
Distrib. Comput. (1997) 10: 149—157

Early consensus in an asynchronous system
with a weak failure detector*
André Schiper

Ecole Polytechnique Fédérale, Département d’Informatique, CH-1015 Lausanne, Switzerland

Received: April 1995 / Accepted: October 1996

Summary. Consensus is one of the most fundamental
problems in the context of fault-tolerant distributed com-
puting. The problem consists, given a set X of processes
having each an initial value v

i
, in deciding among X on

a common value v. In 1985, Fischer, Lynch and Paterson
proved that the consensus problem is not solvable in an
asynchronous system subject to a single process crash. In
1991, Chandra and Toueg showed that, by augmenting the
asynchronous system model with a well defined unreliable
failure detector, consensus becomes solvable. They also
give an algorithm that solves consensus using the )S
failure detector. In this paper we propose a new consensus
algorithm, also using the )S failure detector, that is more
efficient than the Chandra-Toueg consensus algorithm.
We measure efficiency by introducing the notion of latency
degree, which defines the minimal number of communica-
tion steps needed to solve consensus. The Chandra-Toueg
algorithm has a latency degree of 3 (it requires at least
three communication steps), whereas our early consensus
algorithm requires only two communication steps (latency
degree of 2). We believe that this is an interesting result,
which adds to our current understanding of the cost of
consensus algorithms based on )S.

Key words: Asynchronous system — Unreliable failure
detector — Consensus — Latency

1 Introduction

Consensus is one of the most fundamental problems in the
context of fault-tolerant distributed computing. The prob-
lem is defined on a set X of processes: each process p

i
3X

starts with an initial value v
i
, and the processes in X have

to agree on a common outcome value v, such that v is the
initial value of one of the processes in X. The consensus
problem is commonly classified as an ‘‘agreement’’ prob-
lem. Other well known agreement problems are the total

*Research supported by the ‘‘Fonds national suisse’’ under contract
number 21-43196.95

order broadcast problem (also called atomic broadcast), in
which the processes have to agree on the delivery order
of messages [9], and the atomic commitment problem,
in which the processes have to agree on the outcome
commit/abort of a transaction [1].

The consensus problem is considered to be a difficult
problem. The difficulty has been pointed out by Fischer,
Lynch and Paterson, who showed that consensus is not
solvable in an asynchronous system1 subject to even
a single process crash [7]. The Fischer-Lynch-Paterson
impossibility result has led to the introduction of random-
ization techniques in order to solve the consensus problem
[4]; it has also led to consider other system models such as
partial synchrony [5, 6]. A summary of these approaches
can be found in [3].

A significant step towards a general solution of the
consensus problem was accomplished in 1991 by the intro-
duction of the notion of failure detector [3]. Chandra and
Toueg showed that, by augmenting the asynchronous sys-
tem model with a well defined unreliable failure detector,
consensus becomes solvable. A failure detector can be seen
as a set of (failure detector) modules FD

i
, one module FD

ibeing attached to every process p
i

in the system. Each
failure detector module FD

i
maintains a list of processes

that it currently suspects to have crashed. Chandra and
Toueg characterize the failure detectors by two properties:
completeness and accuracy. Informally, completeness re-
quires that the failure detector eventually suspects every
crashed process, while accuracy restricts the false suspi-
cions that a failure detector can make. Chandra and Toueg
introduce various failure detectors, among others the
Eventually ¼eak failure detector, denoted )W, and the
Eventually Strong failure detector, denoted )S. We come
back to the properties that characterize these failure de-
tectors in the next section. It is, however, important to
mention that )W is the weakest failure detector for
solving consensus in asynchronous systems [2].

1An asynchronous system sets no bound on the transmission delays
of messages, which makes it impossible to distinguish a crashed
process from a process that is just slow, or connected through a slow
channel



In this paper we give a new consensus algorithm that is
more efficient than the Chandra-Toueg consensus algo-
rithm based on )S. We measure efficiency by introducing
the notion of latency degree, which defines the minimal
number of communication steps needed by an algorithm
A to solve a problem P2. In the absence of failure, and
assuming that the failure detector makes very few mis-
takes, the latency degree gives an indication of the minimal
delay incurred by A to solve P. To illustrate the latency
degree measure, consider the atomic commitment problem
[1]: the classical two phase commit protocol (or 2PC) has
a latency degree of 3 (the protocol requires at least 3 com-
munication steps), whereas the three phase commit proto-
col (or 3PC) [11] has a latency degree of 5 (the protocol
requires at least 5 communication steps).

The Chandra-Toueg algorithm for solving consensus
with the )S failure detector3 has a latency degree of 4.
A trivial optimization may however reduce the latency
degree of the algorithm from 4 to 3 (see Sect. 4.3). Thus we
consider that the Chandra-Toueg consensus algorithm
using )S has a latency degree of 3. The early consensus
algorithm given in the paper, which also uses the )S
failure detector, has a latency degree of 2. We believe that
this is an interesting result, which adds to our current
understanding of the cost of consensus algorithms based
on )S.

The rest of the paper is organized as follows. Section 2
presents the system model, defines the latency degree
measure, the consensus problem, and the properties of the
)S and )W failure detectors. Section 3 gives an over-
view of the Chandra-Toueg consensus algorithm, and in-
troduces our early consensus algorithm. The complete
algorithm and its proof are given in Sect. 4. Section 4 also
analyses the cost of both algorithms, in terms of latency
degree and number of messages. We conclude the paper
with Sect. 5.

2 System model and definitions

2.1 System model

We consider a set of n processes X"Mp
1
, p

2
, 2 , p

n
N

completely connected through a set of channels. Processes
fail by crashing (we do not consider Byzantine failures).
A correct process is a process that does not crash in an
infinite run. Communication is by message passing, asyn-
chronous and reliable:

— ‘‘asynchrony’’ means that there is no bound on commun-
ication delays, nor on relative process speeds;

— ‘‘reliability’’ means that a message sent by a process p
i
to

a process p
j
is eventually received by p

j
, if p

j
is correct (i.e.

does not crash)4.

2The concept of latency degree allows us to avoid the ambiguous
notion of number of phases of an algorithm
3The )S failure detector is equivalent to the )W failure detector,
see [3]. The consensus algorithm becomes simpler using )S rather
than )W
4The early consensus algorithm is proven with a weaker channel
assumption: a message sent by a process p

i
to a process p

j
is eventual-

ly received by p
j
, if p

j
and p

i
are both correct

A process p
i
3X may (1) send a message to another process,

(2) receive a message sent by another process, (3) perform
some local computation, or (4) crash. We note f the
maximum number of processes of X that can be subject to
crash failures, and we assume that there is always a major-
ity of correct processes in X, i.e. f(DX D/2 (or f(n/2)5.

2.2 Consensus

In the consensus problem, every process p
i
3X initially

proposes a value v
i
taken from a set of possible values, and

the processes in X have to decide on some value v such that
the following properties hold [3]:

¹ermination. Each correct process eventually decides.

»alidity. If a process decides v, then v was proposed by
some process.

Agreement. No two correct processes decide differently.

The Agreement condition allows incorrect processes to
decide differently from correct processes. In this paper
we consider uniform consensus, defined by the ºniform
Agreement property:

ºniform Agreement. No two processes (correct or not)
decide differently.

It has been shown that any algorithm that solves the
consensus problem using the failure detector )S (see
Sect. 2.3), also solves the uniform consensus problem [8].
In particular, the Chandra-Toueg consensus algorithm
based on the )S failure detector solves uniform con-
sensus.

2.3 Failure detectors

We recall briefly some definitions taken from [3]. A failure
detector is a set of n local modules FD

1
to FD

n
, where FD

iis attached to process p
i
3X. Each failure detector module

FD
i
maintains a list of processes that it currently suspects

to have crashed. ‘‘Process p
i
suspects process p

j
’’ at some

local instant t, means that at local time t, process p
j
is in

the list of suspected processes maintained by FD
i
. A failure

detector module can make mistakes by incorrectly sus-
pecting a process. Suspicions are not necessarily stable: if
at a given instant p

i
suspects p

j
, it can later learn that the

suspicion was incorrect. Process p
j
is then removed by FD

ifrom its list of suspected processes.
Chandra and Toueg define various failure detectors

ordered by reducibility. Let FD and FD@ be two failure
detectors. FD@ is said to be reducible to FD if there exists an
algorithm A

FD?FD{
that transforms FD into FD@. FD@ is

also said to be weaker than FD, written FD@(FD. If
FD(FD@ and FD@(FD hold, then FD and FD@ are said to
be equivalent, which is written FD:FD@. From the failure
detectors in [3], we consider only )W and )S:

Eventually ¼eak. )W. The )W failure detector satisfies
the two following properties:

5In [3] it is shown that without this assumption consensus cannot be
solved using )S in asynchronous systems

150



(1) weak completeness: eventually every crashed pro-
cess is permanently suspected by some correct process, and

(2) eventual weak accuracy: there is a time after which
some correct process is not suspected by any correct
process.

Eventually Strong. )S. The )S failure detector satis-
fies the two following properties:

(1) strong completeness: eventually every crashed pro-
cess is permanently suspected by every correct process, and

(2) eventual weak accuracy: there is a time after which
some correct process is not suspected by any correct
process.

)W is the weakest failure detector that makes it possible
to solve consensus in an asynchronous system [2]. More-
over, as )W:)S [3], the same result holds for )S. In
the following, we consider the )S failure detector.

2.4 Latency degree

The cost of a distributed algorithm is sometimes expressed
in terms of number of phases. Instead of this cost measure,
we introduce the notion of latency degree that we believe is
less ambiguous. The latency degree can easily be defined
using a slight variation of Lamport’s logical clock [10].
Consider Lamport’s logical clock, with the following rules:

— a send event and a local event on a process p
i
do not

modify p
i
’s logical clock value;

— let ts(send (m)) be the time-stamp of the send(m) event,
and ts(m) the time-stamp carried by message m. We
define: ts(m) $%&"ts (send(m))#1;

— the time-stamp of an event receive(m) on a process p
i
is

the maximum between ts(m), and the time-stamp of the
event at p

i
immediately preceding the receive(m) event.

We are specifically interested here in algorithms that solve
agreement problems. Consensus and atomic commitment
are typical examples of agreement problems. The events by
which processes decide play a key role in the runs of
agreement algorithms, and we are interested in the time-
stamp of the decision events, i.e. the time-stamp of the
events by which processes decide.

Given a run RA generated by an agreement algorithm
A, we define the latency ofA as the largest time-stamp of
all decide events (at most one per process) in the run RA .
As an example, consider the following algorithm: (1) pro-
cess p

1
3X sends initially a message m to X, and (2) every

process p
j
9p

1
, upon reception of m, sends the message

ack(m) to p
1
. Process p

1
decides as soon as it receives

ack(m) from a majority of processes, and no other process
decides. This algorithm is usually called a one phase algo-
rithm. It has a latency of 2.

An agreement algorithm A can generate runs with
different latencies. Consider for example the Chandra-
Toueg consensus algorithm using )S: depending on the
failures, and on the suspicions, the number of rounds
needed to complete the algorithm can vary, and thus the
latency can also vary from one run to another. We define
the latency degree of an agreement algorithm A as the
minimal latency ofA over all possible runsRA that can be
produced byA. The minimal latency is typically obtained

in a run in which no suspicions are generated, which is the
most frequent case.

With this measure, the Chandra-Toueg consensus al-
gorithm using )S has a latency degree of 4 (which can
actually be reduced to a latency degree of 3 by a trivial
optimization, see Sect. 4.3), and our early consensus algo-
rithm has a latency degree of 2 (see Sect. 4.3). Moreover,
the two phase commit protocol (or 2PC) [1] has a latency
degree of 3, and the three phase commit protocol [11] has
a latency degree of 5.

3 The Chandra-Toueg vs the early consensus algorithm

In this section we briefly outline the Chandra-Toueg con-
sensus algorithm using the )S failure detector (or CT
algorithm to abbreviate), and sketch our early consensus
algorithm. The complete consensus algorithm, its proof,
the analysis of its latency degree and of its cost in number
of messages, are given in Sect. 4.

3.1 Overview of the CT algorithm

The CT algorithm is based on the rotating coordinator
paradigm [3]. The computation proceeds in asynchronous
rounds. Every process in X knows that, during round r, the
coordinator p

c
is process number (r mod n)#1. In round r,

all the messages are sent to, and received from, the current
coordinator p

c
. Every process p

i
maintains a variable

estimate
i
which denotes p

i
’s estimate of the decision value:

estimate
i
is initially set to p

i
’s initial value v

i
, and is up-

dated during the execution of the consensus protocol, until
a decision is reached. In every round r, the algorithm is as
follows:

1. at the beginning of round r, every process p
i
sends

estimate
i
to the current coordinator p

c
;

2. the coordinator p
c
waits to receive the estimate from

a majority of processes, updates its estimate according to
the estimates received (the coordinator chooses the esti-
mate that has been updated in the most recent round), and
broadcasts its new estimate;

3. a process p
i

waits either (1) to receive the new
estimate from the coordinator, or (2) to suspect the coor-
dinator. In the first case, p

i
adopts the estimate received,

sends ack to the coordinator, and proceeds to the next
round. In the second case, p

i
does not change its estimate,

sends a negative acknowledgement nack to the coor-
dinator, and also proceeds to the next round;

4. the coordinator waits to receive either ack or nack
from a majority of processes. If the coordinator has re-
ceived the acks from a majority of processes, its current
estimate becomes the decision value, and the coordinator
reliably broadcasts the decision to all. Otherwise, the coor-
dinator proceeds to the next round.

The algorithm satisfies the following property, which
ensures the ºniform Agreement property of the uniform
consensus problem. Once a majority of processes have
adopted estimate

c
proposed by the coordinator p

c
of round

r (i.e. once a majority of processes have sent ack to the

151



coordinator), then the value estimate
c
is ‘‘locked’’: no other

value can become the decision value.
We discuss the latency degree of the CT algorithm, and

its cost in number of messages in Sect. 4, when comparing
it with our algorithm.

3.2 Overview of the early consensus algorithm

The early consensus algorithm is also based on the rotat-
ing coordinator paradigm, and similarly, every process
p
i

manages a variable estimate
i
. In round r, the coor-

dinator p
c
tries to impose its estimate as the decision value.

However no acks are used to reach a decision. Instead,
when a process p

i
receives estimate

c
, it forwards estimate

cto all. A process decides on estimate
c

as soon as it has
received estimate

c
from a majority of processes. In other

words, the decision can be taken in round r as follows:

1. at the beginning of round r, the coordinator
p
c
broadcsts its estimate

c
value to all;

2. a process p
i
receiving estimate

c
, reissues it to all;

3. as soon as p
i
has received estimate

c
from a majority

of processes, it decides on estimate
c
.

The protocol indeed terminates in the first round if the first
coordinator p

1
is correct and not suspected. If p

1
crashes

while in the first round, or p
1

is suspected by a majority of
processes, then the processes proceed to a second round.
Before proceeding to the next round, the estimates of
the processes are updated, so as to satisfy the following
property:

If some process has decided on estimate
c
in round r, then

any process that proceeds to round r#1, starts round
r#1 with estimate

c
as its current estimate.

This property ensures the ºniform Agreement property of
the uniform consensus problem: if some process has deci-
ded estimate

c
in round r, then in any round r@'r the

decision can be on no other value than estimate
c
.

4 The early consensus algorithm

4.1 The algorithm

The complete consensus algorithm is given in Fig. 1, as
a function early-consensus. In order to solve consensus,
each process p

i
3X calls early-consensus with its initial

value v
i
as parameter. The call of the function terminates

when p
i
executes the instruction return (either at line 13, or

at line 30): we say that p
i
decides on a value v exactly when

p
i
executes return v. The function early-consensus consists

of two concurrent tasks: one task executes lines 11—13, the
other task executes lines 14—49.

The first task handles the reception of the decision
message (p

j
, v

j
, decide) (line 10), and reissues the message

to all (line 11). This ensures that, if a correct process
decides, then every correct process eventually also decides.

The second task (lines 14—49) is the central part of the
algorithm. The variable r

i
indicates the current round of

process p
i
. The round number r

i
is included in every

message sent by p
i
(see for example line 19); moreover,

a process p
i
only receives messages carrying a round num-

ber equal to its current round number r
i
(see for example

line 22). Each round of the early consensus algorithm is
divided into two phases, numbered 1 and 2:

— in phase 1 of every round o, the early consensus algorithm
tries to decide on the estimate value of the coordinator
p
c
of round o;

— if the coordinator of round o is suspected by a majority
of processes, then phase 2 of round o is used to define
a new consensus problem, to be solved in round o#1.
The initial value of process p

i
for the consensus problem

of round o#1 is the estimate of p
i
at the end of phase

2 of round o.

Phase 1 (lines 15—30). At line 19, the coordinator sends its
current estimate to all the processes (message (p

i
, r

i
, 1,

estimate
i
)). The estimate is a pair (process number, initial

value) (see line 3). This representation allows us to attach,
to an initial value v

i
, the process number i of the process

that has proposed v
i
. The third field in the message

(p
i
, r

i
, 1, estimate

i
) indicates that the message is sent dur-

ing phase 1. The message (p
i
, r

i
, 1, estimate

i
) is received by

a process p
j
at line 226: the condition ‘‘when phase

i
"1’’ at

line 22 states that the message (p
j
, r

i
, 1, estimate

j
) can be

received by p
i
if and only if p

i
is in phase 1. At line 25,

process p
i
adopts the estimate received from p

j
, and at line

26 process p
i
forwards this estimate to all. The lines 25, 26

are not performed by the coordinator, because (1) the
coordinator does not need to adopt its own estimate, and
(2) at line 19 the coordinator has already sent its estimate
to all.

Process p
i
decides at line 30 on estimate

i
.second as soon

as it has received (p
j
, r

i
, 1, estimate

i
) from a majority of

processes. At line 29, process p
i
sends its decision to all.

This ensures that, if p
i
is correct, then every correct process

eventually also decides.

From phase 1 to phase 2 (lines 31—37). If no process sus-
pects the coordinator in phase 1, then the decision value is
the estimate of the coordinator. If a process p

i
suspects the

coordinator at line 31 (notation: coord
i
3)S

i
), then

p
i

sends (p
i
, r

i
, suspicion) to all (line 32), indicating

that p
i
suspects the coordinator of round r

i
. Once a process

p
i
knows that the coordinator is suspected by a majority of

processes, then p
i
proceeds to phase 2 (line 36). Moreover,

upon proceeding to phase 2, p
i
sends (p

i
, r

i
, 2, estimate

i
) to

all (line 37). The reception of this message at line 38 forces
a process to phase 2 (line 40); upon proceeding to phase 2,
every process p

i
similarly sends (p

i
, r

i
, 2, estimate

i
) to all

(line 41). The condition ‘‘phase
i
"1’’ at line 40, prevents

a process that has already sent (p
i
, r

i
, 2, estimate

i
) to all at

line 37, from sending the same message twice.

Phase 2 (lines 38—48). In phase 2, process p
i
receives mess-

ages (p
j
, r

i
, 2, estimate

j
) (line 38). Upon each reception of

such a message, p
i
adopts the estimate

j
value, if and only if

estimate
j
. first"coord

i
(line 43), i.e. if and only if the esti-

mate is that of the coordinator of the current round. Once
p
i

has received the message (p
j
, r

i
, 2, estimate

j
) from

a majority of processes, p
i
can switch to phase 1 of the next

round (lines 45, 46).

6A message sent by p
i
to all is also received by p

i

152



Fig. 1. Early consensus algorithm: code for a process p
i

153



4.2 The proofs

4.2.1 Preliminary lemmas

We start by proving five lemmas (Lemmas 4.1 to 4.5) that
will help in proving the correctness of the early consensus
algorithm of Fig. 1. In these lemmas, we say that process p

idecides v in round o of the early consensus algorithm, if
either (1) p

i
decides at line 30 of Fig. 1 when r

i
"o, or (2) p

idecides at line 13 because at line 11 it received a message
(p

j
, o, v, decide).

Lemma 4.1. If one correct process decides, then each cor-
rect process eventually decides.

Proof. Let p
i

be a correct process that decides, either
at line 30 or at line 13. In both cases, p

i
sends the deci-

sion to all (message (p
i
, r

j
, v

j
, decide) sent at line 12,

message (p
i
, r

i
, estimate

i
.second, decide) sent at line 29). By

the reliable channel assumption, each correct process that
has not yet decided, eventually receives (p

j
, r

j
, v

j
, decide)

(line 11), and also decides. K

Lemma 4.2. ¸et f(n/2 and assume the failure detector
)S. If no correct process decides in round r6o, then each
correct process eventually proceeds to round o#1.

Proof. The proof is by induction on the round number o.

i) Base step: o"0.
Assume that no correct process decides in round 0. We

prove the following successive results:

i1) At least one correct process eventually proceeds
from phase 1 to phase 2 of round 0.

i2) Each correct process eventually proceeds from
phase 1 to phase 2 of round 0.

i3) Each correct process eventually proceeds from
phase 2 of round 0 to round 1.

Proof of i1). We prove the result by showing that ‘‘no
correct process decides in round 0’’ and ‘‘no correct process
proceeds to phase 2 of round 0’’ lead to a contradiction.

Assume that no correct process decides in round 0, and
that no correct process proceeds to phase 2 of round 0: we
first prove that (a) there is at least one correct process that
never receives any ‘‘estimate’’ message at line 22.

Proof of (a). The proof is by contradiction. Assume that
every correct process receives (p

j
, 0, 1, estimate

j
) at line 22:

in this case each correct process sends (p
i
, 0, 1, estimate

i
)

to all (line 26). Because phase
i
"1 remains true for all

correct processes, and no correct process decides in round
0, all correct processes eventually receive more than n/2
messages (p

j
, 0, 1, estimate

j
) at line 22 (recall f(n/2).

Thus the condition msgCounter
i
'n/2 (line 28) becomes

eventually true for each correct process, i.e. each correct
process eventually decides in round 0. A contradiction.
Thus (a) holds: there is at least one correct process that
never receives any ‘‘estimate’’ message at line 22.

Property (a) can only hold if p
1
, the coordinator of

round 0, is incorrect (otherwise, the message (p
i
, 0, 1, es-

timate
i
) sent at line 19 by p

1
is eventually received by all

correct processes at line 22, as by hypothesis no correct
process proceeds to phase 2, i.e. phase

i
"1 remains true for

all correct processes). If p
1

is incorrect, by the eventual
strong completeness property of )S, process p

1
is event-

ually permanently suspected by every correct process.
Thus every correct process sends (p

i
, r

i
, suspicion) to all

(line 32). As f(n/2, the condition nbSuspicions
i
'n/2 (line

36) eventually becomes true for every correct process, and
every correct process eventually proceeds to phase
2 (line 36). A contradiction.

Proof of i2). By i1), if no correct process decides in round
0, then at least one correct process p

k
proceeds to phase

2 of round 0. In this case, p
k
sends (p

k
, 0, 2, estimate

k
) to all

(line 37). Because p
k

is correct, each correct process that
does not move to phase 2 at line 36, eventually receives
some ‘‘estimate’’ message at line 38, and proceeds to phase
2 of round 0 (line 40).

Proof of i3). By i2), if no correct process decides in
round 0, then each correct process eventually proceeds
to phase 2 of round 0 (line 36 or 40). At line 37 or 41, each
correct process sends (p

i
, 0, 2, estimate

i
) to all. By hypo-

thesis, there are more than n/2 correct processes.
Thus each correct process receives more than n/2
messages (p

j
, 0, 2, estimate

j
) (line 38), and the condition

msgCounter
i
'n/2 (line 44) eventually becomes true. Thus

each correct process eventually proceeds to round 1. This
completes the proof of the case o"0.

ii) Induction step
Assume that no correct process decides in round

r6o#1. We have to prove that, in this case, each correct
process eventually proceeds to round o#2.

If no correct process decides in round r6o#1, then
trivially no correct process decides in round r6o. By the
induction hypothesis, each correct process eventually pro-
ceeds to round o#1. We have to prove that, if no correct
process decides in round o#1, then all the correct pro-
cesses eventually proceed to round o#2.

The proof is identical to the proof of the base case
o"0 (with o#1 instead of 0, and o#2 instead of 1), and
will thus not be reproduced. The proof consists similarly of
the following steps:

ii1) At least one correct process eventually proceeds
from phase 1 to phase 2 of round o#1.

ii2) Each correct process eventually proceeds from
phase 1 to phase 2 of round o#1.

ii3) Each correct process eventually proceeds from
phase 2 of round o#1 to round o#2. K

Lemma 4.3. All messages (p
i
, o, 1, estimate

i
) sent during

phase 1 of round o carry the estimate
c
value of the coor-

dinator p
c
of round o.

Proof. The proof is by induction on the length of the
send-receive chain of messages (p

i
, o, 1, estimate

i
). The

messages (p
i
, o, 1, estimate

i
) are numbered as follows:

— the message (p
i
, o, 1, estimate

i
) sent by the coordinator at

line 19 is numbered 0;
— if the message (p

j
, o, 1, estimate

j
) received by p

i
at line 22

is numbered k, then the message (p
i
, o, 1, estimate

i
) sent by

p
i
at line 26 is numbered k#1.

154



Base step. Trivially, for the message (p
i
, o, 1, estimate

i
)

number 0, estimate
i
is the estimate of the coordinator of

round o.

Induction step. Consider a message (p
i
, o, 1, estimate

i
)

number k#1. This message is sent by some process p
i
at

line 26, after having received, at line 22, the message
(p

j
, o, 1, estimate

j
) number k. By induction hypothesis, this

message carries the estimate
c
value of the coordinator of

round o. Therefore, because of line 25, the message
(p

i
, o, 1, estimate

i
) also carries the estimate

c
value of the

coordinator of round o. K

Lemma 4.4. If a process (correct or not) decides v in round
o, then v is the ‘‘estimate

c
.second ’’ value of the coordinator

p
c
of round o.

Proof. A process p
j
can decide in round o either at line 13,

or at line 30. However, process p
j
can decide at line 13 of

round o if and only if there is a process p
i
that has decided

at line 30, as it is not possible for all processes that decide
in round o to do so at line 13. Consider thus the decision of
p
i

at line 30. If p
i

is the coordinator of round o, then
estimate

i
.second is trivially the estimate

c
.second value of

the coordinator of round o. Otherwise, by line 25, the
decision is on the first estimate value received by p

i
at line

22. By Lemma 4.3, the value received is the estimate of the
coordinator of round o. K

Lemma 4.5. If a process (correct or not) decides v in round
o, then every process p

i
that begins round o#1 does so with

estimate
i
.second"v.

Proof. By Lemma 4.4, if v is decided in round o, then v is
the estimate

c
.second value of the coordinator p

c
of round o.

A process p
j
can decide in round o either at line 13, or at

line 30. However, process p
j
can decide at line 13 of round

o if and only if there is a process p
i
that has decided at line

30, as it is not possible for all processes that decide in
round o to do so at line 13. Consider thus the decision at
line 30.

Let p
i
be a process that decides v in round o at line 30.

By Lemma 4.4, v is the estimate
c
.second value of the coor-

dinator p
c
of round o. Moreover, because of line 28, when

p
i
decides at line 30, a majority of processes in phase 1 have

sent (p
j
, o, 1, estimate

j
) to all. By Lemma 4.3, every esti-

mate sent in phase 1 is the estimate of the coordinator p
c
of

round o. Thus when p
i
decides at line 30, a majority of

processes (including p
i
itself ) have their estimate equal to

the estimate of p
c
. Let us call this set CoordEstimateSeto :we have DCoordEstimateSeto D'n/2.

Consider now a process p
k

that proceeds to round
o#1. This is only possible after p

k
has received the mess-

age (p
j
, o, 2, estimate

j
) from a majority of processes, in-

cluding from itself (line 44). Let us call this set
AuthorizationSet

k
: we have DAuthorizationSet

k
D'n/2.

Altogether we have DAuthorizationSet
k
D'n/2 and

DCoordEstimateSeto D'n/2, therefore AuthorizationSet
kWCoordEstimateSetoO0. This means that p

k
receives

the message (p
j
, o, 2, estimate

j
) at line 38 from at least one

process in CoordEstimateo , and at line 43 process p
k
sets

estimate
k
.second to v. Thus, when p

k
proceeds to round

o#1, we have estimate
k
.second"v. K

4.2.2 Correctness proof of the early consensus algorithm

We now prove, based on the lemmas of the previous
section, that the early consensus algorithm satisfies the
Validity, Termination and Uniform Agreement properties.

Proposition 4.6 (Validity). ¹he early consensus algorithm
of Fig. 1 satisfies the »alidity property.

Proof. Suppose, for contradiction, that Validity does not
hold. Then some process p

i
sets estimate

i
.second to a value

that is not the proposal of any process. Let o be the earliest
round in which this happens.

Case 1. Assume that this happens in phase 1 of round o,
i.e. at line 25. By Lemma 4.3 every estimate sent in phase
1 of round o is the estimate of the coordinator p

c
of round

o. If o"0, estimate
c
.second is the proposal of p

c
. A contra-

diction.
If o'0, then estimate

c
.second is the estimate of p

c
at

the end of round o!1. As by hypothesis o is the earliest
round in which some process p

i
sets estimate

i
.second to

a value that is not the proposal of some process, the value
estimate

c
.second is the proposal of some process. A contra-

diction.

Case 2. Assume that this happens in phase 2 of round o:
some process sets for the first time estimate

i
.second to

a value that is not the proposal of some process in phase
2 of round o. This can only occur at line 43, where estimate

jis the estimate received at line 38. Any estimate received at
line 38 is sent by some process either at line 37, or at line
41. In both cases, the estimate sent is the estimate of some
process in phase 1 of round o. Thus some process must
have set, in phase 1, its estimate to a value that is not the
proposal of some process, in contradiction with the result
established by Case 1. K

Proposition 4.7 (Termination). ¸et f(n/2 and assume the
failure detector )S. ¹hen, the early consensus algorithm
of Fig. 1 satisfies the ¹ermination property.

Proof. By the eventual weak accuracy property of the )S
failure detector, there is a time t after which some correct
process p

k
is not suspected by any correct process. Let o be

a round such that (i) p
k

is the coordinator of o, and (ii)
every correct process enters round o after t (if such a round
does not exist, then by Lemma 4.2 one correct process has
decided in a round o@(o, and so, by Lemma 4.1, every
correct process decides, and the Termination property
holds). As f(n/2 and no correct process suspects p

k
in

round o, the condition nbSuspicions
i
(n/2 holds forever

for every process p
i
in round o. Thus no process (correct or

not) ever proceeds to phase 2 of round o. In round o,
process p

k
sends (p

k
, o, 1, estimate

k
) to all (line 19). As

p
k

is correct, each correct process eventually receives
(p

k
, o, 1, estimate

k
) (line 22). Moreover, at line 26, each

correct process sends (p
i
, o, 1, estimate

i
) to all. As f(n/2,

any correct process that does not decide by receiving
a ‘‘decide’’ message (line 11), will receive enough estimates
to decide at line 30. K

Proposition 4.8 (Uniform Agreement). ¹he early consen-
sus algorithm of Fig. 1 satisfies the ºniform Agreement
property.

155



Proof. Assume that a process p
i
(correct or not) decides

v in round o. We prove that another process p
j

cannot
decide on a different value.

Assume that p
j

decides in round o@. If o"o@, by
Lemma 4.4, p

i
and p

j
both decide on the estimate

c
.second

value of the coordinator p
c

of round o, i.e. on the same
value.

Consider the case o@'o (if o@(o, rename p
i
to p

j
, and

p
j
to p

i
). By Lemma 4.5, every process p

i
that begins round

o@'o, does so with estimate
i
.second"v. By Lemma 4.4,

the value decided by p
j
in round o@ is also v. K

4.3 Latency degree

In the best case (no suspicion, the first coordinator
p
1

correct), every correct process p
i
decides at line 30 on

p
1
’s proposal, after having received (p

j
, 1, 1, estimate

j
) at

line 22 from a majority of processes:

— the message (p
1
, 1, 1, estimate

1
) sent initially by p

1
at line

19 carries a time-stamp equal to 1;
— assume that every process p

i
9p

1
receives first, at line 22,

the message (p
1
, 1, 1, estimate

1
) from p

1
. Thus every pro-

cess p
i
9p

1
sends at line 26 the message (p

i
, 1, 1, estimate

i
),

carrying a time-stamp equal to 2;
— every process decides at line 30 after having received the
message (!, 1, 1, estimate

j
) from a majority of processes,

where the messages received carry either a time-stamp
equal to 1 (message received from the coordinator p

1
), or

a time-stamp equal to 2 (message received from another
process p

j
9p

1
). The early consensus algorithm has thus

a latency degree of 2.

In comparison, the latency degree of the CT algorithm is 4,
which can however be trivially reduced to 3. Consider the
first round of the CT algorithm (Sect. 3.1):

1. the initial estimate sent by every process p
i
to the

first coordinator p
1

carries a time-stamp equal to 1;
2. the updated estimate of p

1
, sent to all, carries a time-

stamp equal to 2;
3. the act or nack sent by every process p

i
to the

coordinator carries a time-stamp equal to 3;
4. finally, the decision broadcast by the coordinator

carries a time-stamp equal to 4.

This gives a latency degree equal to 4. The reader might
however notice that, in the first round of the CT algorithm,
step 1 can be omitted. The first round can start in step 2 by
having p

1
send its proposal to all. This trivial optimization

leads to a consensus algorithm with a latency degree of 3.

4.4 Cost analysis

We compare now the number of messages issued by the
early consensus algorithm with the number of messages
issued by the CT algorithm. In both cases, we consider the
best scenario. However, there are two ways to count the
number of messages: (1) only the messages needed to
reach the decision are counted, or (2) all the messages sent
by the algorithm are counted. To understand the differ-
ence, consider Fig. 1. In the best case scenario, every cor-
rect process decides at line 30. Nevertheless, every process
deciding at line 30 has to send, at line 29, the decision

message (p
i
, r

i
, estimate

i
.second, decide) to all. In the ab-

sence of failures, this last message is not necessary for
deciding, but nevertheless has to be sent. Moreover, we
distinguish the case of a broadcast network from the case
of a point-to-point network: with a network of the first
kind, sending a message to all costs only 1 message, where-
as with one of the second kind, sending a message to all (i.e.
to n!1 other processes) costs n!1 messages.

Broadcast network: number of messages needed to reach
a decision. In the best case scenario, the early consensus
algorithm issues only n messages to reach the decision (one
message sent by p

1
to all at line 19, one message sent to all

by each of the processes p
2
,2, p

n
, at line 26). In compari-

son, the optimized CT algorithm issues n#1 messages
(one estimate sent by p

1
to all, n!1 acknowledgments sent

by p
2
,2, p

n
to p

1
, and one decide message sent by p

1
to

all). To summarize, both algorithms require O(n) messages
in the best case scenario.

Point-to-point network: number of messages needed to
reach a decision. In the case of a point-to-point network,
the early consensus algorithm requires n (n!1) messages
(n ‘‘send to all’’), whereas the optimized CT algorithm
requires 3 (n!1) messages ((n!1) estimates sent by p

1
to

all, (n!1) acknowledgments sent to p
1

by p
2
,2, p

n
, and

(n!1) decide messages sent by p
1

to all).
To summarize, in a point-to-point network the early

consensus algorithm costs O(n2) messages in the best case
scenario, whereas the CT algorithm costs O(n) messages.

Broadcast network: total number of messages sent. When
counting the total number of messages sent by both algo-
rithms, the ‘‘decision’’ messages have to be added to the
previous numbers:

— in the early consensus algorithm, the ‘‘decision’’ message
is sent by every process p

i
to all, at line 29. This adds

n messages in a broadcast network, leading to an overall
cost of 2n!1 messages.
— in the CT algorithm, the ‘‘decision’’ message is sent by
p
1

to all using a reliable broadcast. Reliable broadcast is
implemented by having every process that receives the
decision, reissue the decision to all [3]. This is identical to
the additional cost of the early consensus algorithm, i.e.
n messages, leading to an overall cost of 2n#1 messages.

Thus both algorithms still require O (n) messages in the
best case scenario.

Point-to-point network: total number of messages sent. In
a point-to-point network, the additional ‘‘decision’’ mess-
ages, sent by every process to all, lead to an additional cost
of n (n!1) messages for both algorithms. Thus, in the best
case scenario, we have an overall cost of O(n2 ) messages
for both algorithms (more precisely, 2n (n!1) messages
for the early consensus algorithm, and (3#n) (n!1) for
the CT algorithm).

5 Conclusion

The paper has presented a new algorithm for solving
consensus in an asynchronous system using the failure

156



detector )S. In the best case scenario, the algorithm
solves consensus in two communication steps, which
is called a ‘‘latency degree of 2’’. In comparison, the
Chandra-Toueg consensus algorithm has a latency degree
of 4, which can be improved through a trivial optimization
to a latency degree of 3. Thus our early consensus algo-
rithm requires one less communication step than the
Chandra-Toueg consensus algorithm.

This result is not only of theoretical interest. It is also of
practical consequence for consensus related problems, e.g.
atomic broadcast, also called total order broadcast (see for
example [9]). Consider the atomic broadcast of message
m to X, initiated by p

i
3X. The reduction of atomic broad-

cast to consensus requires 1 communication step, needed
to broadcast m to X [3]. In other words, when using the
early consensus algorithm, atomic broadcast has a latency
degree of 3: 1 communication step for the reduction of
atomic broadcast to consensus, and two communication
steps for consensus.

To conclude, we think that the existence of a consensus
algorithm with a low latency degree should contribute to
demystify consensus. Hopefully, this will lead to consider
consensus as it should be, i.e. as a basic building block for
implementing fault-tolerant distributed systems, rather
than just an interesting problem for theoreticians.

Acknowledgements. I would like to thank Rachid Guerraoui, Julie
Vachon and the anonymous reviewers for their comments and sug-
gestions that helped improve the paper.

References

1. Bernstein PA, Hadzilacos V, Goodman N: Concurrency control
and recovery in distributed database systems. Addison-Wesley,
New York 1987

2. Chandra TD, Hadzilacos V, Toueg S: The weakest failure
detector for solving consensus. J ACM 43(4): 685—722 (1996)

3. Chandra TD, Toueg S: Unreliable failure detectors for reliable
distributed systems. J ACM 43(2): 225—267 (1996). A preliminary
version appeared in the Proceedings of the Tenth ACM Sympo-
sium on Principles of Distributed Computing, pp 325—340.
ACM Press, August 1991

4. Chor B, Dwork C: Randomization in byzantine agreement. In:
Micali S (ed) Advances in computing research, randomness in
computation, vol 5, pp 443—497. JAI Press, 1989

5. Dolev D, Dwork C, Stockmeyer L: On the minimal synchrony
needed for distributed consensus. J ACM 34(1): 77—97 (1987)

6. Dwork C, Lynch N, Stockmeyer L: Consensus in the presence of
partial synchrony. J ACM 35(2): 288—323 (1988)

7. Fischer M, Lynch N, Paterson M: Impossibility of distributed
consensus with one faulty process. J ACM 32: 374—382 (1985)

8. Guerraoui R: Revisiting the relationship between non-blocking
atomic commitment and consensus. In: 9th International Work-
shop on Distributed Algorithms (WDAG-9) LNCS 972, pp
87—100. Springer, Berlin Heidelberg New York 1995

9. Hadzilacos V, Toueg S: Fault-tolerant broadcasts and related
problems. In: Mullender S (ed) Distributed systems, pp 97—145.
ACM Press, 1993

10. Lamport L: Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM 21(7): 558—565 (1978)

11. Skeen D: Nonblocking commit protocols. In: ACM SIGMOD
International Conference on management of data, pp 133—142.
ACM, 1981

André Schiper has been a professor of Computer Science at the
EPFL (Federal Institute of Technology in Lausanne) since 1985,
leading the Operating Systems laboratory. During the academic year
1992—93 he was on sabbatical leave at Cornell University, Ithaca
(NY). He was the program chair of the 1993 International Workshop
on Distributed Algorithm (WDAG-7), and co-organizer of the Inter-
national Workshop ‘‘Unifying Theory and Practice in Distributed
Systems’’ (Schloss Dagstuhl, Germany, September 1994). He is a
member of the ESPRIT Basic Research Network of Excellence in
Distributed Computing Systems Architectures (CaberNet). His cur-
rent research interests are in the areas of fault-tolerant distributed
systems and group communication, which has led to the develop-
ment of the Phoenix group communication middleware.

.

157


