
Distributed MST for Constant Diameter Graphs
EXTENDED ABSTRACT

Z v i L o t k e r B o a z P a t t - S h a m i r

zvilo@eng.tau, ac. il boaz@eng, tau. ac. il

Dep t . o f E l ec t r i c a l E n g i n e e r i n g

Tel A v i v U n i v e r s i t y

Te l A v i v 6 9 9 7 8

I s r ae l

Abstract

This paper considers the problem of distributively con-

structing a minimum-weight spanning tree (MST) for

graphs of constant diameter in the bounded-messages

model, where each message can contain at most B bits
for some parameter B. It is shown that the time required

to compute an MST for graphs of diameter 4 or 3 can be

as high as f~(~/'n/B) and f~(x~/-n/x~/-B), respectively. The

lower bound holds even if the algorithm is allowed to be

randomized. On the other hand, it is shown that O(log n)
time units suffice to compute an MST deterministically

for graphs with diameter 2, when B = O(log n). These
results complement a previously known lower bound of
f~(~/'n/B) for graphs of diameter ~(log n).

1 Introduct ion

The communication complexity of distributed network al-

gorithms is often determined by size parameters such as

the number of vertices or edges in the network. In con-
trast, the time efficiency of distributed solutions for vari-

ous problems on networks is sometimes largely affected
by other types of network parameters. For some natural
distributed network problems, the time complexity is con-
trolled by locality or sparsity measures such as the net-
work's diameter D (namely, the maximum distance be-

Permission to make digital or hard copies of all or part of this work for
personal o1" classroom use is granted without tee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, topost on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 01 Newport Pdaode Island USA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

D a v i d P e l e g

peleg@wisdom, weizmann, ac. il

Dept. of Computer Science
W e i z m a n n Ins t i t u t e

R e h o v o t 7 6 1 0 0

I s r ae l

tween any two vertices, measured in hops). This holds,

for example, for leader election and related problems [7].
Yet other problems are independent of (or sublinearly de-

pendent on) global parameters. Maximal independent set

computations and related problems fall into that category

[6].
This paper concerns the time complexity of the MST

problem. It is clear that f~(D) time is necessary for dis-

tributed MST construction in the worst case, and more

formally, for every n > 2 and 1 < D < In~2] there exist

weighted n-vertex networks of diameter D (e.g., formed
as a 2D-vertex ring with n - 2D vertices attached to it as
leaves) on which any distributed MST algorithm requires

f~(D) time.

However, it is natural to ask whether O(D)-time al-

gorithms exist for MST construction, or alternatively, the
problem depends also on other parameters of the network.
In particular, the need for information flow among ver-

tices residing on common cycles, in order to resolve the
fate of the links of that cycle, suggests that the capacity

of various cuts in the network may come into play.

It is obvious that in the extreme model allowing the
transmission of an unbounded-size message on a link in

a single time unit (cf. [6]), the problem can be solved
in O(D) time; simply collect the graph's topology and
the edge weights into a root vertex, compute an MST lo-
cally and broadcast it to all the vertices. The problem

thus becomes interesting in the more realistic, and rather

common, B-bounded-message model (henceforth, the B
model), in which message size is bounded by some value

B, and a vertex may send at most one message on each
edge at each time unit. It is customary to assume that
B _> loEn, so as to allow messages to contain node IDs;

another standard assumption is that an edge weight can
be contained in a single message. Our lower bounds do

6 3

not rely on any of these assumptions; our upper bounds
(algorithms) do.

In this/3 model (with/3 = O(log n)), the classical dis-

tributed MST construction algorithms of [2] and [1] were
communication optimal and required O(nlogn) and
O(n) time, respectively. Subsequently, the distributed

MST construction algorithms of [3] and [4] had time
complexity O(D + n °'613 log* n) and O(D + ~ log* n),
respectively.

Recently, a near-fight lower bound has been proved on

the time complexity of distributed MST construction [9].

Specifically, the time complexity of any deterministic al-
gorithm for MST was shown to be f~(x/~/(Blogn)).
However, this result was shown only for graphs of suf-
ficiently large diameter, specifically, D = D(logn).

The time complexity of distributed MST computation for

graphs of smaller diameter (i.e., D = o(log n)) was left
as an open problem.

In this paper we present negative and positive results
for constant-diameter graphs. On the negtaive side, we

extend the lower bound of [9] in two ways. First, we

present constructions that show that the time complex-

ity of distributed MST is f~(~/-n/B) even for graphs of

diameter 4, and f~(.~/-n/~/-B) for graphs of diameter 3.

Secondly, we show that all lower bounds hold even for

randomized algorithms. On the positive side, we show
that if the diameter of the graph is 2, then MST can be

constructed deterministically in O(log n) time units. This

result demonstrates a sharp threshold in the time com-
plexity, when the diameter changes from 2 to 3.

The remainder of this paper is organized as follows. In
Section 2 we define the basic terms we use. In Section 3

we present our lower bounds. In Section 4 we present the
algorithm for diameter 2. We conclude in Section 5.

2 Preliminaries

In this section we define the model and the MST problem.

we also define the mailing problem [9] which is key to our
lower bounds.

2.1 The model

A point-to-point communication network is modeled as
an undirected graph G = (V, E), where the vertices of

V represent the network processors and the edges of E

represent the communication links connecting them. Ver-

tices are allowed to have unique identifiers. The vertices
do not know the topology or the edge weights of the entire
network, but they may know the ID's of their neighbors
and the weights of the corresponding edges.

A weight function w : E ~ ~+ associated with the
graph assigns a nonnegative integer weight w(e) to each

e d g e e = (u,v) 6 E. The weightw(e) is known to
the adjacent vertices, u and v. The vertices can com-

municate only by sending and receiving messages over

the communication links. Communication is carried out

in a synchronous manner, i.e., all the vertices are driven

by a global clock. Messages are sent at the beginning
of each round, and are received at the end of the round.

(Clearly, our lower bounds hold for asynchronous net-

works as well.) At most one/3-bit message can be sent on

each link in one direction on every round. Our algorithms

assume that t3 is large enough to allow the transmission of
an edge weight and a node ID in a single message (this as-
sumption is not used for the lower bounds). To avoid sub-

tleties that do not affect the asymptotic time complexity,

we require that each node transmits at each round exactly

13 bits. (Otherwise, silence can be interpreted as useful
information, reducing the time complexity by a costant
factor.)

The length of a path p in the network is the number
of edges it contains. The distance between two vertices

u and v is defined as the length of the shortest path con-
necting them in G. The diameter of G, denoted D, is the

maximum distance between any two vertices of G.

2.2 The mailing problem

The mailing problem is defined in the following situation.
We are given a graph G with two distinguished vertices
s and r, referred to as the sender and the receiver, re-

spectively. Both the sender s and the receiver r store
b boolean variables each, X ~ , . . . ,X~ and X~' , . . . ,X~"

respectively, for some integer b > 1. An instance

of the problem consists of an initial assignment X =

{xi : 1 < i < b}, where xi 6 {0, 1}, to the variables of

s, such that X~' = xi. Given such an instance, the mailing
problem requires s to deliver the string X to the receiver

r, i.e., upon termination, the variables of r should contain
the output X r = xi for every 1 < i < b. Henceforth, we
refer to this problem instance as Mai 1 (G, s, r, X) , and to

64

the class of problem instances containing all strings X of

length b as Ma±].(G, s, r, b). Let TA(G, s, r, X) denote
the time required by algorithm A for solving the problem
instance Ma±]_(G, s, r, X) , and let TA(G, s, r, b) denote
the worst-case time complexity of algorithm A over the
class of problem instances Ma± 3. (G, s, r, b).

Remark 1: One important technical restriction we im-

pose on algorithms solving the mailing problem is the

following: In this paper we require that bits are com-

municated explicitly, i.e., bits are viewed as opaque ob-

jects that can only be stored and moved by shipping them
over communication links. In other words, we rule out

all sophisticated compression schemes. This restriction

may seem severe at first glance, but we argue that no gen-
erality is lost if we impose it. To see this, note that by

information-theoretic considerations, we have that under

any (possibly randomized) correct coding scheme, at least

a half of the bit-strings of length b have representations of

at least b - 1 bits long [5]. Since we consider asymptotic
worst-cases in this paper, we can disallow all non-trivial
codings without loss of generality.

!

2.3 The distributed MST problem

S ~ ~ ~ r : Vm.m2+l

Vl.m O~1 a,rn~ V~3OO2 Vm~~2~V~:: :
Vl.1 V2,1 V3.1 Vm.1

Figure 1: The graph Fm used in the lower bound for di-
ameter 4.

gies, and then argue that for each topology there is a col-

lection of edge weight assignments such that under these

assignments, the mailing problem can be reduced to MST.
This reduction shows that any lower bound on the mailing

problem applies to the MST problem. In the remainder of
this section, we concentrate on proving lower bounds on

the mailing problem; the reduction from MST is similar
to the one used in [9].

Formally, the minimum spanning tree (MST) problem

can be stated as follows. Given a graph G(V, E) and

a weight function w on the edges, it is required to find
a spanning tree M S T (G) C_ E whose total weight,

w (M S T (G)) = E e E M S T (G) o)(e), is minimal. In the
distributed model, the input and output of the MST prob-
lem are represented as follows. Each vertex knows the
I D s of its closest neighbors and the weights of the corre-

sponding edges. A degree-d vertex v E V with neighbors
U l , . . . , U d has d weight variables W~ , . . . , W~, with Wi v
containing the weight of the edge connecting v to ui, i.e.

W/~ = w(v, ui). The output of the MST problem at each
vertex v is an assignment to the (boolean) output variables
Y~, . . . , Y f , assigning 1 to Y~ if (ui, v) E M S T (G) and
0 otherwise.

3 Lower bounds on distributed

M S T construction

In this section we prove lower bounds on distributed MST
construction. The idea is to prove a lower bound on the
time complexity of the mailing problem in certain toplo-

3.1 D i a m e t e r 4 graphs

Fix a parameter m > 2. We start by defining a generic

graph F,n. Frn is defined using two basic building blocks.
The first is a path 7) on m nodes, defined by

= { v l , v 2 , . . . , v m }

E(7~) = {(vi, vi+l) : i = 1 , 2 , . . . , m - 1 } .

The graph Fm contains m 2 copies of the path
7)1, . . . , T~rn2, where the kth copy 7~a is defined by

V(P) =

E (P k) = {(Vi,k,Vi+i,k) : i = 1 , 2 , . . . , m } .

The second building block is a star graph. There are

two kinds of stars in Fro. The first star is called a level

star: for each i = 1, 2 , . . . , m, we add a node vi,m2+l
called level i center. For each path ;Oh we connect Vi,k to

Vi,m2+l. Formally, we define

E (C i) = {(vi,m2+l,Vi,k) : k = 1 , 2 , . . . , m 2 } .

The second kind of star is the center star: We add a sin-
gle node c and connect it to all the level center nodes.

6 5

Formally, we define

E(C) = {(e, vi,m2+l) : i = 1 , 2 , . . . , m } .

Overall, the graph Fm is defined by

V(Fm) = {vl,1, Vl,2,... , Vm,m2+l, e}

= I.Ji= 1

We denote the node v1,m2+l by s and the node Vm,m2+l
by r.

The following properties are obvious.

Lemma 3.1 For all m > 2, the number of nodes in Fm
is m 3 + m + 1 and its diameter is 4.

Proof: The node count is immediate from the construc-
tion. The diameter follows from the fact that the distance

between any node and e is at most 2. I

We now show that solving the mailing problem on Fm

requires f~(~/-n/B) time units. We use the following ob-

servation.

Lenuna 3.2 For any time t < m, the number of bits de-
livered at r by time t is at most tra/3.

Proof: Observe that the distance between s and r in Fm -

{c} is m + 1. It therefore follows that each bit delivered at
r by time m must have traversed the node c. The bound

follows from the fact that since the degree of c is m, at

most m/3 bits can cross e in each time unit. 1

Lemma 3.3 For any correct mailing algorithm A, any
ra >_ 2 and any m2-bit input string X , we have

T A (F m , s , r , X) >_ m / B .

Proof: Let t < m. Using Lemma 3.2 we get that the

number of bits that move from s to r in t time units is at

most tmB . Hence in the first m / B - 1 time units, fewer
than m 2 bits from s can be delivered at r. The lemma

follows. 1

As m = f~(,y'n), we can now prove the lower bound
for the mailing problem.

Lemma 3.4 For any correct mailing algorithm A and
m > 2, T A (F m , s , r , m 2) = f~(nl /3/B).

Remark 2: Dropping the restriction of "explicit commu-
nication" made in Remark 1 above, Lemma 3.3 no longer
holds, as clever encodings may succeed in mailing certain

strings X faster. Nevertheless, Lemma 3.4 still holds in

the worst case, as explained above. Details are deferred
to the full paper.

The lower bound for the MST construction problem

can now be established by a reduction from MST con-
struction to mailing. Essentially, the reduction shows

that for the graph Fro, it is possible to construct a cor-

responding family of weighted graphs ~ '~ , such that if
the mailing problem requires f~(t) time on Fm in the B

model, then any distributed MST construction algorithm

requires f~(t) time on some graphs of~ 'm in the/3 model.

More specifically, the weight assignment is as follows.

All graphs in Jrm have the following edge weights.

0,

~(e) = 0,
1,

10,

i f e E E(Pk)

if e E E(C)
i f e E E (C ~)
i f e E E(Ci) for2 < i < r n - 1

The only difference between different graphs is the

weights of edges in E(C1), i.e., edges of the type
(vl,m2+l,Vl,i), where 1 < i < m 2. These edges take

as weights either 0 or 2, with one graph in ~rm for each
of the 2 rn2 combinations. It is straightforward to ver-

ify that any MST algorithm that works for all graphs in
the family solves the mailing problem where X~ = 1 iff

W(Vl,m2+l, Vl,i) = 2. We conclude with the following

result.

T h e o r e m 3.5 For every m > 2, there exists a family f'm
of diameter 4 graphs such that every distributed algo-
rithm MST construction algorithm requires f2(nX/a / B)

time on some graph of g:m in the B model.

3.2 D i a m e t e r 3 g r a p h s

In this section we prove a weaker lower bound for graphs
with diameter 3. Fix m > 2. We define a collection of

graphs denoted 7-/,n. We remark that Hm resembles ~'m:
essentially, the idea is to replace the center star with a

clique, and optimize the parameters for the new topology.

Specifically, the graph Hm is constructed as follows
(see Figure 2). First, we have m a copies of a path P of

length m. The kth copy is denoted Pk, and is formally

defined as follows.

V(Pk) = {vl,k,v2,k,. . . ,vm,k}

E(~)k) = {(Vi,k,Vi+l,k) : i = 1 , 2 , . . . , m - 1} .

Next, we add a node zi for 1 < i < m. We call these

6 6

C

VI,I V2,1 V3,1 Vm,1

Figure 2: The graph Hm used in the lower bound for di-

ameter 3.

nodes the level center nodes. For each path 79k we con-

nect the node vi,k tO zi, i.e.,

E(Ci) = {(Zi, Vi,k) : k = 1 , 2 , . . . , m 3 } .

Let C de___f {zx, z 2 , . . . , Zm}. We make C fully connected,

i.e., we add the edges

E (C) = {(zi, zj) : l < i < j < m } .

Finally, we add a sender node s, and connect it to the

beginning of each path, and to the first level center node

Zl. Formally, we add the edges

E(S) = {(S, Vl,j) : j = 1 , 2 , . . . , m 3} U (S, Zy).

Now we can define the graph H,n formally:

V(I'Im) =

E(am) -~ (Uim=l E(~i))UE(C)U (Um:l E(Ci))
u E (S) .

We denote the node Zm by r.

Directly from the construction, we have the following

properties.

L e m m a 3.6 For all m > 1, the number of nodes in Hm
is m 4 + m + 1 and its diameter is 3.

Proof: The number of nodes is immediate from the con-
struction. The bound on the diameter follows from the

fact that every node is at distance at most one from a node

in C, and that the distance between any two nodes in C is

at most 1. I

The lower bound we prove relies on counting the num-

ber of bits that cross edges in E(C). The following

lemma facilitates this counting.

L e m m a 3.7 For any t < m, new bits that arrive at C
enter only at nodes zi with 1 < i < t.

Proof : We prove, by induction on t, that by time t, a bit

which did not go through C may only be in the sender or

the nodes {Vi,k : i < t}. The base t = 0 follows from

the fact that at time 0, all bits reside in s. For the induc-

tion step, it is sufficient to note that all edges incident to

{Vi,k : 1 < i < t} are eiher incident to nodes in V(C) or

to nodes in {Vi,k : 1 < i < t + 1} O {s}. I

L e m m a 3.8 For t < m, the number of bits arriving at r
by time t is less than tZmB/2.

Proof : First, observe that the distance from s to r in

Hm - E(C) is m + 1. It follows that any bit arriving

at r by time m must have traversed an edge of E(C).
At each time step t, we distinguish between bits cross-

ing edges of E(C) at step t for the first time and bits that

have already crossed an internal edge of C earlier. Now,

by Lemma 3.7, at each time step t, bits crossing an edge

of E (C) for the first time at step t can originate only from

nodes z l , . . . , zt. It therefore follows that the number of

new bits that cross edges of E(C) at time t is at most

(m - 1)tB: this is true since the number of E(C) edges

adjacent to a node of V(C) is exactly m - 1. Noting that

each bit delivered at r at time t < m must have been a

new bit crossing an edge of E(C) at some time before t,

we can bound the number of bits delivered at r by time t

by

t-1 (m - 1) t (t - 1)B tZmB |
E (m - 1)iB = 2 < - - ~
i=0
We can therefore conclude the lower bound on the mail-

ing problem.

L e m m a 3.9 For any correct mailing algorithm A we
have that TA(Hm, s, r, m 3) = f~(nl /4 /B1/2) form > 2.

Proof : By Lemma 3.8, we have that the maximal number

of bits that A can deliver at r in the first m / 2 B time units

is less than m 3. It follows that

m
TA(Hm's ' r 'm3) >- 2---B

= I

6 7

The lower bound on the time complexity of algorithms

for the MST problem follows by a direct reduction to the
mailing problem, similarly to Section 3.1. We omit de-
tails here.

Theorem 3.10 For every m > 2, there exists a fam-
ily 7"Ira of diameter 3 graphs such that every dis-
tributed algorithm MST construction algorithm requires
[2(nY/4 / B) time on some graph ofT-Ira in the B model.

3.3 A lower bound for randomized algo-
rithms

A randomized algorithm is a deterministic algorithm that

has access to a tape of random bits (in addition to the

standard inputs). A randomized Las-Vegas algorithm is

said to solve a given problem if for any instance of the

problem, the algorithm produces the correct output in fi-
nite expected time (where the expectation is taken over

the space of random tapes). In this section we show that

all Las-Vegas algorithms for MST admit the same asymp-

totic bounds we proved for deterministic algorithms.

Let us concentrate on the diameter 4 graph Fm of Sec-
tion 3.1 ; the proof for diameter 3 graphs is similar. We

first prove a lower bound on the mailing problem over the

graph Fm.

The tool we use for establishing the lower bound on

the expected time complexity of any randomized (Las-
Vegas) distributed algorithm for the mailing problem is

Yao's method [11]. By this method, in order to bound
this complexity (over any distribution D1 on random in-

put strings X), it suffices to find some "difficult" distribu-

tion D2 on the inputs, and prove that on D2, every deter-
ministic mailing algorithm requires [2(nl/3 / B) expected
time.

Fix a deterministic distributed MST construction algo-

rithm A. Lemma 3.4 states that for algorithm A, there

exists an m2-bit string X for which TA(Fm, s, r, X) =
f~(m/B). Note, however, that Lemma 3.4 makes a con-

siderably stronger claim, guaranteeing the same bound
for every string X. This implies that, assuming the in-

put string is taken randomly (from any distribution over
all possible strings), the expected time required by the al-
gorithm A is at least f~(m/B).

Remark 3: Again, discarding the restriction to "direct
communication" made in Remark 1 requires us to be

slightly more formal. We can show that for every m >__ 2,

and for at least half of the possible m 2-bit input strings X

of the mailing problem, TA(Fm, s, r, X) >_ rn/(2B). To
show this, we need to consider the set of possible states

a node v may be in at any given stage t of the execution
of a mailing algorithm on some m2-bit input X. (The

state of a node consists of all its local data, hence it is

affected by its input, topological knowledge, and history,
namely, all incoming messages.) Each node starts at some

initial state, and as the computation progresses, its set of
possible states becomes larger. In particular, when the
execution starts at round 0, each of the nodes is in one

specific initial local state, except for the sender s, which
may be in any one of 2 m2 states, determined by the value

of the input string X. Upon termination, the string X

should be known to the receiver r, hence r should be in
one of 2 m2 states. Our argument is based on analyzing the

growth rate of the sets of possible states, and showing that

at least f~(mZ/B) time must elapse until r ' s set of possi-

ble states is of size 2 ' '2 . More formally, let ¢Px denote
the execution of A on an m 2-bit input X in the graph Ft, .

Denote the state of the vertex v at the beginning of round

t during the execution qOx on the input X by a(v, t, X) .
In two different executions qOx and qax,, a vertex reaches

the same state at time t, i.e., a(v, t, X) = a(v, t, X ') , iff
it receives the same sequence of messages on each of its
incoming links; for different sequences, the states are dis-
tinguishable. By Lemma 3.2, after time t = rn /B - 1,
the number of bits arriving at r from s by time t is at most
m 2 - mB. Messages arriving at r from other sources do

not affect the growth of r ' s set of possible states, as these
nodes start at the same initial state in all executions. (This
intuitive argument will be made formal in the full paper.)

Therefore, after time t = m / B - 1, the number of differ-

ent states r may be in is at most 2 m2-mB. As each input

string must lead to a distinct final state at r, it follows
that for at least 2 rn2 - 2 m2-mB of the input strings, the

computation has not terminated by time t = m / B - 1.
Hence, assuming the input string is randomly taken from
the uniform distribution over all possible strings, the

expected time required by the algorithm A is at least
(2 m2 - 2'~2-mB) • m / B + 2 m2-mB . I >_ m/ (2B) .

The reduction from MST to mailing applies without

change, hence we get the following result.

Theorem 3.11 There exists a family of n-vertex graphs
of diameter 4 on which any randomized Las-Vegas dis-
tributed algorithm for the MST problem in the B model
requires ~(nl/3 / B) expected time.

68

4 Fast algorithms for diameter 2
graphs

In this section we demonstrate an exponential gap in the

time complexity of MST: graphs with diameter 2 can al-
ways be solved in O(log n) steps, whereas, as we showed
above, graphs with diameter 3 may require up to n f~(1)

steps. The main idea is to use Boruvka's algorithm, com-

bined with a simple technique for quickly disseminating

multiple minima in graphs of diameter 2. The algorithm

is somewhat tricky, so for the sake of exposition we first

present an algorithm with running time O(log 2 n), and

then explain how to change this algorithm into one taking

only O(log n) time. We omit most proofs of the algorithm

from this extended abstract.

3. Set b(v) to be the minimum of all values received in

the second step.

The time complexity claim is obvious. To see that the

algorithm is correct, consider any node v, and let v0 be

the node such that a(vo) = min {a(w) : f(w) = f(v)} .
We need to prove that a(vo) = b(v). To see that, first note

that any value received at v in the second step is indeed an

a value of a node in v 's segment, and hence b(v) >__ a(vo).
Finally, observe that since the diameter of the graph is

2, there must exist a node u such that (u, v0) E E and

(v, u) E E. By the algorithm, this node u receives a(vo)
in the first step, and it sends a(vo) to v in the second step,

and hence b(v) < a(vo). I

4,2 A simple O (l o g 2 n) t i m e algorithm

4.1 Segmented minima

The idea of the algorithm is that since the graph has di-

ameter 2, all the necessary information can be relayed by

neighbors; the trick is that relaying must be done judi-
ciously, since in the B model, a node cannot transmit all
information it received in the previous rounds to all its

neighbors.

The new algorithmic tool we introduce is segmented
minima, defined as follows. Let G = (V, E) be a graph
of diameter 2, and suppose that for each v E V we have a

segment number f(v) and a value a(v). The task of seg-

mented minima is to comp'ute, for each v E V, the value

b(v) = rain {a(u) : f (u) = f (v)} . In words, each node

should find the minimum of all a values in its segment.

Note that the segments are not necessarily connected, and

even if they are connected, their diameter may be much

larger than 2.

Lemma 4.1 Segmented minima can be computed in 2
steps in the 13 model, assuming that (f(v), a(v)) can be
represented by less than t3 bits together.

Proof: The algorithm to solve the problem is as follows,

at each node v.

1. Send (f (v) , a(v)) to all neighbors.

. Send to each neighbor u the minimal value
received from u's segment. Formally, send
rain {a(w) : f (w) = f (u)} , where the minimum is
from the values received in the first step.

We need to define some terms (derived from Boruvka's

Algorithm). A fragment is a collection of nodes con-

nected by edges already added to the MST. The leader
of a fragment is the node whose ID is minimal in the

fragment. At any given time step, we use f(v) to denote
the leader of the fragment that contains a node v. The
algorithm works in phases. Each phase takes O(logn)

time units, and there are log n + 1 phases, for a total of

O(log 2 n) time complexity.

The key to the algorithm is the following invariant, sat-

isfied at the beginning of each phase: all nodes in a frag-
ment know the ID of their leader. Initially, each node

forms a singleton fragment with itself being the leader

and the invariant holds trivially. We now describe the

steps taken in phase k for all 0 < k < log n.

Phase k:

1. Each node v sends the ID of its current leader f(v) to
all its neighbors. Note that after this step, each node

also knows which of its incident edges is connected
to another fragment.

2. The nodes execute segmented minima, with the a
values being the weight of their lightest incident

edge outgoing to to another fragment. After this is
done, each node v knows which is the lightest edge
outgoing from its fragment. We call these edges cho-
sen edges. The chosen edges are added to the MST.

3. Each node adjacent to a chosen edge informs the
node at the other side that this edge was chosen, so

69

that each fragment knows (distributively) all the cho-

sen edges it is incident to, and, more importantly, the
IDs of the leaders of all fragments that will merge
with it.

4. Each node computes locally the minimal ID of a

leader of a fragment it is incident to by a chosen

edge (including its own fragment leader ID). These

values are used as the a values for a segmented min-

ima computation. When this computation ends, each

node knows what is the smallest ID of the leader

among all fragments its fragment is joined to with

a chosen edge. Each node assigns its b value as its
new leader ID.

5. log n + 1 indirection resolution rounds are taken (see
below).

The situation after Step 4 is done is that all nodes know

what is the smallest leader ID among all leaders of frag-
ments adjacent to their fragment. This is not sufficient.

The problem is that a single round of leader update may
lead to inconsistencies in case there are long "learning

chains" For instance, it may happen for three nodes

v, u, w, that while v assigns f (u) to be its leader, u may

assign f (w) to be its own leader. The solution to this
difficulty is to use log n + 1 rounds of leader updates, a

process called "pointer jumping" [10]. In our context, this
is done as follows.

Phase k pointer jumping: The pointer jumping part of the

phase consists of log n + 1 indirection resolutions (ab-
breviated IR henceforth). The idea in an IR is that each
node records locally, for each of its neighbors, the previ-
ous leader ID it announced. This allows it to inform other
nodes if that neighbor changes its leader. Specifically, IR

works as follows at a node v. In the first step of an IR,

v informs all its neighbors of the ID of its current leader,

and records, for each of its neighbors u, the value of f(u)
as received by v. In the second step of IR, for each neigh-

bor u, v informs u of the value of f (f (u)) , if there is a
neighbor w o fv such that its previous f (w) is the current
f (u) ; in this case, v sends to u the last value of f(w).
The correctness of this technique relies on the fact that if

a node u decides to change its leader to f (w), then since
the diameter of the graph is 2, there must exists a node

v at distance 1 from a node in the fragment led by f(w),
which can inform u about the ID of the current leader of

4.3 F r o m O (l o g 2 n) t o O (l o g n) t i m e

We now explain how to modify the algorithm above to
run in logarithmic time. The aim is to reduce the amount
of time consumed by the pointer jumping part. Let us
examine the pointer jumping part more closely. Pointer

jumping consists of a series of IR steps, where each in-

direction resolution is a pair of time steps, ending with a

re-computation of the leader. Call an IR step at a frag-

ment idle if the fragment does not update its pointers, and

no pointers are updated to point at the fragment. It is easy

to verify that in a sequence of i non-idle of IR steps, the
size of fragment grows by a factor of at least 2 i-1. This

property is used in the algorithm above: clearly, log n + 1

pointer updates are sufficient to resolve all indirections.

The crucial observation we use to reduce the time com-

plexity in the new algorithm is that in fact, the total num-
ber of non-idle indirection resolution steps for each node

is log n + 1 throughout the the execution of the algorithm.
In other words, we amortize the pointer jumping part of

the algorithm over all phases, thus reducing its time com-
plexity from O(log 2 n) to O(log n).

More specifically, the algorithm works as follows.

Each node has an additional state bit, which we call "pas-

sive" or "active." The overall algorithm is very similar to

the one above, except that not all nodes take part in all

steps, and that the pointer jumping part takes only a con-

stant number of steps. Each phase k proceeds as follows.
Initially, all nodes are active.

1. Each active node broadcasts its leader ID to all its
neighbors, along with its state bit.

2. Segmented minima is now executed, but only active
nodes have a values, set to be the weight of the light-

est edge outgoing from the node to a different active
fragment. Passive nodes take part only in the second

step of the segmented minima. Active nodes thus

compute their chosen edges as before.

3. Each active node v incident to a chosen edge sends
f(v) over the chosen edge.

4. Each active node computes locally the smallest

leader ID among all fragments incident to it by a

chosen edge, including its own leader ID. Then the
active nodes execute segmented minima over these

values (again, passive nodes help in the second step
of the segmented minima). The value obtained in
this step is set to be the new leader ID.

7 0

5. In the pointer jumping part, all nodes participate. References

First, two rounds of indirection resolution are
executed by all nodes. (Each indirection reso-
lution consists of each node v sending out f (v)
to all neighbors, and then, sending to each node

u, the identity of f (f (u)) as sent in the previ-
ous step by a node w whose previous leader
was u; then each node sets its new leader to
be the maximum of its old leader and the new
leader it heard about.)

Then, another round of indirection resolution is
performed, this time without the assignment of
a new leader. In an additional step, each node v
informs each of its neighbors u, whether there
exists a node w with f (w) # f (u) that wishes

to assign f (w) +- f (u) , i.e., w wishes to joins
the fragment that u belongs to. All nodes that
wish to join another fragment, as well as all
node that belong to a fragment that some node
wishes to join, set their state to passive. All
other nodes set their state to active.

The key argument in the analysis of the algorithm is the
following.

Lemma 4.2 At the beginning of phase k the number of
nodes in each fragment is at least 2 k. Moreover, if the
fragment is passive then the number of nodes in the frag-
ment is at least 2 TM.

5 Conclusion

In this paper we have proved the somewhat surprising re-
sult that the complexity of distributed MST computation
changes exponentially when the diameter changes from
2 to 3. The significance of diameter 2 may be explained
by the fact that the only bottlenecks in graphs of diameter
2 may be articulation nodes: nodes, however, may relay
linear number of bits in a single time step. This property
does not hold for graphs of diameter 3, where the bottle-
neck may be an edge, that can relay only B bits in a single
time step.

We do not know whether the lower bounds on the time
complexity we have demonstrated are the best possible.
We leave this question open.

[1] B. Awerbuch, Optimal distributed algorithms
for minimum-weight spanning tree, counting,
leader election and related problems, Proc.
19th Syrup. on Theory of Computing, pp.
230-240, May 1987.

[2] R. Gallager, P. Humblet and P. Spira, A dis-
tributed algorithm for minimum-weight span-
ning trees, ACM Transactions on Program-
ming Languages and Systems, Vol. 5 (1),
(1983), 66-77.

[3] J. Garay, S. Kutten and D. Peleg, A sub-linear
time distributed algorithm for minimum-

weight spanning trees, SIAM J. on Comput-
ingVol. 27, (1998), 302-316.

[4] S. Kutten and D. Peleg, Fast distributed con-
struction of small k-dominating sets and ap-
plications, .t. of Algorithms, Vol. 28, (1998),
40-66.

[5] M. Li and P.M.B. Vitanyi, An Introduction
to Kolmogorov Complexity and its Applica-
tions, Springer-Verlag, New York, 1993.

[6] N. Linial, Locality in distributed graph al-
gorithms, SIAM J. on Computing Vol. 21,
(1992), 193-201.

[7] D. Peleg, Time-optimal leader election in
general networks, Journal of Parallel and Dis-
tributed Computing, Vol. 8, (1990), 96-99.

[8] D. Peleg, Distributed Computing: A
Locality-Sensitive Approach, SIAM,
Philadelphia, PA, 2000.

[9] D. Peleg and V. Rubinovich, A near-tight
lower bound on the time complexity of dis-
tributed MST construction, SIAM J. on Com-
putingVol. 30, (2000), 1427-1442.

[10] Y. Shiloach and U. Vishkin, An O(log n) par-
allel connectivity algorithm, J. of Algorithms
Vol. 3, (1982), 57-67.

[11] A. Yao, Probabilistic computations: Towards
a unified measure of complexity, Proc. 17th
IEEE Symp. on Foundations of Computer
Science, pages 222-227. Comp. Soc. IEEE,
April 1977.

71

