O and O* each be a concat-
enation of send sequences for A(U). Let a be a finite execution of A(U) of length n.
Let L 5 O SND(ak) O* for 0 # k , n. Let L* 5 O SND(ak11) O*. Then

@N0 , L# V @N0 , L*# .

PROOF. The proof proceeds in three steps. We first rotate L, to bring
SND(ak) to the head. Then we rotate and increment SND(ak) to SND(ak11)
and crash each node to bring the nodes to the initial state. Finally, we rotate back
SND(ak11) to the original position.

More formally, by the Unreliable FIFO Any Rotate lemma (Lemma 8.8)

@N0 , L# V @N0 , SND~ak!O*O# .

271The Fault Span of Crash Failure

By the Unreliable FIFO Rotate with Increment lemma (Lemma 8.6)

@N0 , SND~ak!O*O# V @N0 , SND~ak11!O*O# .

Finally, by the Unreliable FIFO Any Rotate lemma (Lemma 8.8)

@N0 , SND~ak11!O*O# V @N0 , O SND~ak11!O*# .

The lemma follows from the last three relations and transitivity. e

LEMMA 8.10 (UNRELIABLE FIFO CONCATENATION). Let L be any concatena-
tion of send sequences for A(U). Then

@N0 , L0] V [N0 , L# .

PROOF. From the definition, we can always rewrite L as:

L 5 SND~a1!SND~a2! · · · SND~am! ,

where a1, a2, . . . , am are finite executions of A(U). Let ni be the index of the
last state in a i.

For any execution a and for any link Ui, j, (i, j) [E, rcvi, j(a1) 5 e. This
follows because the first action of an execution cannot be a receive. Thus

L0 5 RCV~a1
1!RCV~a1

2! · · · RCV~a1
m! .

So consider

L* 5 SND~a1
1!SND~a1

2! · · · SND~a1
m! .

We can prove that [N0, L0] V [N0, L*]. This is proved by applying the
Unreliable FIFO Rotate Corollary (Corollary 8.4) to transform each RCV into a
corresponding SND.

More formally, define for 1 # i # m,

Li 5 RCV~a1
i11! · · · RCV~a1

m!SND~a1
1! · · · SND~a1

i ! .

It follows from the Unreliable FIFO Rotate Corollary (Corollary 8.4) that

@N0 , L i] V [N0 , Li11].

By applying this last relation repeatedly for i 5 1, . . . m 2 1 and using
transitivity, we get

@N0 , L1] V [N0 , Lm].

But L1 5 L0 and Lm 5 L*.
From the last two relations and transitivity, we get

@N0 , L0] V [N0 , L*# , (1)

where

L* 5 SND~a1
1!SND~a1

2! · · · SND~a1
m! .

272 G. VARGHESE AND M. JAYARAM

So far, we have shown how to transform the null sequence on each link to a
concatenation of send sequences, where each send sequence is the length 1 prefix
of the corresponding send sequence in L. Next, to prove the lemma we iteratively
build up each of the send sequences in L* to its full length in L. We do so by
using the Unreliable FIFO Increment Lemma (Lemma 8.9) ni times on the SND
that corresponds to a i.

To this end, define Lk,j, for 1 # k # m, 1 # j # nk, as

Lk, j 5 SND~a1! · · · SND~ak21!SND~a j
k!SND~a1

k11! · · · SND~a1
m! .

For convenience, also define Lm11,1 5 L. By the Unreliable FIFO Increment
Lemma (Lemma 8.9), it follows that for j 5 1, . . . nk 2 1, [N0, Lk,j] V [N0,
Lk,j11]. Thus, applying this relation repeatedly and by transitivity we get [N0,
Lk,1] V [N0, Lk,nk

]. But it follows from the definitions that Lk,nk
5 Lk11,1. Thus,

from the last two relations and transitivity, it follows that for 0 # k # m 2 1

@N0 , Lk, 1] V [N0 , Lk11, 1].

Applying this last relation repeatedly for k 5 1 . . . m and using transitivity
yields

@N0 , L1, 1] V [N0 , Lm11, 1].

But since L1,1 5 L* and Lm11,1 5 L the last relation can be rewritten as

@N0 , L*# V @N0 , L# .

The lemma follows by using the last relation together with Eq. 1 and
transitivity. e

For the main theorem, we need to define the generator corresponding to a
node state vector and the generator corresponding to a link state vector.
Informally, a generator is a link state vector that can drive the state of the
network to a specified state.

Consider any node state vector N that is a possible node state vector. Then we
say that G is a node state generator for N if there exists executions a i of A(U)
such that @i [V, N[i] 5 last_statei(a i) and G 5 P@i[VSND(a i). Intuitively, G
has within it sequences for driving each node i to the state N[i]. This can be
formalized by the following lemma:

LEMMA 8.11 (UNRELIABLE FIFO NODE STATE GENERATION). There exists
some node state generator G for any possible node state vector N such that G is a
concatenation of send sequences. Also, for any link state vector O and any node
state vector N*

@N*, G O# V @N, O# .

PROOF. If N is a possible node state vector, then for all i [V, N[i] 5
last_statei(a i), for some executions a i of A(U). Thus, we set G 5
P@i[VSND(a i). This proves the first part of the lemma.

To prove the second part, we use the fact that G 5 P@i[VSND(a i) for some
set of executions a i such that @i [V, N[i] 5 last_statei(a i). Consider G* 5

273The Fault Span of Crash Failure

P@i[VRCVi(a i). Because for all (i, j) [E, G*[i, j] is a subsequence of G[i, j],
we can use the Unreliable FIFO Loss lemma (Lemma 8.2) to get

@N*, G O# V @N*, G* O# . (2)

We now intuitively apply the following 2-step procedure to the receive
sequence RCVi(a i) that is currently at the leftmost position in the link state
vector. This will result in removing RCVi(a i) and driving the state of node i to
N[i]. If we iterate this procedure for all i [V, we achieve the desired goal.

So let RCVi(a i) be currently at the leftmost position in the link state vector.
Intuitively, the two-step procedure is as follows:

—We apply the Unreliable FIFO Rotate Node lemma (Lemma 8.3) to drive the
state of node i to N[i]. The above is possible because rcvj, i(a i) is at the head
of each link (j, i) [E.

—The previous step drives node i to the goal state and removes the RCV(a i)
sequence as desired. However, it also adds SNDi(a i) to the right end of the
link state vector. However, this extraneous component can easily be removed
by the Unreliable FIFO Link Loss Lemma (Lemma 8.2).

Thus, by iterating this procedure for all i [V, we drive all node states to the
corresponding state in N and we remove all the components in G. We also leave
the link state vector O unchanged: thus, we achieve the desired goal by the
transitivity of transitions.

To capture this procedure formally, define Nk, 0 # k # n, such that Nk[i] 5
N[k] for i # k and Nk[i] 5 N*[k] for i . k. (In other words, Nk is a node state
vector in which the first k nodes are in the desired goal state specified by N and
the remaining nodes are in their initial state specified by N*.) Observe that N0 5
N* and Nn 5 N.

We also define for 0 # k # n, Gk 5 P@i.kRCVi(a i) O. (In other words, this
is the same as G* O except that the first k RCV sequences have been removed.)
Observe that G0 5 G* O and Gn 5 O.

Using these two definitions, Lemma 8.3 and Lemma 8.2, we have for 0 # k #
n 2 1, [Nk, Gk] V [Nk11, Gk11]. Thus, applying this relation repeatedly, we get
[N0, G0] V [Nn, Gn]. Using the observations given above, this can be rewritten as
[N*, G* O] V [N, O].

The lemma follows by using the last relation together with Eq. 2 and
transitivity. e

We now make a similar definition and lemma for link state generators. We say
that G is a link state generator for a link state vector L if for all (i, j) [E, L[i, j]
is a subsequence of G[i, j]. Essentially, a link state generator has all the packets
required to produce a given link state vector (by losing the appropriate packets).

LEMMA 8.12 (UNRELIABLE FIFO LINK STATE GENERATION). There exists some
link state generator G for any possible link state vector L such that G is a
concatenation of send sequences. Also, for any node state vector N,

@N, G# V @N, L# .

PROOF. As L is a possible link state vector then for all (i, j) [E, L[i, j] is a
sequence of possible packets 5 p1p2

. . . pn such that @k, pk [sndi, j(ak
i, j) for

274 G. VARGHESE AND M. JAYARAM

some execution ak
i, j of A(U). Let Gi,j 5 P@kSND(ak

i, j). Then let us call G 5
P@(i, j)[EGi,j the link state generator for L. Note that L[i, j] is a subsequence of
Gi,j[i, j], and thus L[i, j] is a subsequence of G[i, j]. Thus, G is a link state
generator for L.

The second part of the lemma now follows directly from the Unreliable FIFO
Link Loss Lemma (Lemma 8.2) because the goal sequence on each link (i, j),
L[i, j], is a subsequence of G[i, j]. e

We now show that if we can load the links with a node state generator for N
and a link state generator for L, then we can drive the system to [N, L].

LEMMA 8.13 (UNRELIABLE FIFO PLAYOUT). Let A be an arbitrary crashing
protocol, and let [N, L] be any possible state of A(U) for a graph G 5 (V, E).
Suppose GN and GL are a node state generator for N and a link state generator for L
respectively. Suppose further that GN, GL are both a concatenation of send
sequences. Then:

@N0 , GNGL] V [N , L# .

PROOF. Using the Unreliable FIFO Node State Generation Lemma, Lemma
8.11, we see that

@N0 , GNGL] V [N , GL].

Using the Unreliable FIFO Link State Generation Lemma, Lemma 8.12, we see
that

@N, GL] V [N, L# .

The proof follows from the transitivity of transitions. e

We are now ready to prove our main theorem for unreliable links, which states
that we can drive the system to any possible global state. The proof uses the
earlier concatenation construction to load the links with a node and link state
generator for the goal state; it then uses the previous lemma to play out these
generators to result in the goal state.

THEOREM 8.14 (UNRELIABLE FIFO ANY STATE). Let A be an arbitrary crash-
ing protocol, and let [N, L] be any possible state of A(U) for a graph G 5 (V, E).
Then:

@N0 , L0] V [N, L# .

PROOF. We use the Unreliable FIFO Node State Generation Lemma,
Lemma 8.11, to show that there exists a node state generator GN for possible
node state vector N, where GN is a concatenation of send sequences for A(U).

We use the Unreliable FIFO Link State Generation Lemma, Lemma 8.12, to
show that there exists a link state generator GL for possible link state vector L,
where GL is a concatenation of send sequences for A(U).

Using the Unreliable FIFO Concatenation Lemma, Lemma 8.10, we see
(because both generators are concatenations of send sequences) that:

@N0 , L0] V [N0 , GNGL].

275The Fault Span of Crash Failure

Using the Unreliable FIFO playout lemma, Lemma 8.13, we see that

@N0 , GNGL] V [N , L# .

The theorem now follows from the last two transitions and the transitivity of
transitions. e

9. Proofs for Reliable FIFO

In this section, we present the proofs of the result for reliable FIFO links. The
proofs for reliable FIFO and reliable non-FIFO are deliberately structured to be
similar to the proof for unreliable links (see previous section), except for some
important differences that we will highlight. These differences occur because of
the inability to directly lose packets. However, at the highest level the proof
strategy is still to: (1) use a similar concatenation construction to load the links
with an arbitrary concatenation of send sequences and (2) playout the chosen
sequences to produce arbitrary node states. The playout construction is very
different for the three link models.

We start by stating the Reliable FIFO loss lemma and proving it. This captures
the limited ability of the CAM model to lose packets. Note that as the links are
reliable, this lemma actually expresses the ability of the system to lose packets
from a link by receiving the packets and crashing the receiving node. We do not
state or prove the Crash lemma, Lemma 8.1, which is the same for all link
models.

LEMMA 9.1 (RELIABLE FIFO LOSS). Consider a protocol A(R) for a graph G 5
(V, E). Let L be a link state vector such that for some (i, j) [E, L[i, j] 5 P Q, where
P, Q are finite sequences of packets. Then for all node vectors N, [N, L] V [N*, L*],
where L* 5 L except that L*[i, j] 5 Q and N* is the same as N except that N*[j] is
the unique start state of node j.

PROOF. Intuitively, this lemma is proved by repeatedly receiving a packet on
link (i, j) and crashing the node j until the sequence P has been “lost”. We will
prove that if there exists a finite execution a of A(R) with schedule b (say), such
that the final state of a is [N, L] then there exists a finite extension a9 of a with
schedule bb9, such that the final state of a9 is [N, L*]. If P 5 p1p2

. . . pl and
Q 5 q1q2

. . . qm, then we extend the original schedule with b9 5
crashjreceivei, j(p1)crashjreceivei, j(p2) . . . receivei, j(pl)crashj. It is not hard to
verify that this is a valid schedule and results in removing all the packets in P
from link (i, j) while leaving node j in its unique start state. All other node and
link states remain unchanged. e

Next, we prove the reliable FIFO Rotate Node lemma which states (exactly as
in the CAML model) that if a node j is supplied with all the packets it receives in
some execution a, then node j can go to its corresponding state at the end of a
and can be made to send all the packets it sends in a. All other packets in the
link (formalized by a link state vector O), remain in the links, except that the O
packets “rotate” to the head of each link, and the sequence sent by j rotates to
the tail of the links outgoing from node j. This lemma once again expresses the
effect of asynchrony and locality in the context of reliable FIFO links. For the

276 G. VARGHESE AND M. JAYARAM

statement of the lemma, recall that N0 is the node state vector such that for every
i [V, N0[i] is the unique start state of node Ai.

LEMMA 9.2 (RELIABLE FIFO ROTATE NODE). Consider a finite execution a of
A(R). For all node state vectors N and link state vectors O of A(R) and for any
j [V,

@N, RCV j~a!O# V
b

@N*, O SND j~a!# ,

where b 5 crashj actsj(a) and N* is the same as N except that N*[j] 5
last_statej(a).

PROOF. Identical to proof of Lemma 9.2 except that we replace unreliable
link channel automata (U) with reliable link automata (R). e

The next corollary states that by loading the links with the receive sequences
for all nodes in some execution a, we can cause every node j to emit the
sequence of packets that j emits in a. Once again, the old packets remain
unchanged. It is again identical to the corresponding lemma for unreliable link
systems (compare with Corollary 8.4).

COROLLARY 9.3 (RELIABLE FIFO ROTATE). Consider a finite execution a of
A(R). For all node state vectors N and link state vectors O of A(R),

@N, RCV~a!O# V @N*, O SND~a!# ,

where @j [V, N*[j] 5 last_statej(a).

PROOF. This corollary is proved by applying the Rotate Node lemma (Lemma
9.2) at each node j [V. e

The next lemma shows that we can “pump” up the send sequence (on all links)
corresponding to a prefix ak of execution a, and produce a send sequence
corresponding to a longer prefix ak11. Once again, old packets “rotate” to the
front of the links. This lemma is rather different from the corresponding lemma
for unreliable links. Compare Lemma 8.6 and Lemma 9.4. A major difference is
that we need to drive all nodes to initial states in order to pump up the send
sequence; this was not necessary for the unreliable link model, in which we can
lose packets directly without crashing nodes.

LEMMA 9.4 (RELIABLE FIFO ROTATE WITH INCREMENT). Consider an execu-
tion a of A(R) of length n. For all node state vectors N and link state vectors O and
for k , n,

(a) [N, SND(ak) O] V [N0, O SND(ak11)]
(b) [N, SND(ak) O] V [N0, O SND(ak)]

PROOF. For every link Ui, j, (i, j) [E, rcvi, j(ak11) is a prefix of sndi, j(ak).
This follows because the link is reliable and FIFO and all packets which are
received on a link in an execution must be sent on the link before the last
receive. Thus SND(ak) O can be written as RCV(ak11) O* O. By the Rotate
corollary (Corollary 9.3), we get,

@N, RCV~ak11!O* O# V @N*, O* O SND~ak11!# ,

277The Fault Span of Crash Failure

where for all i [V, N*[i] 5 last_statei(ak11). By applying the Reliable FIFO
loss lemma (Lemma 9.1), to each link we get

@N*, O9 O SND~ak11!# V @N0 , O SND~ak11!# .

Thus, part (a) of the lemma is proved by transitivity of transitions. Part (b) is
proved similarly as RCV(ak) is a prefix of RCV(ak11). e

For the next lemma, we again define a link state vector L to be a concatenation
of send sequences for A(R), if there exist finite executions a1, a2, . . . , am of
A(R) such that: L 5 SND(a1)SND(a2) . . . SND(am).

Our next lemma states that any send sequence that is sandwiched in between
two link state vectors O and O* can be rotated to the leftmost position as long as
both O and O* are a concatenation of send sequences. The proof is similar to
that of the corresponding lemma for unreliable links (Lemma 8.8).

LEMMA 9.5 (RELIABLE FIFO ANY ROTATE). Let O and O* each be a concat-
enation of send sequences for A(R). Let a be a finite execution of A(R). Let L 5 O
SND(a) O* and L* 5 SND(a) O* O. Then:

@N0 , L# V @N0 , L*# .

PROOF. We start by rewriting O and O* as a concatenation of send sequences
(possibly from different executions.) We are then left with a link state vector that
is a concatenation of send sequences which contains SND(a). To rotate a
concatenation of send sequences one step to the left (so that the leftmost send
sequence moves to the right) we simply apply the Reliable FIFO Rotate with
Increment lemma (Lemma 9.4(b)) to the leftmost send sequence (which is say
SND(a9)). We keep rotating one step at a time until SND(a) is in the leftmost
position. e

Consider a send sequence SND(ak) corresponding to a prefix of an execution
a that is sandwiched in between two link state vectors O and O*. Suppose both O
and O* are a concatenation of send sequences. Then SND(ak) can be pumped up
to SND(ak11) without changing O and O*, or their relative positions. The lemma
and proof are essentially similar to the corresponding lemma for unreliable links
(Lemma 8.9), except that we use the corresponding lemmas for reliable links in
the proof below.

LEMMA 9.6 (RELIABLE FIFO INCREMENT). Let O and O* each be a concatena-
tion of send sequences for A(R). Let a be a finite execution of A(R) of length n. Let
L 5 O SND(ak) O* for 0 # k , n. Let L* 5 O SND(ak11) O*. Then

@N0 , L# V @N0 , L*# .

PROOF. The proof proceeds in three steps. We first rotate L, to bring
SND(ak) to the head. Then, we rotate and increment SND(ak) to SND(ak11)
and crash each node to bring the nodes to the initial states. Finally, we rotate
back SND(ak11) to the original position. The first step uses the Reliable FIFO
Any Rotate lemma (Lemma 9.5). The second step uses the Reliable FIFO Rotate
with Increment lemma (Lemma 9.4), and the third step uses the Reliable FIFO
Any Rotate lemma (Lemma 9.5) again. e

278 G. VARGHESE AND M. JAYARAM

LEMMA 9.7 (RELIABLE FIFO CONCATENATION). Let L be any concatenation of
send sequences for A(R). Then

@N0 , L0] V [N0 , L# .

PROOF. Identical to the proof of Lemma 8.10 except that we use the
corresponding lemmas for the CAM model. Thus we use the Reliable FIFO
Rotate Corollary (Corollary 9.3) in place of the Unreliable FIFO Rotate
Corollary (Corollary 8.4). Similarly, we use the Reliable FIFO Increment Lemma
(Lemma 9.6) in place of the Unreliable FIFO Increment Lemma (Lemma 8.9). e

For the main theorem, we assume that the definition of a node state generator is
the same as that for unreliable links. We now describe the playout lemma for
Reliable FIFO case where the packets in a node state generator are played out to
drive the nodes to any possible state. Notice that we do not need a link state
generator for the CAM system as we only aim to control node states. The playout
constructions we now describe are different from the ones used for the CAML
system.

LEMMA 9.8 (RELIABLE FIFO PLAYOUT). There exists some node state generator
G for any possible node state vector N such that G is a concatenation of send
sequences. Also, given any node state vector N*,

@N*, G# V @N, L# .

where L is some link state vector.

PROOF. If N is a possible node state vector, then for all i [V, N[i] 5
last_statei(a i), for some execution a i of A(R). Thus, we set G 5 P@i[VSND(a i).
This proves the first part of the lemma.

To prove the second part, we use the fact that G 5 P@i[VSND(a i) for some
set of executions a i such that @i [V, N[i] 5 last_statei(a i). Note that for any
link (i, j), G[i, j] 5 T[i, j] rcvi, j(a j) T*[i, j], where T, T* are some link state
vectors. The above follows from the fact that rcvi, j(a j) is a prefix of sndi, j(a j). By
applying the Reliable FIFO link loss lemma, Lemma 9.1, for each link we get,

@N*, G# V @N0 , G*# ,

where G* is a link state vector such that G*[i, j] 5 rcvi, j(a j) T*[i, j]. In other
words, G* 5 P@j[VRCVj(a j) T* We finally prove the lemma by applying the
Reliable FIFO Rotate Node lemma, Lemma 9.2, at each node j. e

We are now ready to prove our main theorem for reliable links, which states
that we can drive the system to any possible node state. The proof uses the
earlier concatenation construction to load the links with a node generator for the
goal state; it then uses the previous lemma to play out the node generator to
result in the goal state.

THEOREM 9.9 (RELIABLE FIFO ANY NODE STATE). Let A be an arbitrary
crashing protocol, and let N be any possible node state vector of A(R) for a graph
G 5 (V, E). Then there exists a state [N, L] of A(R) such that

@N0 , L0] V [N, L# .

279The Fault Span of Crash Failure

PROOF. From the Reliable FIFO Playout lemma (Lemma 9.8), we know that
for the given node state vector N there exists a node state generator G which is a
concatenation of send sequences. Since G is a concatenation of send sequences,
we have from the Reliable FIFO Concatenation lemma (Lemma 9.7):

@N0 , L0] V [N0 , G# .

Since G is a generator for node state vector N, we have from the Playout lemma
(Lemma 9.8),

@N0 , G# V @N, L# ,

where L is some link state vector. From the transitivity of transitions, we get,

@N0 , L0] V [N, L# . e

10. Proofs for Reliable non-FIFO

In this section, we present the proofs of the result for reliable non-FIFO links.
As the links are non-FIFO, their state is expressed by a set of packets and not a
sequence of packets. However, for uniformity, we will retain the notation used in
the last two sections. We only note that packets can be in any order in the link,
and that the concatenation of two sets of packets in the links is the same as their
union. However, the definitions for receive and send sequences stand unchanged,
as they are concerned with the sequence of packets sent or received in some
execution and not with the state of the link itself.

As the proofs of the lemmas needed for the concatenation construction are
identical to those for reliable FIFO links (except with the non-FIFO link
automaton RN substituted for the FIFO link automaton R), we shall state the final
loss, concatenation, and rotate node lemmas for non-FIFO links without proof.

The only additional delicate point for non-FIFO links is that we cannot deliver
packets without respecting the ordering of packet tags (see model of a live link in
Section 3). However, we can easily get around this by finding some initial setting
of the tags array that makes any packet delivery order possible [Jayaram 1996].
Thus, if we start with state [N, L] and if by delivering some packet on link (i, j)
to node j we result in state [N*, L*], it is indeed true that [N, L] V [N*, L*]. We
will assume this fact implicitly in what follows.

LEMMA 10.1 (RELIABLE NON-FIFO LOSS). Consider a protocol A(RN) for
a graph G 5 (V, E). Let L be a link state vector such that for some (i, j) [E,
L[i, j] 5 O Q, where O, Q are finite sets of packets. Then for all node vectors N,
[N, L] V [N*, L*], where L* 5 L except that L*[i, j] 5 Q and N* is the same as N
except that N*[j] 5 the unique start state.

PROOF. Similar to the proof of Lemma 9.1. e

LEMMA 10.2 (RELIABLE NON-FIFO ROTATE NODE). Consider a finite execu-
tion a of A(RN). For all node state vectors N and link state vectors O of A(RN) and
for any j [V,

@N, RCV j~a!O# V
b

@N*, O SND j~a!# ,

280 G. VARGHESE AND M. JAYARAM

where b 5 crashj actsj(a) and N* is the same as N except that N*[j] 5
last_statej(a).

PROOF. Similar to the proof of Lemma 9.2. e

LEMMA 10.3 (RELIABLE NON-FIFO CONCAT). Let L be any concatenation of
send sequences for A(RN). Then:

@N0 , L0] V [N0 , L# .

PROOF. Identical to the proof of Lemma 9.7 using exactly the same support-
ing lemmas, except with RN substituted for R in the proof and all supporting
lemmas. e

The statement and proof of the concatenation lemma for reliable non-FIFO is
essentially identical to that of the reliable FIFO case. However the following
lemmas and proofs which describe the playout construction for reliable non-
FIFO links are very different. Before we proceed, we need some new definitions
and notation.

The result for the unreliable FIFO case showed that it is possible to take the
state of the system to any possible node state vector and link state vector.
Correspondingly, it was necessary to load the links with the node state generator
and the link state generator. Similarly, the result for the reliable FIFO case
showed that it is possible to take the state of the system to any possible node
state vector and to do that it was necessary to load the links with the node state
generator. The result for the reliable non-FIFO case states that it is possible to
control any acyclic subset of the links and nodes.

Correspondingly, we need to load the links with an acyclic state generator that
consists of the concatenation of a set of send sequences that can drive the acyclic
subset of the graph to the desired goal state. Let us first define an acyclic state
generator. The definition of an acyclic state generator is similar to that of a link
or node state generator; the only difference is that it only applies to those nodes
or links which are in the acyclic subset. Essentially, an acyclic state generator has
all the packets needed to drive the acyclic subset to its goal state.

Consider a graph G 5 (V, E) and a set of edges and nodes (Va, Ea) where
Va # V, Ea # E such that there is no cycle of links and nodes wholly contained
in Va ø Ea. Consider an assignment ! of a possible node state si 5
last_statei(a i) to every node i [Va (where a i is some execution of A(RN))
together with an assignment of a possible link state to each link (i, j) [Ea. Let
GN 5 P@i[Va

SND(a i). If the state of link (i, j) is p1p2
. . . pn, then @k, pk [

sndi, j(ak
i, j) for some execution ak

i, j of A(RN). Let Gi,j 5 P@kSND(ak
i, j). Let us

call GL 5 P@(i, j)[Ea
Gi,j. Finally, we call G 5 GNGL the acyclic state generator

corresponding to the acyclic state assignment !.
Given the acyclic state generator, we need to describe the playout strategy that

plays out the packets in the generator to achieve the desired possible acyclic
state. While the playout strategy is formalized in the proof of the playout lemma
described later, it helps to first intuitively understand the strategy.

If link (i, j) [Ea and node j [Va, then we can think of node j as being
dependent on link (i, j) in the following sense. When we drive link (i, j) to its
goal state, we may have to lose packets, which can only be achieved by crashing
node j. Thus, it makes sense to drive node j to its final state after driving link

281The Fault Span of Crash Failure

(i, j) to its final state.7 Similarly, if node j [Va and link (j, i) [Ea, then
driving node j to its desired goal state may result in j emitting packets that are
not part of the final goal state for link (j, i). Thus it makes sense to drive (j, i)
to its final goal state after driving node j to its final state, and we can think of link
(j, i) as being dependent on node j.

The preceding paragraph shows that we can define a dependency relation
between elements (i.e., nodes or links) in the acyclic subset (Va, Ea). We will use
this dependency relation to determine the order in which we will playout packets
and drive individual components to their final states. We formalize the depen-
dency relation using a height function that assigns an integer to each component
such that height(x) , height(y) if y depends on x.

To allow a simple inductive proof, we will assign each component a unique
height. This can easily be done by topologically sorting and numbering each
connected component in (Va, Ea). We then add the maximum value of height in
the ith subcomponent to each number in the i 1 1th subcomponent. This is
illustrated in Figure 18 where Va 5 {i, j, k, l, m} and Ea 5 {(i, n), (i, j),
(k, l), (l, m)}. Notice that there are no cycles in this set of nodes and links, and
that node n is not in the subset, although link (i, n) is.

Notice also that there are two connected components. The height of each
element (node or link) is shown by the bolded number above the node or link.
We make sure that each node has a height that is less than any of its outgoing
links, and that each node has a height greater than any of its incident links. After
numbering the first component, we start numbering the second component where
we left off in the first component (Figure 18).

We now formally define the height function:

LEMMA 10.4 (RELIABLE NON-FIFO HEIGHT). Consider a graph G 5 (V, E)
and a set of edges and nodes (Va, Ea) where Va # V, Ea # E such that there is no
cycle of links and nodes wholly contained in Va ø Ea, there exists a function height
on elements of V ø E such that:

(a) x [y Va ø Ea, height(x) 5 undefined
(b) x [Va ø Ea, 0 # height(x) , uVa ø Eau
(c) x, y [Va ø Ea, height(x) 5 height(y) 3 x 5 y
(d) x, y [Va ø Ea, and there is a path from x to y wholly contained in Va ø Ea,

then height(x) , height(y).

7 Although we say that we are driving a node or a link to a state, it should be clear that we are really
driving the corresponding node or link automaton to the desired state.

FIG. 18. Assigning a height numbering to each node and link in the acyclic subset. The figure shows
two connected components. Notice that the heights respect the intuitive dependency relation, and
that all heights in the second connected component are greater than the maximum height in the first
connected component.

282 G. VARGHESE AND M. JAYARAM

PROOF. We know that as there is no cycle among components of (Va, Ea), so
Va ø Ea consists of a forest of connected acyclic subcomponents of G 5 (V, E).
We can give a proof of the existence of the function height by induction on the
number of acyclic connected subcomponents. For the base case of no acyclic
connected subcomponents (i.e., when Va ø Ea is empty), the proof is trivial as
height is then undefined for all components of the graph G. Assume that there
exists a function height for a forest of i connected subcomponents that satisfies
the above properties. To extend height to the i 1 1st connected subcomponent,
all we have to do is to number the i 1 1st connected subcomponent topologically
from 1 to the number of components in it. Then by adding the maximum value of
height in the numbering till the ith subcomponent to each number in the i 1 1th
subcomponent we get an extension of the function height to the i 1 1th
subcomponent as well. Moreover, this extended function height satisfies the
properties as well because the i 1 1th subcomponent is acyclic and because of
the properties of topological ordering. e

Our strategy will be to process element x [Va ø Ea in Step h if height(x) 5
h using an inductive construction illustrated in Figure 19. Assume height(i) is h
and height(i, j) is h 1 1. In order to ensure that node i can be processed
properly, we must ensure that at the end of Step h 2 1, the state of the system
is as shown on the top left of Figure 19. Notice that link (m, i) (node m is not
shown) has the set rcvm, i(X) L[m, i]. L[m, i] is the desired goal state of link
(m, i). Also, rcvm, i(X) is the packets that i must receive from link (m, i) in
order to reach its state at the end of execution X 5 a i. Notice also that link
(i, j) is in its initial state corresponding to the concatenation of the node and
link state generators GN and GL.

In Step h, we allow node i to receive all the packets it would have received in
execution X 5 a i and go into its desired final state N[i] 5 last_state(a i) while
emitting sndi, j(X) on link (i, j). The resulting state is shown on the top right of
Figure 19. In Step h 1 1, we process link (i, j). There are two cases.

FIG. 19. Illustrating the inductive construction for reaching a possible acyclic state. If height(i) 5 h,
in Step h, we allow node i to receive all the packets it would have received in some execution X 5 a i

and go into its desired final state N[i] while emitting sndi, j(X) on link (i, j). If height(i, j) 5 h 1 1,
in Step h 1 1, we lose packets on link (i, j) to drive (i, j) to its final state L[i, j]. If j is in the acyclic
component, we must also leave rcvi, j(Y), the packets required on link (i, j) to drive node j to its final
state in execution Y 5 a j.

283The Fault Span of Crash Failure

If node j is not in the acyclic component, we do not have to worry about
driving node j to a desired state. Thus, we can simply lose enough packets to
arrive at the desired final state for link (i, j) which is L[i, j]. This can be easily
done because GL was constructed so that L[i, j] is a subsequence of GL[i, j]. The
loss is effected by having node j receive each unwanted packet (recall we are
dealing with non-FIFO links) and then crashing node j.

The case when node j is part of the acyclic component is similar except that we
must also leave the sequence rcvi, j(Y) on link (i, j) in addition to GL[i, j].
rcvi, j(Y) is needed in order to drive node j to last_state(aj), where a j 5 Y. Once
again this is easy to do because done because GN was constructed so that
rcvi, j(a j) is a subsequence of GN[i, j]. This final state (with its two cases) is
shown at the bottom of Figure 19.

Thus, the construction proceeds by driving nodes and links into their final
states in height order. In case of links (e.g., (i, j) in Figure 19), we will sometimes
also leave some additional packets required to drive the receiver end of the link
to its final state. However, these additional packets will be removed when the
receiver end of the link (e.g., j in Figure 19) is driven to its final state.

We proceed to formalize the process described in Figure 19. We exhibit a
proof of the playout lemma for the reliable non-FIFO case by induction on
height. For the sake of convenience, we shall first describe the intermediate states
in the inductive construction.

Let hmax 5 uVa ø Eau. Let A be an arbitrary crashing protocol, and consider
A(RN) for a graph G 5 (V, E). Consider (Va, Ea), Va # V, Ea # E such that
there is no cycle wholly among elements of Va ø Ea. Consider also an
assignment ! of any possible node state si for every node i [Va and of any
possible link state si, j for every link (i, j) [Ea. Consider a state [N, L] of
A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea.

Given a state [N, L] defined as above, a function height with the properties
stated in Lemma 10.4, then for 0 # h # hmax we define [Nh, Lh] as a state such that:

—If i [Va, height(i) , h, then Nh[i] 5 N[i]

—If (i, j) [Ea, height(i, j) , h, j [Va, height(j) , h, then Lh[i, j] 5 L[i, j]

—Else if (i, j) [Ea, height(i, j) , h, j [Va, height(j) $ h, then Lh[i, j] 5
rcvi, j(a j) L[i, j], where last_statej(a j) 5 N[j]

—Else if (i, j) [Ea, height(i, j) , h, j [y Va, then Lh[i, j] 5 L[i, j]

—Else if (i, j) [Ea, height(i, j) $ h, then Lh[i, j] 5 O GN[i, j] GL[i, j], where
O is some sequence of packets.

—Else if (i, j) [y Ea, j [Va, height(j) $ h, then Lh[i, j] 5 O GN[i, j] GL[i, j],
where O is some sequence of packets.

Figure 19 provides some intuition for the form of the definition of [Nh, Lh],
which represents the state after Step h 2 1.

To prove the playout lemma, we first show that [N0, L0] is indeed the initial
state after concatenation: [N0, GN GL]. This is the base case of the induction. We
then show that the result of the induction, [Nhmax, Lhmax] is indeed the desired
final state [N, L]. Finally, we prove the inductive step and show how to go from
[Nh, Lh] to [Nh11, Lh11]. We start with the first step.

284 G. VARGHESE AND M. JAYARAM

LEMMA 10.5 (RELIABLE NON-FIFO START). Let A be an arbitrary crashing
protocol, and consider A(RN) for a graph G 5 (V, E). Consider (Va, Ea), Va # V,
Ea # E such that there is no cycle wholly among elements of Va ø Ea. Consider also
an assignment ! of any possible node state si for every node i [Va and of any
possible link state si, j for every link (i, j) [Ea. Consider a state [N, L] of A(RN)
such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea. Then,

@N0 , GN GL]5[N0, L0# .

PROOF. For all x [Va ø Ea, height(x) $ 0. Thus, the lemma is proved
trivially because for all (i, j) [E each link state is GN[i, j] GL[i, j] 5 L0[i, j].

e

We now show that the result of the induction, [Nhmax, Lmax] is indeed the
desired final state [N, L].

LEMMA 10.6 (RELIABLE NON-FIFO LAST). Let A be an arbitrary crashing
protocol, and consider A(RN) for a graph G 5 (V, E). Consider (Va, Ea), Va # V,
Ea # E such that there is no cycle wholly among elements of Va ø Ea. Let hmax 5
uVa ø Eau. Consider also an assignment of any possible node state si for every node
i [Va and of any possible link state si, j for every link (i, j) [Ea. Consider a state
[N, L] of A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea. Then,

@N, L# 5 @Nhmax, Lhmax].

PROOF. For all x [Va ø Ea, height(x) , hmax. Thus, for all i [Va,
Nhmax[i] 5 N[i] and for all (i, j) [Ea, Lhmax[i, j] 5 L[i, j]. e

We are now ready to prove the inductive step and show how to go from [Nh,
Lh] to [Nh11, Lh11].

LEMMA 10.7 (RELIABLE NON-FIFO MIDDLE). Let A be an arbitrary crashing
protocol, and consider A(RN) for a graph G 5 (V, E). Consider (Va, Ea), Va # V,
Ea # E such that there is no cycle wholly among elements of Va ø Ea. Let hmax 5
uVa ø Eau. Consider also an assignment of any possible node state si for every node
i [Va and of any possible link state si, j for every link (i, j) [Ea. Consider a state
[N, L] of A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea. Then, for 0 #
h , hmax,

@Nh, Lh] V [Nh11, Lh11].

PROOF. Consider the element x [Va ø Ea such that height(x) 5 h. There
are two cases, depending on whether x is a node or a link. Refer to Figure 19 for
the main idea of the proof.

Case 1, x is a node. If x 5 i [Va then by the property of height, for all
(m, i) [Ea, height(m, i) , h, and so for such links (m, i), Lh[m, i] 5
rcvm, i(a i) L[m, i] where last_statei(a i) 5 N[i]. For all links (m, i) [y Ea,
Lh[m, i] 5 O GN[m, i] GL[m, i] 5 rcvm, i(a i) O9, where GN GL is the generator
for the acyclic state and O, O9 are some sequences of packets. Thus, we can
apply the Reliable non-FIFO Rotate Node lemma (Lemma 10.2) at node i.

After applying the lemma, the state of node i becomes last_statei(a i) 5
Nh11[i]. Also applying the Rotate Node lemma adds sndi, k(a i) to every link

285The Fault Span of Crash Failure

(i, k). However, for (i, k) [Ea, height(i, k) $ h 1 1 the state of all links
(i, k) becomes O GN[i, k] GL[i, k] 5 Lh11[i, k] where O is some sequence of
packets. The state of all links (m, i) [Ea after applying the lemma is L[m, i] 5
Lh11[m, i]. All other links and nodes in [Nh, Lh] have the same state as in [Nh11,
Lh11]. Thus the lemma is proved when x is a node.

Case 2, x is a link. Suppose x is a link (i, j) such that height(i, j) 5 h. Then
Lh[i, j] 5 O GN[i, j] GL[i, j]. Consider the node j. If j [Va, then height(j) $
h 1 1. O GN[i, j] GL[i, j] contains rcvi, j(a j) L[i, j] where last_statej(a j) 5
N[j]. Thus, by applying the Reliable non-FIFO Loss lemma (Lemma 10.1), we
can lose packets so that the state of the link (i, j) becomes rcvi, j(a j) L[i, j] 5
Lh11[i, j]. If j [y Va, then, by applying the same Loss lemma, we can lose packets
to make the state of link (i, j) to be L[i, j] 5 Lh11[i, j]. All other links and
nodes in [Nh, Lh] have the same state as in [Nh11, Lh11]. Thus, the lemma is also
proved for the case when x is a link. e

We can now put together the last three lemmas to obtain an inductive proof of
the playout lemma for non-FIFO links.

LEMMA 10.8 (RELIABLE NON-FIFO PLAYOUT). Let A be an arbitrary crashing
protocol, and consider A(RN) for a graph G 5 (V, E). Consider (Va, Ea), Va # V,
Ea # E such that there is no cycle wholly among elements of Va ø Ea. Let hmax 5
uVa ø Eau. Consider also an assignment ! of any possible node state si for every
node i [Va and of any possible link state si, j for every link (i, j) [Ea. Consider a
state [N, L] of A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea. Let GN

GL be the acyclic state generator corresponding to the acyclic state assignment !
such that GN GL is a concatenation of send sequences. Then,

@N0 , GN GL] V [N , L# .

PROOF. From the Reliable non-FIFO middle lemma (Lemma 10.7), we know
that for 0 # h , hmax,

@Nh, Lh] V [Nh11, Lh11].

Thus, by the transitivity of transitions, we see that

@N0, L0] V [Nhmax, Lhmax].

From the Reliable non-FIFO start lemma (Lemma 10.5), we get that,

@N0 , GN GL] 5 @N0, L0].

From the Reliable non-FIFO last lemma (Lemma 10.6), we get,

@N, L# 5 @Nhmax, Lhmax].

The lemma follows from the last three relations. e

We are now ready to prove our main theorem for reliable non-FIFO links,
which states that we can drive the system to any possible acyclic global state. The
proof uses the earlier concatenation construction to load the links with a node

286 G. VARGHESE AND M. JAYARAM

and link state generator for the goal state; it then uses the previous lemma to
play out these generators to result in the goal state.

THEOREM 10.9 (RELIABLE NON-FIFO ANY ACYCLIC STATE). Let A be an
arbitrary crashing protocol, and consider A(RN) for a graph G 5 (V, E). Consider
(Va, Ea), Va # V, Ea # E such that there is no cycle wholly among elements of Va ø
Ea. Consider also an assignment of any possible node state si for every node i [Va

and of any possible link state si, j for every link (i, j) [Ea. Then there exists a state
[N, L] of A(RN) such that N[i] 5 si, i [Va, L[i, j] 5 si, j, (i, j) [Ea and

@N0 , L0] V [N, L# .

PROOF. Let GN GL be the generator for the given acyclic state assignment
where GN GL is a concatenation of send sequences for A(RN). Using the
Reliable non-FIFO Concatenation Lemma (Lemma 10.3), we see that:

@N0 , L0] V [N0 , GN GL].

Using the Reliable non-FIFO playout lemma (Lemma 10.8), we see that

@N0 , GN GL] V [N , L# .

The theorem now follows from the last two transitions and the transitivity of
transitions. e

11. Proving that the Fault Span Hierarchy Is Strict

Recall that, in Figure 1, we described the fault span of the different link models
as a hierarchy, with the CAML model having the largest fault span and the CAM
the least. We now show that the hierarchy is strict. We do so by first showing a
protocol that cannot be driven to any possible state in the CAMO model; we then
show a protocol which cannot be driven to any acyclic state in the CAM model.

11.1. COUNTEREXAMPLE FOR CAMO. Figure 20 shows a simple two node
protocol that cannot be driven to any possible global state in the CAMO model.
This shows that CAML is strictly more adversarial than CAMO.

Figure 20 shows three consecutive global states in a simple token passing
protocol between two nodes, an initiator and a responder. On a crash, the
initiator sets its token flag to be true (shown by a black dot). On a crash, the

FIG. 20. Three possible consecutive states in a simple token passing protocol. S1 is an initial state.
In state S2, the initiator passes the token to the link; in state S3, the responder receives the token
and increments its counter.

287The Fault Span of Crash Failure

responder sets its token flag to be false and initializes a counter called count to 0.
Each node can pass the token (by sending a Token packet on the link) when it
has its token flag set; on doing so, it sets its token flag to false. The responder
counter count is incremented every time the responder receives a Token; thus it
keeps track of the number of tokens received since the last responder crash. Let
us say there is a token in the system in some state if either node has its token flag
true or there is a Token packet in either channel.

The code for the protocol is shown in Figure 21. The token flag at the initiator
is tokeni, and the flag and counter at the responder are tokenr and countr. We
define the token passing system to be the concatenation of the initiator and
responder automata specified in Figure 21 together with two non-FIFO links
RNi, r and RNr, i.

Figure 20 only shows a simple execution. If the initiator crashes after sending a
Token, we can clearly create more than one token; similarly, a responder crash
can cause the loss of a token. We show, however, that there is at least one
possible global state that is impossible to reach.

THEOREM 11.1. There is a possible global state that cannot be reached by an
execution of the token passing protocol of Figure 21 working in the CAMO model.

PROOF. We show that any possible state s is impossible to reach as long as
there is no token in state s and countr . 0. It is easy to verify that s is a possible
state: first, the node i and link states can be produced in state S3 of Figure 20;
secondly, a node r state in which countr 5 c . 0 will clearly occur in a crashless
execution in which node r receives the token c times.

FIG. 21. Counterexample Protocol for CAMO.

288 G. VARGHESE AND M. JAYARAM

We show that s is impossible to reach by describing an invariant that is true
even in executions in which there are crashes. The invariant is: If countr . 0,
then there is at least one token in the system. If we can prove that this invariant
holds for all reachable states of our token passing system, then state s is clearly
not a reachable state because it violates the invariant.

We prove the invariant by induction of the length of an execution of the token
passing system. For the base case, observe that the invariant holds trivially in the
initial state as there is a token at i. For the inductive step, we show that if the
invariant holds in state si, then it will hold for si11, for any possible transition
(si, ai, si11). We consider cases for action ai.

It is easy to see that after any send action, there is a token in the link. Similarly
after any receive action, there is a token at the node on the receiving end of the
link. Thus the invariant holds trivially in si11 if ai is a send or receive. If ai 5
crashr, the invariant hold trivially in si11 because countr 5 0 in si11. If ai 5
crashi, the invariant hold trivially in si11 because tokeni 5 true in si11 which
implies that there is a token in the system.

Thus, we have proved that the invariant is true in all reachable states of the
token passing system. But s is a possible state that does not satisfy the invariant.
Thus, there is at least one possible state that is not a reachable state of the token
passing system. e

11.2. COUNTEREXAMPLE FOR CAM. We show a simple two-node protocol
whose links cannot be driven to any possible state in the CAM model. This shows
that CAMO is strictly more adversarial than CAM. Figure 22 shows three
consecutive global states in a simple counter emitting protocol between two
nodes, an initiator and a responder. On a crash, the initiator sets a counter
counti 5 0. The initiator’s only action is to send a packet containing its current
counter and to then increment its counter. The initiator ignores all responder
packets. The responder ignores all initiator packets and has no state variables.

The protocol code is shown in Figure 23. We define the counter emitting
system to be the concatenation of the initiator and responder automata specified
in Figure 23 together with two reliable FIFO links Ri, r and Rr, i

Figure 22 shows a simple execution. The initiator can crash at any time and
reset to 0 and send a 0 packet. Thus, one can easily create sequences of
consecutive numbers on the links followed by a second such sequence starting
with 0. However, we show that we cannot create arbitrary sequences of numbers.

FIG. 22. Three possible consecutive states in a simple counter emitting protocol. S1 is an initial
state; in S2, the initiator sends packet 0 and increments its counter; in S3, the initiator sends packet
1 and increments again.

289The Fault Span of Crash Failure

THEOREM 11.2. There is a possible link state on the link from initiator to
responder that cannot be reached by an execution of the counter emitting protocol
working in the CAM model.

PROOF. Our proof is again constructive. Consider a possible link state of link
(i, r) (more precisely, we mean a state of Ri, r) which contains two consecutive
packets (recall that the link is FIFO) that have numbers m and n, such that m 5
n and n . 0. This is easily shown to be impossible to reach because all reachable
states of the protocol satisfy the following invariant (even in executions with
arbitrary crashes): If (i, r) contains two consecutive packets with numbers m and n,
and such that m is closer to the responder than n, then either n 5 m 1 1 or n 5 0.

To prove this invariant (call it I1), we need a supporting invariant (call it I2)
which states that if m is the counter of the last packet stored in link (i, r), then
counti is either equal to m 1 1 or 0.

It is easy to see that both invariants hold in the initial state and are maintained
by crashi actions. Finally, any sendi action in state si will preserve I1 and I2 in
si11, because I2 holds in si. Other actions do not affect the invariant. e

12. Designing Correct Protocols that Are Resilient to Crashes

Our results indicate that the combination of asynchrony, crash failures, lossy
links, and no NVM is particularly deadly: a sequence of crashes can drive a
protocol into (essentially) arbitrary global states. An impossibility result does
not, however, mean that it is impossible to build correct crash resilient protocols.
Rather an impossibility result highlights what must be changed in order to build
a correct protocol. The two standard ways to get around an impossibility result
are to either change the assumptions or relax the specification.

For example, if we change the assumptions behind our result and assume
nonvolatile memory after a crash, then it is well known that protocols can be
made resilient to node crashes. For instance, Baratz and Segall [1988] showed
that it is possible to build a reliable Data Link protocol with a single bit of NVM
at each node. Later, Finn [1979] and Awerbuch et al. [1987] showed how to make
any network protocol resilient to crash failures using a reliable Data Link
protocol. Thus, given the cheapness and availability of small amounts of NVM,

FIG. 23. Counterexample Protocol for the CAM model.

290 G. VARGHESE AND M. JAYARAM

our results indicate that NVM is a cheap form of insurance for protocols that
wish to be crash-resilient.

Assuming bounded message lifetimes is another way to change the assump-
tions. For example, Attiya et al. [1995] introduce a grace period between crashes.
They also introduce a third way to change the assumptions by assuming that links
have bounded capacity. Recall that our constructions depend crucially on the
ability to build up potentially unbounded (though finite) sequences of messages
on each link.

A different way to avoid the consequences of our impossibility result is to relax
the correctness specification to only require eventual or probabilistic correctness.
For example, we can design protocols to be self-stabilizing, in which case they
eventually recover from an arbitrary state (including any state that can occur
after a sequence of crashes) to a good state. Afek and Brown [1993] showed how
to make a self-stabilizing data link and token ring protocol over an unreliable
communication medium. However, self-stabilizing protocols have to tolerate
some bad behavior before eventually converging to a good state. Thus, the
existence of self-stabilizing Data Protocols does not contradict our result.
Similarly, the existence of randomized protocols (that work correctly, with high
probability, even in the face of crash failures) does not contradict our result.

13. Conclusions

A common line of research into fault-tolerance is to either design protocols that
are resilient to faults or to show impossibility results for a particular set of faults.
Our approach is to find the fault span, or the set of reachable states, for a
particular fault model. The approach is similar to string generation problems in
complexity theory. We want to see what strings (i.e., global states) we can
generate, given a set of string manipulation operations (i.e., faults and normal
protocol actions such as sending and receiving packets) and a set of restrictions
on sequences of operations (e.g., restrictions imposed by the model based on
synchrony and partial synchrony). The asynchronous model is best suited for this
approach because it imposes the least restrictions on the ordering of operations.

Fault-spans can provide insight into possible failure modes of protocols. For
instance, we know that in the CAML model (Crashing, Asynchronous, Memory-
less and Lossy), a protocol that cannot deal with being in any possible state, is
guaranteed to be incorrect. This can be used to prove the celebrated FLMS
result, which in turn shows that a widely used Data Link protocol (HDLC) is
incorrect. As another example, we showed that token passing and resource
allocation protocols will work incorrectly in this model.

Many real-life protocols have possible states that include states in which they
deadlock. Rather than do extensive state-space exploration techniques (which
work only for finite state models), we can show that these protocols will not work
in the CAML model. As we described above, we can only obtain a correct
protocol for the CAML model by changing one or more of the assumptions or by
relaxing the specification. An example of the former is to require NVM; an
example of the latter is to design self-stabilizing protocols which only guarantee
eventual correctness.

Some readers may argue that the constructions used to show faulty behavior
are extremely involved and are so are “unlikely” to occur in practice. But the

291The Fault Span of Crash Failure

major difficulty with this argument is making the term “unlikely” precise. If it
were possible to estimate probabilities of crashes and asynchronous behaviors, it
may be possible to show that our faulty executions have low probability of
occurrence. However, very little knowledge of such probability distributions
exists. Further, we have made no attempt to show that our constructions are
optimal. Perhaps there are shorter, “more likely” constructions that can drive the
system to the same target state.

In the absence of a definite and small probability that can be assigned to such
erroneous executions, the only practical alternative is to conclude that the
protocol does not work. Given such a lurking danger and the high cost of
network failures, we believe that most practitioners (after such a result is pointed
out) would rather switch to a protocol that is certifiably correct, as long as the
correct protocol is reasonably inexpensive. Fortunately, the literature shows that
changing the system assumptions (i.e., adding NVM) does allow the design of
correct protocols at little cost.

The CAML result also shows that self-stabilization is not just limited to
“recovery from bizarre faults”. Even simple and commonly occurring failure
modes like node crashes can conspire to drive systems into arbitrary states. This
connection between self-stabilization and crash fault-tolerance is one that seems
worthy of further exploration.

From a theoretical standpoint, computing the set of reachable states is
considered difficult because it does not lend itself to familiar inductive ap-
proaches. The fault span in the CAML model is very close to the maximum
possible. One might wonder whether there are nontrivial characterizations of the
set of reachable states for other models? Our results for other link models show
that the fault span approach can apply to other models. The results for the
CAMO model show that we can drive any acyclic subset of the nodes and links to
arbitrary states; the results for the CAM model show that we can drive nodes to
arbitrary states. We also provide counterexamples to show that we cannot control
all nodes and all links in the CAM and CAMO models. These results, summa-
rized in Figure 1, also provide a form of sensitivity analysis for the CAML result.
They show that the ability of links to lose packets is crucial for the CAML result.

We have not studied fault-spans using other models of faults or asynchrony
though we believe that such study could provide new insights. There are several
other interesting combinations besides the CAML model that are appropriate for
modeling networks. We can select among synchronous, asynchronous, and
partially synchronous (e.g., for real-time systems) timing models. We can select
various combinations of link faults (non-FIFO, crashes, corruption, insertion, loss,
duplication) and node faults (crash, arbitrary memory failure, Byzantine faults).

In terms of our approach, we believe that a characterization in terms of
reachable global states was more fruitful than a characterization using behaviors
that was used in Fekete et al. [1993]. It also helped to pose a more general
question than a more specific one. We initially asked ourselves if resets were
impossible in this model, before we considered the easier (but more general)
question of fault spans.

Our notation representing global states using node and link state vectors
considerably improved the readability of our proofs. The vector notation allowed
compact manipulation of global states. Also, after defining facets of the link
model using a crash, locality and loss lemma, the remainder of the proof was

292 G. VARGHESE AND M. JAYARAM

completely algebraic and model independent. We hope that this notation may be
useful elsewhere.

In conclusion, we believe we now understand the possible effects of crash
failures when no NVM is available. Our result provides useful insight for
protocol designers, and a precise justification of earlier folk theorems. We hope
it will lead to further investigation of fault spans in other models.

ACKNOWLEDGMENTS. We would like to thank Alan Fekete for his detailed
comments and helpful suggestions. We also thank Yishay Mansour for his helpful
comments.

REFERENCES

AFEK, Y., AWERBUCH, B., AND GAFNI, E. 1987. Applying static network protocols to dynamic
networks. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science (Oct.).
IEEE Computer Society Press, Los Alamitos, Calif. pp. 358 –370.

AFEK, Y., AND BROWN, G. M. 1993. Self-stabilization over unreliable communication media. Distr.
Comput. 7, 1, 27–34.

ATTIYA, H., DOLEV, S., AND WELCH, J. L. 1995. Connection management without retaining
information. Inf. Comput. 123, 2, (Dec.), 155–171.

BARATZ, A., AND SEGALL, A. 1988. Reliable link initialization procedures. IEEE Trans. Commun.
(Feb.), 144 –153.

DIGITAL EQUIPMENT CORPORATION. 1983. Phase IV NSP Functional Specification. Digital Order
Number AA-X439A-TK.

FEKETE, A., LYNCH, N. A., MANSOUR, Y., AND SPINELLI, J. 1993. The impossibility of implementing
reliable communication in the face of crashes. J. ACM, 40, 5 (Nov.).

FINN, S. C. 1979. Resynch procedures and a fail-safe network protocol. IEEE Trans. Commun.
COM-27, 6 (June), 840 – 845.

JAYARAM, M. 1996. Fault span of crash failures. M.S. Thesis, Washington Univ. St. Louis, MO.
JAYARAM, M., AND VARGHESE, G. 1997. The complexity of crash failures. In Proceedings of the 16th

Annual ACM Symposium on Principles of Distributed Computing (Santa Barbara, Calif., Aug.
21–24). ACM, New York, 179 –188.

LYNCH, N. A., AND TUTTLE, M. R. 1989. An introduction to input/output automata. CWI Quarterly
2, 3, 219 –246.

LYNCH, N. A. 1996. Distributed Algorithms. Morgan-Kaufman, San Francisco, Calif.
MCQUILLAN, J. M., RICHER, I., AND ROSEN, E. C. 1980. The new routing algorithm for the

arpanet. IEEE Trans. Commun. COM-28, 5 (May), 711–719.
TANNENBAUM, A. 1996. Computer Networks, 3rd ed. Prentice-Hall, Upper Saddle River, N.J.
WATSON, R. W. 1981. Timer based mechanisms in reliable transport protocol connection manage-

ment. Comput. Netw. 5 (Feb.), 47–56.

RECEIVED JULY 1997; REVISED JULY 1999; ACCEPTED JULY 1999

Journal of the ACM, Vol. 47, No. 2, March 2000.

293The Fault Span of Crash Failure

