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Abstract

This paper presents several distributed algorithms that
cause a token to continually circulate through all the nodes
of a mobile ad hoc network. An important application of
such algorithms is to ensure total order [5] of message de-
livery in a group communication service. Some of the pro-
posed algorithms are aware of, and adapt to changes in, the
ad hoc network topology. When using a token circulation
algorithm, a round is said to complete when every node
has been visited at least once. Criteria for comparing the
algorithms include the average time required to complete a
round, number of bytes sent per round, and number of nodes
visited per round. Comparison between the proposed algo-
rithms is performed using simulation results obtained from
a detailed simulation model (with ns-2 simulator).

1. Introduction

This paper presents several distributed algorithms that
cause a token to continually circulate through all the nodes
of a mobile ad hoc network. An important application of
such algorithms is to ensure total order of message delivery
in a group communication service.

Mobile ad hoc networks are formed by a collection of,
potentially mobile, wireless nodes; communication links
form and disappear as nodes come into and go out of each
other’s communication range. Such networks have many
practical applications, including home networking, personal
area networking, search-and-rescue, and military opera-
tions. Wireless networking has received a boost from the
development of standards such as IEEE 802.11 and Blue-
Tooth. These wireless technologies can potentially be uti-
lized to implement wireless ad hoc networks.

Mobile ad hoc networking has been an active research
area. Much of this activity has focussed on the design of
routing and medium access control protocols, since effi-
ciency of these protocols can have a significant impact on

performance. However, there has been very little work on
the development of distributed services for mobile ad hoc
networks, such as group communication.

A group communication service forms an important
building block for applications in dynamic distributed sys-
tems and is useful in many applications that involve collab-
orations among a group of people (e.g., a whiteboard ap-
plication). A group communication service can be used by
an application designer as a high-level service, allowing the
application to remain oblivious to details of the dynamic
network environment. The key features of agroup commu-
nication service are: (1) maintaining information regard-
ing group membership (who is in a group and who is not),
and (2) letting nodes within a group communicate with each
other in anorderedmanner – many types of orders are use-
ful, including total order (wherein all nodes in a group re-
ceive all messages in an identical order) [5].

The group communication problem becomes especially
difficult in a mobile ad hoc environment wherein links can
repeatedly fail and recover. There has been significant re-
search activity on group communication in traditional wired
networks (see Section 2). The vast body of this research is
an indicator of the significance of the group communica-
tion service paradigm. Group communication services have
been successfully used in the past as building blocks and
abstractions for implementing distributed tasks. Past work
on total ordering has yielded several approaches which use
a token to implement the total order. These algorithms have
two flavors:

� As exemplified by the algorithms in [19, 3], totally
ordered message delivery is achieved by continually
circulating atoken through all the nodes of the net-
work in a virtual ring. The token circulates around
the virtual ring carrying a sequence number. When a
node receives the token, it assigns sequence numbers
(carried with the the token) to its messages, and then
multicasts the messages to the group members. The
sequence number carried in the token is incremented
once for each message sent by the node holding the to-



ken. Since the messages are assigned globally unique
sequence numbers, total order can be achieved. (Ad-
ditional mechanisms are needed depending on the de-
sired level of reliability.)

� In the above approach, each message is multicast by
the sender node, tagged with a sequence number ob-
tained from the token. An alternative approach [12, 9]
is to store the messages in the token itself – since the
token visits all nodes in a virtual ring, the messages
will eventually reach all the nodes, the order in which
messages are added to the token determining the order
in which they are delivered to the nodes. Clearly, this
approach would result in large tokens (since messages
are carried in the token itself).

Both these approaches depend on the existence of a vir-
tual ring in the network. But the prior work has not suffi-
ciently addressed the issue of determining efficient embed-
dings of rings (around which a token may be circulated) in
networks with dynamically changing topology. Past the-
oretical work on ring embeddings assumes specific target
topologies (e.g., [22]); we are not aware of any work on
embedding rings in arbitrary dynamic topologies.

In this paper, we will consider mechanisms for finding
approximations to a virtual ring that change dynamically as
the topology changes and that are efficient according to cer-
tain metrics. Since token circulation around a virtual ring is
a useful component of many existing group communication
mechanisms for wired networks, we will consider ways of
improving the performance of such mechanisms in mobile
ad hoc networks.

The rest of this paper is organized as follows. Section 2
summarizes the related work, Section 3 describes the per-
formance measures that we study, the algorithms are pre-
sented in Section 4, the simulation results appear in Sec-
tion 5, and Section 6 concludes the paper.

2. Related Work

As mentioned earlier, the majority of the past research in
the area of ad hoc and packet radio networks has focused on
routing and medium access control protocols.

Group communication has been well-studied for static,
wired networks, with results ranging from commercial sys-
tems to theoretical impossibility proofs. Originally, group
communication services were designed for local area net-
works (e.g., Isis [5]). In considering how to extend such ser-
vices to large-scale distributed systems, the key new issue is
how to handle partitions, which are now much more likely
to occur due to failures of links and nodes [2]. Many papers
have presented algorithms to deliver messages in various
consistent orders within groups, either on top of a layer that

deals with membership and view issues, or intertwined with
them (e.g., [3, 10, 13, 8, 16]).

Baldi and Ofek [4] compare sending multicast messages
over a tree versus a ring embedded in a network for real-
time systems. They do not discuss how to find the embed-
dings. For their comparisons, the ring is obtained by going
twice around a spanning tree of the network and ignoring
repeated nodes. Their results show that the ring is actually
better than the tree in some situations. Their results indi-
cate that it is worth investigating ring embeddings in ad hoc
networks.

A few papers have looked at the problems involved
in group communication for mobile cellular environments,
which have mobile hosts and mobile support station infras-
tructure. Cho and Birman [7] describes enhancements to the
ISIS group communication system to handle mobile clients.
An algorithm to ensure message delivery in causal order
is described by Prakash et al. [18]. El-Gendy et al. [11]
present a model based on the two-tiered approach for pro-
viding group communication. The multicast problem for
mobile hosts has been studied in [23, 1].

We are unaware of any work on token passing in mobile
ad hoc networks. However, Prakash and Baldoni [17] de-
scribe a multi-level architecture for use in various types of
mobile environment, including ad hoc networks, and show
how a three-round group membership protocol can be used
to construct groups, i.e., for group membership. Their pa-
per does not address how to achieve totally ordered message
delivery.

[20] presents an algorithm that circulates asoftware
agent(analogous to our token) to collect information about
network topology. The procedure used by agents to travel
through the network is analogous to the LF algorithm de-
scribed later in this paper. It is worth noting that the pro-
posed LR algorithm (described later) performs better than
algorithm LF.

3. Performance Measures

Before presenting our performance measures, we define
some terminology used later in the paper. When we say that
a tokenvisitsa node, it implies that the token is received by
the group communication service running on that node. On
the other hand, when we say a token isroutedby a node,
it means that the network layer at that node simply relayed,
or forwarded, the token to another node. A token may be
routedby a node withoutvisiting that node. We define a
round to be a minimal length execution sequence in which
each node is visited at least once.

The following are the performance measures that we will
apply to our algorithms.

� Round length: Thelengthof a round is the number of
node visits made by the token in one round. Note that,



in general, a given node may be visited multiple times
in a round. (Of course, by the definition of a round,
there must be at least one node that is visited exactly
once within a round.)

� Message overheadmeasured asnumber of bytes sent
per round: This overhead measures the overhead due
to all packets transmitted to complete one round. If
the packet takes multiple hops to reach a destination,
the bytes required to transmit the packet on each hop
are counted. If any packet is lost and needs to be re-
transmitted, the retransmissions are counted as well.
Similarly, the overhead of sending control packets in
the medium access control protocol is also included in
the message overhead (in our simulations, we use the
IEEE 802.11 wireless medium access protocol).

� Time overheadmeasured astime required to complete
a round: The time required to complete a round is the
duration of time from when the last node in the pre-
vious round is visited until when the last node in the
current round is visited.

4. Token Circulation Algorithms

Let us first consider what would happen if the token cir-
culation algorithm were to ignore the network topology and
choose an arbitrary order to visit the nodes. For instance,
in a ring consisting of nodes 1, 3, 5, 2, 6, 4, 1, if the nodes
are visited in the order1; 2; 3; 4; 5; 6; 1; 2; 3; 4; 5; 6; :::, then
between any two consecutive visits, the token takes sev-
eral hops – in this case, although the length of the
round is 6 (which is optimal), message overhead is large
(since each node visit requires the token to take several
hops). On the other hand, visiting the nodes in the order
1,3,5,2,6,4,1,3,5,2,6,4... still results in the optimal length,
but lower message overhead. Thus, the latter visit order
should be preferred. However, if the visit order is chosen
without taking the topology into account, in general, the al-
gorithm will not typically choose the best possible order of
visits.

The above example suggests that it is useful to utilize
network topology information in determining the order in
which nodes are visited. However, knowledge of the net-
work topology, particularly in mobile environments, is ex-
pensive to achieve. Therefore, in this paper, we explore to-
ken circulation algorithms which use only local neighbor-
hood information, and also consider an algorithm that does
not use any topology information.

One simple approach for keeping track of neighbors is
by means of “hello” messages (e.g., [6]) – each node pe-
riodically broadcasts a hello message, the period being re-
ferred to as thehello interval. Each nodei assumes that a
nodej is its neighbor if nodei has recently received a hello

message fromj. On the other hand, if nodei does not re-
ceive a hello from nodek for a “hello threshold” number
of consecutive hello intervals, theni assumes thatk is not
its neighbor. The hello mechanism may be implemented as
a part of the group communication service, or alternatively,
this information may be obtained by the network layer and
made available to the group communication service via a
system call.

The algorithms that we have explored are characterized
by the following parameters, which control how the node
holding the token determines the next node to be visited by
the token – the letters in the parentheses in each item be-
low will be used to form the abbreviated names of proposed
algorithms, as described later:

� Local (L) versus Global (G):In local algorithms, the
next node to send the token to is chosen from amongst
the nodes that are believed to be neighbors of the node
possessing token. Aglobal algorithm may direct the
token towards any node in the network.

� Recency (R) versus Frequency (F):In case ofrecency
algorithms, the decision on the next recipient of the
token is based on howrecentlythe nodes have had the
token. In case offrequencyalgorithms, the decision is
based on howfrequentlythe nodes have had the token.

� Visiting “next” node on route to a desired destina-
tion (N): This variation is only relevant forglobal al-
gorithms. Once a desired destination has been deter-
mined by a global algorithm, there are two possibili-
ties: (a) the token is sent directly to the chosen destina-
tion – other nodes on the route to this destination will
route the token, but the token will notvisit these in-
termediate nodes. (b) Alternatively, the current token-
holder may send the token to the next node on the route
to the chosen destination – effectively, the token will
visit all nodes on the route to the chosen destination.
In order to implement the second mechanism, the net-
work layer must be able to provide to the application
layer the identity of the next node on the route to the
desired destination.

Figure 1 shows six algorithms that are obtained using the
above variations. We will describe each algorithm later in
this section. The first six algorithms follow the same frame-
work: The token carries with it some “count” information
for each node in the system. When a node receives the to-
ken, it chooses the next recipient of the token using this
count information, updates its own count information in the
token, and sends the token to the chosen next recipient. The
criteria for choosing the next token recipient and updating
the count depend on the particular algorithm. We first sum-
marize the possibilities for these two procedures, followed
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Figure 1. Decision tree with algorithms at the
leaves

by a more detailed discussion of each algorithm evaluated
in the paper.

� Updating the counts: For recencyalgorithms, the
count for nodei (as stored in the token) represents the
last “time” when nodei was visited. “Time” in this
case is a variable, initialized to 0, that is incremented
by 1 each time the token visits a node – the time vari-
able is also carried in the token. Forfrequencyalgo-
rithms, the count for nodei is the number of times the
token has visited nodei.

� Choosing the next token recipient:For choosing the
next recipient, local algorithms are only allowed to
consider nodes that are currently believed to be the
token-holder’s neighbors, whereas global algorithms
are allowed to consider all nodes. In most of our algo-
rithms, the next recipient is the node, among those al-
lowed to be considered, with the smallest count value,
ties being broken either arbitrarily or by using some
other criteria (specified later). The exception to this
rule is the global algorithm that visits intermediate
nodes, in which case the next destination is actually
theneighborof the current token-holder that is on the
path to the node with the smallest count.

The token contains one count for each node in the network;
each count can potentially grow without bound, although
overflow is unlikely with, say, 64 bits allocated per count.

Now we discuss each proposed algorithm individually.

4.1 Algorithm Local-Frequency (LF)

The Local-Frequency (LF) algorithm keeps track of how
many times each node has been visited, and sends the token
to the least-frequently visited neighbor of the token-holder.

To implement this algorithm, thecount for each node, as
stored in the token, contains the number of past token visits
to that node.

Note that, since the token-holder may not have a precise
knowledge of its neighbors, occasionally the chosen node
may no longer be its neighbor. To protect against the poten-
tial loss of the token in such cases, we use a TCP connection
to deliver the token. The TCP protocol, running on top of
a unicast routing protocol for ad hoc networks, will even-
tually deliver the token to the intended recipient (provided
that the recipient is not partitioned away). This approach
is used for all our algorithms. (In our simulations, the Dy-
namic Source Routing [15] protocol is used for routing in
ad hoc networks.)

The following argument proves that if there is no mo-
bility and the topology is connected, then the LF algorithm
ensures that every node is visited infinitely often, i.e., there
is no starvation. Suppose in contradiction that there is star-
vation in some execution. LetS be the set of starved nodes
andF be the set of non-starved nodes (those that get the
token infinitely often). Note thatF cannot be empty; if it
were,S would contain all the nodes and the token would
have nowhere to be. Consider the situation after the last
time than any node inS gets the token. Since the topology
graph is connected, there exists a nodex that has at least one
node inS as a neighbor. Eventually whenx gets the token,
it sees one of its neighbors,y, in S as its least-frequently
visited neighbor and sends the token toy, a contradiction.

However, the LF algorithm has the unfortunate property
that the round length can increase without bound in certain
network topologies, even if there is no mobility. For ex-
ample, consider the network shown in Figure 2. Suppose
that, initially, the token resides at node 1. Assume that the
LF algorithm breaks ties in favor of the neighboring node
with the smallest identifier. In this case, it is easy to verify
that the length of a round will grow unboundedly with time,
when using the LF algorithm.

4.2 Algorithm Local-Recency (LR)

The Local-Recency (LR) algorithm is similar to LF, ex-
cept that the leastrecentlyvisited neighbor of the token-
holder is chosen as the next recipient of the token. To im-
plement this algorithm, thecountfor each node, as stored in
the token, contains the “time” (as defined earlier) when the

3

2

5

1 4

Figure 2. A network topology for which the LF
round length is unbounded



node was last visited by the token.
A similar argument to that for LF shows that there is no

starvation in the case of static connected topologies. In fact,
the behavior of LR is much better than that of LF on the
static graph in Figure 2 – it ensures a round length that is
never more than seven.

In any static connected graph, a round length of at most
2n can be achieved. The reason is that the nodes can al-
ways be visited according to a spanning tree of the graph,
backtracking where necessary. The LR algorithm attempts
to improve on this round length by taking advantage of cy-
cles to avoid the backtracking. Our simulation results in
section 5 show that, in most topologies, the LR algorithm
succeeds in improving on the2n bound. However, there do
exist graphs on which the LR algorithm has a round length
exponential inn.

4.3 Global Algorithms

In these algorithms, the token is sent to the node that has
been visited the least recently (in algorithm GR) or least fre-
quently (in algorithm GF) amongall the nodes in the sys-
tem, not just among the token-holder’s neighbors.

When using the GR algorithm, ties will occur only dur-
ing the first round, and subsequently, the count values for
the different nodes will always be distinct. However, ties
may potentially occur at any time when using the GF algo-
rithm. If ties are broken arbitrarily when using GF as well,
then GF and GR would perform similar to each other. To
explore algorithm behavior further, in our simulation of GF,
when breaking such ties, we favor nodes that are the token-
holder’s neighbors. Thus, this tie-breaker procedure for GF
needs the hello mechanism to maintain neighborhood infor-
mation.

When using both the GR and GF algorithms, the number
of nodes visited in each round (i.e., round length) is equal
to the number of nodes in the network. It is easy to see that,
with the GR algorithm, the token visits nodes in the same
order in each round. On the other hand, this is not necessar-
ily true for the GF algorithm. For instance, consider nodes
A, B and C that are fully connected. In this case, when us-
ing algorithm GF, the token may visit the nodes in the order
ABCBACABCBAC... – here, in some rounds the token vis-
its the nodes in order ABC while in other rounds, the order
is BAC.

4.4 Global Algorithms with Next

These algorithms first determine the node with smallest
count value from among all nodes in the network. Recall
that the counts are included in the token. Then, the token is
sent to the neighbor of the token-holder on the route to the
node with the smallest count. These algorithms require the

ability to query the network layer to determine the neighbor
on the route to a given destination. We present simulation
results only for GRN, since our experiments showed that
GFN on the average performs very poorly. The reason for
the poor performance of GFN is that, since the intermedi-
ate nodes are also visited, there typically is a node, sayx,
whose frequency value becomes much higher than the rest.
Then the other nodes are visited many times beforex is vis-
ited again, causing a large round length.

4.5 Algorithm Iterative Search (IS)

We also considered an algorithm that tries tolearn from
the past to improve future performance of the algorithm.
Such algorithms can improve performance when the time
spent by the network in a given topology increases. The al-
gorithm tries to find a Hamiltonian path in the network if
there exists one. Pseudocode appears in Figure 3. In the
mobile case, we simulated two versions of this algorithm,
an ideal one in which nodes had perfect knowledge of their
neighbors, and a realistic one in which the nodes relied on
hello messages to learn their neighbors. Due to space limi-
tations and since this algorithm did not perform particularly
well in the mobile case without perfect knowledge of neigh-
bors, we do not explain the algorithm further here.

5. Simulation Results

In this section, we present performance evaluation re-
sults for the algorithms discussed above. Of these seven al-
gorithms, the results for the GFN algorithm are not shown,
for reasons stated in section 4.

The performance evaluation is done with the ns-2 simu-
lator [21] with CMU extensions [6]. We consider a system
consisting of 20 nodes. To model mobility of the nodes,
we used therandom waypointmobility model from [6]. In
each mobility scenario generated using this model, the 20
nodes are initially placed in randomly chosen positions in
a 1000m� 300m box. Then, the nodes follow randomly
chosen paths. For our experiments, we used node speeds of
6, 12, 18 and 24 m/s.

Each algorithm runs as an application on top of TCP, the
Dynamic Source Routing (DSR) protocol [15], and IEEE
802.11 MAC. By using TCP as the transport protocol, we
ensure that the token does not get lost due to route failures
or transmission errors. To facilitate implementation of the
GRN algorithm, we augmented DSR such that the token
circulation algorithm can obtain the next node on the route
to any given destination (the GRN algorithm doesnot need
to make use of hello messages for this purpose).

We implemented the “hello” protocol to maintain neigh-
borhood information – this protocol is used for LF, LR, GF



and for one of the simulation runs for the Iterative Search al-
gorithm, but not for GR, GRN and the other simulation run
for the Iterative Search algorithm. The hello threshold of 3
was used in all simulations. The hello interval was varied
as explained later.

In our performance evaluation, we measured average
values of the metrics discussed in section 3. Specifically,
the metrics are the average time in seconds per round, the
average number of bytes transmitted per round (including
any hello packets, TCP packets, and medium access con-
trol packets), and the average number of nodes visited per
round. Results reported here are averaged over many sce-
narios. The following parameters were varied:

� Hello interval: In our simulations, hello interval val-
ues of 0.1, 0.3, 0.5 and 0.7 second are used. As de-
scribed earlier, some of our algorithms find it useful
to know the neighbors of the node that holds the to-
ken. Of course, since the nodes are mobile, it is not
possible to maintain perfect knowledge of the neigh-
borhood. The accuracy of this information may affect
the overhead of the token circulation mechanisms.

An issue of interest to us is the frequency with which
the hello messages are transmitted. Greater frequency
results in greater accuracy in the neighborhood infor-
mation, but also greater overhead of the hello mes-
sages. The issue of hello frequency has been previ-
ously studied in the context of unicast routing in ad hoc
networks [6], however, here we consider the impact of
hello frequency (or hello interval) on the overhead of
token circulation algorithms.

� Speed: The speed at which the nodes move in a ran-
dom mobility pattern.

In the following, we first present simulation results in
the case when there is no mobility and the topologies are
connected. The reason to consider static scenarios is to ob-
tain some intuition about the behavior of the algorithms in
the simpler case. Then, we consider the simulation results
when there is mobility and discuss how mobility affects the
behavior of the algorithms.

5.1 Static topologies

In this case, we generated many connected random graph
topologies for the 20 nodes and simulated the various algo-
rithms. Since the topology is static, the routes, once de-
termined using DSR, do not break during the simulation.
Figures 4, 5 and 6 shows the results we obtained. These
are plots, for each algorithm, of the number of nodes vis-
ited, number of bytes sent, and amount of time elapsed per
round, averaged over 50 different scenarios.

For the number of nodes visited per round, the GF and
the GR algorithms perform the best; this is of course by

definition, since we are only counting the number of vis-
ited nodes and not the number of nodes that relay the to-
ken. (The GF and GR algorithms pay a cost in terms of
bytes and time for having the perfect round length.) Good
performance in terms of round length is exhibited by the It-
erative Search algorithm, which converges to the optimal
round length after some time, and by the LR algorithm,
which within one round converges to close to the optimal
round length. In section 4 we mentioned that the LF algo-
rithm had the unfortunate property that the round length can
increase without bound in certain topologies. Our simula-
tion results indicate that this property of the LF algorithm
occurs in many graphs rather than on a small set of graphs.

For the time and number of bytes per round, our results
show the same trends per algorithm as for the round length.
The main difference, as noted above, is that the GF and GR
algorithms are no longer optimal.

Among the global algorithms, the GF algorithm per-
forms the best, since ties in this algorithm are broken by pre-
ferring the neighboring node. Thus, this global algorithm
benefits by also making use of local neighborhood informa-
tion. The GRN algorithm’s performance is also comparable
to the local algorithms and the GF algorithm due to the fact
that the intermediate nodes are visited.

5.2 Dynamic topologies

For the simulation of dynamic topologies we have two
sets of plots:

1. First, we vary the speed of the nodes (6, 12, 18, and
24 m/sec) and find the average amount of time, aver-
age number of bytes and the average number of nodes
visited per round for all the scenarios with the different
speeds.

2. Second, we vary the hello intervals (0.1, 0.3, 0.5, and
0.7 seconds) and find the average amount of time, aver-
age number of bytes and the average number of nodes
visited per round for all the scenarios with the different
hello intervals.

In both cases, the number of scenarios simulated is 30. The
duration of the simulation was varied inversely with the
speed, with the duration for the slowest speed (6 m/s) be-
ing 50 seconds.1

When we simulated mobility, the LR algorithm contin-
ues to perform well in all situations, similar to the static

1For both versions of the Iterative Search algorithm, an additional 20
seconds, during which no topology changes took place, was appended to
the simulation time. Since this algorithm relies more on past history than
the others, we thought this would give the algorithm a better opportunity to
converge; however, it still did not perform particularly well in the realistic
case when hello messages were used.



topology cases. We found that the behavior of the other al-
gorithms became somewhat unpredictable in some cases –
the simulation results are presented in Figures 7 through 12,
and discussed later. We attribute this aspect of our results to
three factors:

1. The effect of uncertainty in the topology knowledge
due to the hello protocol: Since hello packets are sent
at finite intervals, and the hello threshold must neces-
sarily be non-zero, there is a delay before a node learns
that a new link has been formed, or an existing link
is broken. In addition, since hello messages are sent
unreliably, the loss of several hello messages consecu-
tively can lead a node to believe that a link is broken,
when it really is not broken.

2. The effect of the TCP timeout intervals when partitions
occur: This phenomenon is similar to what has been
observed in previous studies of TCP on ad hoc net-
works [14]. In some of our mobility patterns, partitions
occasionally occur, and last for non-negligible inter-
vals of time. Since the global algorithms may choose
any node in the network as the destination, the token-
holder may choose an unreachable node as the destina-
tion – the TCP connection attempting to send the token
to this node will timeout, backoff the timeout interval,
and retry. Multiple timeouts and retries may occur if
the partition lasts for a long interval. Now when even-
tually the partitions do merge, the TCP timeout inter-
vals may have become very large, and it takes a while
for the TCP connection to send the token again, result-
ing in a loss of time. Even in case of local schemes, this
situation can occur, because the local topology infor-
mation is not accurate at all instants of time – specif-
ically, it takes some time for a node to determine that
its link with another node is broken. Thus, a node
may attempt to send a packet to a node that is actually
partitioned away, even when a local scheme is used.
However, the likelihood of these events when using lo-
cal schemes is much lower than when using the global
schemes.

3. The chaotic nature of the algorithms themselves. This
chaotic nature is easy to see in case of algorithm LF,
which relies on information about howfrequentlythe
neighboring nodes have been visited by the token. In
case of LF, small changes in the topology have big ef-
fects on the round length. For instance, in Figure 2, we
saw that the round length using algorithm LF grows
without bound. However, if an edge is added between
nodes 1 and 3, then the round length quickly stabilizes
to five, which is optimal. As the topology changes
with node movement, the system could be switching
back and forth between topologies with bounded and
unbounded round lengths with respect to LF.

Effect of speed: Figures 7, 8, and 9 show the plots of
the average time per round, average number of bytes per
round, and average round length versus speed for all the
algorithms. For time and bytes, the algorithms from best
to worst are ordered: LR, ideal IS, LF, GRN, GF, IS with
hello, and GR. For round length, the ranking is consistent
except for the fact that GR and GF by definition are opti-
mal. However, it is worth noting that this metric alone is
not adequate to measure the algorithm behavior, since GR
and GF have higher time and byte overheads. We conjecture
that the non-monotonicity exhibited in these plots is due to
the factors discussed above.

Effect of hello interval length: Figures 10, 11, and 12
show the plots of the average time per round, average num-
ber of bytes per round, and average round length versus
hello interval length for all the algorithms. The rankings
of the algorithms is essentially the same as that observed
when speed was varied.

In general, the larger the hello interval, the fewer the
number of bytes that will be sent for hello messages. How-
ever, a larger hello interval means that the neighbor infor-
mation can be more out-of-date, thus possibly incurring
more bytes on behalf of the algorithms. This complex inter-
action contributes to the non-monotonic behavior observed
in our simulations.

Our simulations indicate that the LR algorithm gives the
best overall performance.

6. Conclusion

We have studied the problem of circulating a token
throughout all the nodes of a mobile ad hoc network, a prob-
lem of interest for implementing totally ordered message
delivery in a group communication service. We have de-
scribed several distributed algorithms for this problem and
compared them by simulation. The overall best algorithm,
according to the metrics that we measured, was the Itera-
tive Search algorithm in the static case and the LR (Local-
Recency) algorithm in the dynamic case. This difference
in performance in the static and the dynamic case clearly
shows us that some algorithms that perform well in static
networks are not well suited for mobility.

Work is in progress to identify characteristics of graphs
on which LR has linear round length; the counter-example
graphs found so far have a complex recursive construction
(which we do not provide due to lack of space).

Additional work is needed to integrate token circulation
as described here with the mechanisms of a complete group
communication service. On the theoretical side, if upper
bounds on the overhead of these algorithms and/or lower
bounds on the achievable overhead could be obtained, they
could be compared with simulated performance of the pro-
posed approaches.



Finally, the algorithms presented here are not tolerant of
token loss (due to node failure or message lass) or of long-
term partitions of the ad hoc network. Classically, token
loss has been handled by invoking a leader election algo-
rithm when some node suspects the token has been lost.
Handling partitions is part of the purpose of the member-
ship maintenance aspect of a group communication service
and often depends on the application semantics.
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Variables intoken:

� visited[]: array of booleans, one entry per node, indi-
cates whether that node has been visited yet in the cur-
rent round; initially all false

� counting: boolean indicating whether counts are to be
calculated; initially false

� count: integer; initially 0

Local variables of nodei; 0 � i < n:

� neighborCount[]: array of counts fori’s neighbors; ini-
tially all ?

� curSender: id of node (other than self) that sent the
token toi most recently

� prevSender: id of node (other than self) that sent the
token toi previously

1. when nodei receivestokenfrom nodej:
2. neighborCount[j] := token.count
3. if (token.visited[i] = false) then
4. token.visited[i] := true
5. if (i 6= j) then prevSender:= curSender;

curSender:= j endif
6. endif
7. next:= getNext()
8. neighborCount[next] := token.count
9. sendtokento next

10. function getNext() returns node id
11 N := set of ids of all neighbors ofi
12. UV := fk : token.visited[k] = falseg
13. UV N := N \ UV // unvisited neighbors
14. if (jUV j = 0) then // all nodes are visited
15. token.visited[k] := false, 0 � k < n

16. token.counting:= false
17. token.count:= 0
18. returni
19. else if(jUV N j = 0) then // backtrack
20. token.counting:= true
21. token.count:= 1 +max(ftoken.countg[

fneighborCount[k] : k 2 Ng)
22. returncurSender
23. else// there is an unvisited neighbor
24. token.counting:= false
25. token.count:= 0
26. if (9k 2 N s.t. neighborCount[k] = ?) then
27. return any suchk
28. else
29. m := min(fneighborCount[k] : k 2 UV Ng)
30. S := fk 2 UV N : neighborCount[i] = mg
31. if prevSender2 S then returnprevSender
32. elsereturn anyk 2 S endif
33. endif
34. endif

Figure 3. Iterative Search algorithm.
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Figure 4. Average number of nodes visited
during each round
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Figure 5. Average time for each round

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

9
x 10

4

Round Number

A
vg

. N
um

be
r 

of
 B

yt
es

 / 
R

ou
nd

Iterative algorithm
LF algorithm       
LR algorithm       
GF algorithm       
GR algorithm       
GRN algorithm      

Figure 6. Average bytes for each round
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Figure 7. Average time per round vs. speed
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Figure 8. Average bytes per round vs. speed
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Figure 9. Average round length vs. speed
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Figure 10. Average time vs. hello interval
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Figure 11. Average bytes vs. hello interval
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Figure 12. Average round length vs. hello in-
terval


