
Virtual Time and Global States of Distributed Systems
�

Friedemann Mattern
y

Department of Computer Science, University of Kaiserslautem

D 6750 Kaiserslautern, Germany

Abstract

A distributed system can be characterized by the fact

that the global state is distributed and that a common

time base does not exist. However, the notion of time

is an important concept in every day life of our decen-

tralized \real world" and helps to solve problems like

getting a consistent population census or determining

the potential causality between events. We argue that a

linearly ordered structure of time is not (always) ade-

quate for distributed systems and propose a generalized

non-standard model of time which consists of vectors

of clocks. These clock-vectors are partially ordered and

form a lattice. By using timestamps and a simple clock

update mechanism the structure of causality is repre-

sented in an isomorphic way. The new model of time

has a close analogy to Minkowski's relativistic space-

time and leads among others to an interesting character-

ization of the global state problem. Finally, we present

a new algorithm to compute a consistent global snapshot

of a distributed system where messages may be received

out of order.

1 Introduction

An asynchronous distributed system consists of sev-
eral processes without common memory which commu-
nicate solely via messages with unpredictable (but non-
zero) transmission delays. In such a system the notions
of global time and global state play an important role
but are hard to realize, at �rst sight even their de�ni-
tion is not all clear. Since in general no process in the
system has an immediate and complete view of all pro-
cess states, a process can only approximate the global

�This is an edited version, with minor alterations, of the paper
with same title which originally appeared in the Proceedings of the

International Workshop on Parallel and Distributed Algorithms

(Chateau de Bonas, France, October 1988), M. Corsnard et al.

(ed.) copyright 1989 Elsevier Science Publishers B. V. (North-
Holland), with author's permission.

yCurrent address: Department of Computer Science, Univer-
sity of Saarland, 6600 Saarbrucken, Germany. Email address:
mattern@cs.uni-sb.de

view of an idealized external observer having immediate
access to all processes.

The fact that a priori no process has a consistent
view of the global state and a common time base does
not exist is the cause for most typical problems of dis-
tributed systems. Control tasks of operating systems
and database systems like mutual exclusion, deadlock

detection, and concurrency control are much more di�-
cult to solve in a distributed environment than in a clas-
sical centralized environment, and a rather large number
of distributed control algorithms for those problems has
found to be wrong. New problems which do not exist in
centralized systems or in parallel systems with common
memory also emerge in distributed systems. Among the
most prominent of these problems are distributed agree-
ment, distributed termination detection, and the sym-

metry breaking or election problem. The great diversity
of the solutions to these problems|some of them be-
ing really beautiful and elegant|is truly amazing and
exempli�es many principles of distributed computing to
cope with the absence of global state and time.

Since the design, veri�cation, and analysis of algo-
rithms for asynchronous systems is di�cult and error-
prone, one can try to

1. simulate a synchronous distributed system on a
given asynchronous systems,

2. simulate global time (i.e., a common clock),

3. simulate global state (i.e., common memory),

and use these simulated properties to design simpler al-
gorithms. The �rst approach is realized by so-called
synchronizers [1] which simulate clock pulses in such a
way that a message is only generated at a clock pulse
and will be received before the next pulse. A synchro-
nizer is intended to be used as an additional layer of
software, transparent to the user, on top of an asyn-
chronous system so that it can execute synchronous al-
gorithms. However, the message overhead of this mech-
anism is rather high. The second approach does not
need additional messages and the system remains asyn-
chronous in the sense that messages have unpredictable

120

transmission delays. This approach has been advocated
by Lamport [9]. He shows how the use of virtual time
implemented by logical clocks can simplify the design of
a distributed mutual exclusion algorithm. Morgan [11]
and Neiger and Toueg [12] develop this idea further.
The last approach is pursued by Chandy and Lamport
in their snapshot algorithm [3], one of the fundamental
paradigms of distributed computing. Panangaden and
Taylor [14] elaborate the idea leading to the character-
ization of \concurrent common knowledge".

Obviously, the notions of global time and global state
are closely related. By Chandy and Lamport's algo-
rithm a process can, without \freezing" the whole com-
putation, compute the \best possible approximation" of
a global state|a global state that could have occurred
if all processes took a snapshot of their local state simul-
taneously. Although no process in the system can de-
cide whether the snapshot state did really occur, \could
have occurred" is good enough for stable properties (i.e.,
global predicates which remain true once they become
true) like termination detection and deadlock detection,
which shows that the snapshot algorithm is a general so-
lution to these problems. (This does not depreciate the
speci�c algorithms for those problems, however, which
are often simpler and more e�cient). While in some
sense the snapshot algorithm computes the best pos-
sible attainable global state approximation, Lamport's
virtual time algorithm is not that perfect. In fact, by
mapping the partially ordered events of a distributed
computation onto a linearly ordered set of integers it is
losing information. Events which may happen simulta-
neously may get di�erent timestamps as if they happen
in some de�nite order. For some applications (like mu-
tual exclusion as described by Lamport himself in [9])
this defect is not noticeable. For other purposes (e.g.,
distributed debugging), however, this is an important
defect.

In this paper, we aim at improving Lamport's vir-
tual time concept. We argue that a linearly ordered
structure of time is not always adequate for distributed
systems and that a partially ordered system of vectors
forming a lattice structure is a natural representation
of time in a distributed system. This non-standard

model of time resembles in many respects Minkowski's
relativistic space-time. In particular, it has an ex-
tended range of \simultaneity"|all events which are
not causally related are simultaneous|thus represent-
ing causality in an isomorphic way without loss of infor-
mation. The new notion of time together with a gener-
alized clock synchronization algorithm yields for every
process the best approximate knowledge of the \ide-
alized" time of an external observer. (This idealized
global time is quite naturally de�ned as the supremum
of all local clock vectors). The vector structure of time

will be shown to be isomorphic to the structure of pos-
sible states as constructed by the snapshot algorithm,
thus yielding a complementary view of global time and
global state.

2 Event structures

In an abstract setting, a process can be viewed as
consisting of a sequence of events, where an event is an
atomic transition of the local state which happens in no
time. Hence, events are atomic actions which occur at
processes. Usually, events are classi�ed into three types:
send events, receive events, and internal events. An in-

ternal event only causes a change of state. A send event

causes a message to be sent, and a receive event causes a
message to be received and the local state to be updated
by the values of the message. Notice, however, that in
so-called message � driven models of distributed com-
puting (e.g., the actor model) there is only one type of
event: The receipt of a message triggers the execution
of an atomic action resulting in a local state update and
in any �nite number of messages sent to other processes.
Because of their simplicity, message-driven models are
attractive from an abstract point of view.

Events are related: Events occurring at a particular
process are totally ordered by their local sequence of
occurrence, and each receive event has a corresponding
send event. This relationship is the heart of any notion
of virtual time. However, the central concept seems to
be the causality relation which determines the primary
characteristic of time, namely that the future cannot in-

uence the past. Formally, an event structure [13] is a
pair (E;<), where E is a set of events, and `<' is an ir-
re
exive partial order on E called the causality relation.
Event structures represent distributed computations in
an abstract way. For a given computation, e < e' holds
if one of the following conditions holds:

(1) e and e0 are events in the same process and e pre-
cedes e0,

(2) e is the sending event of a message and e0 the cor-
responding receive event,

(3) 9e00 such that e < e00 and e00 < e0.

121

The causality relation is the smallest relation satisfying
these conditions.

It is helpful to view this de�nition in terms of a di-
agram (Figure 1). Obviously, e < e0 signi�es that it is
possible for event e to causally a�ect event e0. Graphi-
cally, this means that one can follow a \path of causal-

ity" from event e to event e0 in the diagram (moving in
the direction of the arrows and from left to right on the
process lines).

It is possible to view a diagram like Figure 1 as a
timing diagram of an actual computation where the hor-
izontal direction represents real time. Then the events
depicted by dots occur at some speci�c instant of time
as observed by an idealized external observer. Messages
are represented by diagonal arrows. (An observer who
can continuously watch the messages on their way to
their destination could also draw an even more accu-
rate diagram of the actual message
ow. Notice that a
two-dimensional space-time diagram represents the loci
of objects of a one � dimensional space against time).
It is also possible to view the diagram only as an ab-
stract poset�diagram of the partial order (E;<). Usu-
ally, poset-diagrams are drawn by placing an element e
higher than e0 whenever e0 < e. (Because transitivity
is assumed, only the connections of directly related ele-
ments are drawn, redundant connections are omitted).
Figure 2 shows the poset diagram for the computation of
Figure 1. Obviously, the two diagrams are isomorphic.
However, Figure 1 seems to make implicit allusions to
global time depicting a speci�c computation, whereas
Figure 2 only shows the logical relationships of events,
i.e., the causal structure of the computation.

Figure 3 shows a diagram which is very similar to the
diagram depicted in Figure 1. Notice that the partial
event order is the same (i.e., it has the same poset-
diagram), but that here events e12; e25; and e32 happen
at the same global time instant. Such diagrams, showing
the same causality relation, will be called equivalent.

Obviously, a time diagram can be transformed to an-
other equivalent diagram by stretching and compressing
the horizontal process lines representing the local time
axis. One gets an operational view of the equivalence

transformation on time diagrams by assuming that the

process lines consist of idealized rubber bands. Any
time diagram d' which can be constructed out of a given
time diagram d by stretching and compressing the elas-
tic bands is equivalent to d, as long as the arrows rep-
resenting message
ow do not go backwards (i.e., from
the right to the left) in time. (Time diagrams with mes-
sages
owing backwards in time obviously do not depict
any realizable situation. In any \valid" time diagram an
event emust be drawn to the left of an event e0 whenever
e < e0|this is the only restriction when going from a
poset-diagram to an actual time diagram). Notice that
the \rubber band equivalence transformations" on time
diagrams are exactly those transformations which leave

the causality relation invariant.

3 Consistent cuts

If a process sends messages to all other processes
in order to initiate local actions or to recall some dis-
tributed information, these messages will usually be re-
ceived at di�erent time instants. Due to unpredictable
message delays it is not possible to guarantee that all
local actions triggered by the messages are performed
simultaneously. This motivates the notion of \cuts".

Graphically, a cut (or time slice) is a zigzag line cut-
ting a time diagram into two parts|a left part and a
right part (Figure 4). Formally, we augment the set
of events E to include a new so-called cut event ci for
each process Pi : E

0 = E [fc1; : : : ; cng (n denotes the
number of processes). Connecting these events in the
diagram yields the cut line. A cut partitions E into two
sets PAST (those events that happen before the cut)
and FUTURE (those events that happen after the cut)
[2]. Let <l denote the local event order (i.e., e <l e

0 i�
e < e0 and e and e0 occur at the same process). Then we
can formally identify a cut with its PAST set yielding

122

the following de�nition:

De�nition 1 A cut C of an event set E is a �nite sub-

set C � E such that e 2 C & e0 <l e! e0 2 C.

Here we have lost the cut events c1; : : : ; cn. However,
it is straightforward to associate \the" cut as de�ned by
De�nition 1 to a given set of cut events or vice versa.
It will be clear from the context whether we mean by a
cut the PAST set or the cut events. Figure 5 shows the
poset-diagram with the set PAST for the cut depicted
in Figure 4.

The following de�nition already anticipates the no-
tion of time:

De�nition 2 A cut C1 is later than cut C2 if C1 � C2.

In the diagram, a cut line of a cut C1 being later than
a cut C2 is to the right of C2's cut line. (In Figure 6,
C3 is later than C1 and later than C2. However, neither
is C1 later than C2 nor vice versa). Notice that \later
than" is re
exive, i.e., a cut is later than itself. \Later
than" is a partial order on the set of cuts. Moreover, it
forms a lattice:

Theorem 1 With operations [and \ the set of cuts of

a partially ordered event set E forms a lattice.

The proof is straightforward. Recall that a lattice is
a partially ordered set any two of whose elements have a
greatest lower bound inf and a least upper bound sup.
Obviously, inf = C1 \ C2 and sup = C1 [C2 for any
two cuts C1, C2.

If no provisions are taken, it can happen that a cut
contains the receiving event of a message, but not its
sending event. Such a situation is undesirable because
cuts are used to compute the global state of a dis-
tributed system along a cut line (Section 4). The fol-

lowing de�nition rules out such inconsistent cuts by re-
questing that cuts are left-closed under the causality
relation `<':

De�nition 3 A consistent cut C of an event set E is a

�nite subset C � E such that e 2 C & e0 < e ! e0 2
C.

A cut is consistent if every message received was sent
(but not necessarily vice versa!). Figure 4 shows a con-
sistent cut. The cut of Figure 7 is inconsistent: event
e is part of the cut, but its immediate predecessor e0 is
not. Obviously, because e <l e

0, the set of consistent
cuts is a subset of the set of all cuts of some partially
ordered set E. But that is not all:

Theorem 2 The set of consistent cuts is a sublattice

of the set of all cuts.

The simple proof that the consistent cuts are closed
under [(sup) and \ (inf) is left to the reader.

The lattice structure of consistent cuts guarantees
that for any two consistent cuts C1; C2 there is always a
cut later than both of them and a cut earlier than both
of them. This extends to any �nite set of consistent cuts:
sup(C1; : : : ; Ck) = C1[: : :[Ck is later than C1; : : : ; Ck.

The following two theorems are stated without proofs
(but see [14] and [3]). The graphical interpretation is
obvious. Assume that a cut line is also a rubber band.
Now stretch that band so that it becomes straight verti-
cal. If then a message arrow crosses it from the right to
the left, the cut is inconsistent. Otherwise it is consis-
tent. Figure 8 shows the \rubber band consistency test"
for an inconsistent cut. (Notice that c3 < e0 < e < c1
and hence c3 < c1, thus violating the condition of The-
orem 3).

Theorem 3 For a consistent cut consisting of cut-

events c1; : : : ; cn, no pair of cut-events is causally re-

123

lated, i.e., :(ci < cj) & :(cj < ci) for all cut events
ci; cj.

By taking into consideration the remarks at the end
of the previous section one sees that consistent cuts are
\possible":

Theorem 4 For any time diagram with a consistent

cut consisting of cut-events c1; : : : ; cn, there is an equiv-

alent time diagram where c1; : : : ; cn occur simultane-

ously, i.e., where the cut line forms a straight vertical

line.

4 Global states of consistent cuts

As Theorem 4 shows, all cut-events of a consistent
cut can occur simultaneously, i.e., there is a potential
execution of the distributed computation in which all
cut-events are indeed simultaneous in \real time". A
snapshot of the local states of all processes taken at the
same (real) time is obviously consistent. Therefore, the
global state computed along a consistent cut is \cor-
rect".

The global state of a consistent cut comprises the local
state of each process at the time the cut-event happens
and the set of all messages sent but not yet received. In
the time diagram these messages are characterized by
arrows crossing the cut line from the left to the right
side.

The snapshot problem consists in designing an ef-
�cient protocol which yields only consistent cuts and
to collect the local state information. Furthermore, in
some way the messages crossing the cut must be cap-
tured. Chandy and Lamport presented such an algo-
rithm for the �rst time assuming that message trans-
mission is FIFO [3]. We propose a similar algorithm in
Section 11 for non-FIFO channels.

5 The concept of time

As Lamport notes, the concept of time is fundamen-
tal to our way of thinking [9]. In fact, \real time"
helps to master many problems of our decentralized real
world. Consider, for example, the problem of getting a
consistent population census. Here one agrees upon a
common time instant (being far enough in the future)
and gets everyone counted at the same moment. Time is
also a useful concept when considering possible causal-
ity. Consider a person suspect of a crime, if that person
has an alibi because he or she was far enough away from
the site of the crime at some instant close enough to the
time of the crime, then he or she cannot be the culprit
(Figure 9).

The examples work because of the characteristics
of real time. Using clocks, events e; e0 can be time-
stamped by t(e) and t(e0) such that whenever e hap-
pens earlier than e0 and might thus causally a�ect e0,
then t(e) < t(e0). According to Lamport it is one of the
\mysteries of the universe" that it is possible to con-
struct a system of clocks which, running independently
of each other, observe the causality relation.

In asynchronous distributed systems without real
time clocks a common time base does not exist. But it
would be �ne if we had an approximation having most
of the features of real time|the design of distributed
algorithms would be considerably simpli�ed. The idea
of Morgan [11] is to factorize distributed algorithms in
two separate algorithms:

(1) An algorithm where global time is available to all
processes.

(2) A clock synchronization algorithm realizing virtual
time as a suitable approximation of global time.

This separation of concern helps to design new dis-
tributed algorithms: once the idea has been found and
elaborated it should be possible to combine the two com-
ponents into a single optimized algorithm.

However, these statements are rather vague and give
raise to a few questions: What exactly is virtual time,
and what should be considered to be a \best possible
approximation" of global (i.e., real) time? And given
an algorithm which was written assuming the existence
of real time, is it still correct when virtual time is used?
What is the essential structure of real time? These ques-
tions will be considered in the sequel.

The nature of time is studied among others by
philosophers, mathematicians, physicists, and logicians.
It is its formal structure in the model-theoretic sense
which is of interest for us, and here the prevalent math-
ematical picture of \standard time" is that of a set of
\instants" with a temporal precedence order `<' (\ear-
lier than") satisfying certain obvious conditions [17]:

(1) Transitivity.

(2) Irreflexivity (notice that transitivity and irre
ex-
ivity imply asymmetry).

124

(3) Linearity.

(4) Eternity (8x9y : y < x; 8x9y : x < y):

(5) Density (8x; y : x < y ! 9z : x < z < y).

There are several non-isomorphic models satisfying
these axioms, the most obvious are the rationales Q and
the reals R. But in most cases when using real time and
clocks we do not need all these properties|for example
digital clocks obviously do not satisfy the density ax-
iom but are nevertheless useful in many cases. (When
replacing density by

(5') discreteness
the integers Z are the standard model of time).

This shows that implementing clocks by hardware
counters or by variables of type real or integer in com-
puter programs is indeed \correct". Occasionally, how-
ever, we notice that in fact axioms (4) and (5) are not
perfectly realized: In large simulation programs for ex-
ample it may happen that the clock variable over
ows
(simulation time is not eternal) or that rounding errors
result in events happening at the same time when they
shouldn't (simulation time is not dense).

The main question is: Can we design a system of log-
ical clocks and a synchronization mechanism for asyn-
chronous distributed systems which ful�lls axioms (1)
to (5) (or (5')) without making use of real time or phys-
ical clocks or similar mechanisms? And can we use that
system of logical clocks to timestamp events such that
the causality relation is preserved? As it turns out,
Lamport's clock synchronization mechanism [9] which
we will sketch in the next section ful�lls these require-
ments and is useful in many respects. Despite that,
however, it has a defect because it does not preserve
causal independence. As we will see, preserving causal
independence is possible by using Nn; Zn; Qn, or Rn

(n denoting the number of processes) as the \time do-
main".

6 Virtual time

The main di�erence between virtual time and real
time seems to be that virtual time is only identi�able
by the succession of events (and therefore is discrete).
Virtual time does not \
ow" by its own means like real
time whose passage we can't escape or in
uence. Just
doing nothing and waiting for the virtual time to pass
is dangerous|if nothing happens virtual time stands
still and the virtual time instant we are waiting for may
never occur. The concept of virtual time for distributed
systems was brought into prominence by Lamport in
1978 [9]. It is widely used in distributed control al-
gorithms (but not always made explicit), e.g., in mu-
tual exclusion algorithms and concurrency control algo-
rithms. Morgan gives some applications of virtual time

[11] and Raynal shows that the drift between logical
clocks in di�erent processes can be bounded [16].

A logical clock C is some abstract mechanism which
assigns to any event e 2 E the value C(e) (the
timestamp of e) of some \time domain" T such that
certain conditions are met. Formally, a logical clock is
a function C : E ! T , where T is a partially ordered
set such that the clock condition

e < e0 ! C(e) < C(e0)

holds. The irre
exive relation `<' on T is called \earlier
than", its converse \later than". Stated verbally, the
clock condition reads if an event e can causally a�ect

another event e', then e has an earlier (i.e., smaller)

timestamp than e'. Notice that the converse implication
is not required.

As a consequence of the clock condition the following
properties hold [11]:

(1) If an event e occurs before event e0 at some sin-
gle process, then event e is assigned a logical time
earlier than the logical time assigned to event e0.

(2) For any message sent from one process to another,
the logical time of the send event is always earlier
than the logical time of the receive event.

Usually, the set of integers N is taken for the time
domain T, and the logical clock is implemented by a
system of counters Ci, one for each process Pi. To guar-
antee the clock condition, the local clocks must obey a
simple protocol:

(1) When executing an internal event or a send event
at process Pi the clock Ci \ticks":

Ci := Ci + d (d > 0):

(2) Each message contains a timestamp which equals
the time of the send event.

(3) When executing a receive event at Pi where a mes-
sage with timestamp t is received, the clock is ad-
vanced:

Ci := max(Ci; t) + d (d > 0):

We assume that the timestamp of an event is already
the new value of the local clock (i.e., updating the local
clock occurs just before executing the event). A typical
value of d is d = 1, but d can be di�erent for each \tick"
and could also be some approximation of the real time
di�erence since the last \tick".

Two events e; e0 are mutually independent (denoted
by e k e0) if :(e < e0) & :(e0 < e). Can we say any-
thing about the timestamps of mutually independent

125

events? Figure 10 shows that events which are causally
independent may get the same or di�erent timestamps.
(Here it is assumed that initially Ci = 0 and d = 1).
e12 and e22 have the same timestamp, but e11 and e22
or e13 and e22 have di�erent values.

Figure 11 depicts this situation. Looking at their
timestamps, we can conclude that two events are inde-
pendent if they have the same timestamps. We can also
conclude that if C(e) < C(e0) then :(e0 < e), i.e., it is
guaranteed that the past cannot be in
uenced by the
future. However, if C(e) < C(e0) it is not possible to
decide whether e < e0 or e k e0, i.e., whether the events
are causally related or not. (Notice that the causal rela-
tion e < e0 does not necessarily mean that e causes e0 in
some modal sense. It only means that e could cause e0).
This is an important defect|by looking at the time-
stamps of events it is not possible to assert that some
event could not in
uence some other event.

The reason for the defect is that C is an order-
homomorphism which preserves `<' but which oblit-
erates a lot of structure by mapping E onto a linear
order|it does not preserve negations (e.g., \k"). What
we are looking for is a better suited domain set for T
and an isomorphism mapping E onto T.

7 Vector time

Assume that each process has a simple clock Ci which
is incremented by 1 each time an event happens. An ide-
alized external observer having immediate access to all
local clocks knows at any moment the local times of all
processes. An appropriate structure to store this global
time knowledge is a vector with one element for each
process. The example depicted in Figure 12 illustrates
the idea.

Our aim is to construct a mechanism by which each

process gets an optimal approximation of this global
time. For that, we equip each process Pi with a clock
Ci consisting of a vector of length n, where n is the
total number of processes. (Since time will henceforth
be considered to be a set of vectors, it is consequent
that clocks, i.e., devices which hold the time, are imple-
mented by vectors or \arrays"). With each event the
local clock \ticks". A process Pi ticks by incrementing
its own component of its clock:

Ci[i] := Ci[i] + 1:

(Any real-valued increment d > 0 instead of 1 is accept-
able). As before, ticking is considered to occur before
any other event action, and the timestamp C(e) of an

event e is the clock value after ticking. (However, no-
tice that now timestamps are vectors). As in Lamport's
original scheme each message gets a piggybacked time-
stamp consisting of the vector of the local clock. By
receiving a timestamped message a process gets some
knowledge about the other processes' global time ap-
proximation. The receiver combines its own knowledge
about global time (Ci) and the approximation it receives
(t) simply by

Ci := sup(Ci; t)

where t is the timestamp of the message and sup is the
componentwise maximum operation, i.e., sup(u; v) = w

such that w[i] = max(u[i]; v[i]) for each component
i. Because of the transitivity of the scheme, a pro-
cess may also receive time updates about clocks in non-
neighboring processes. Figure 13 shows an example of
the time propagation scheme.

Causally independent events may happen in any or-
der. Moreover, it is somewhat arbitrary whether in Fig-
ure 13 global time is incremented by (0, 0, 0, 0), (0,
1, 0, 0), (0, 1, 0, 1) or by (0, 0, 0, 0), (0, 0, 0, 1),
(0, 1, 0, 1)|both sequence are possible and re
ect the

ow of time for di�erent but equivalent time diagrams.
However, time (1, 3, 0, 0) can never be observed for the
computation depicted in Figure 13, it is an \impossible"
clock value.

Notice that since only process Pi can advance the
i-th component of global time, it always has the most

126

accurate knowledge of its own local time. This yields
the following theorem:

Theorem 5 At any instant of real time 8i; j : Ci[i] �
Cj[i].

It is possible to compare time vectors by de�ning the
relations `�', `<', and `k':

De�nition 4 For two time vectors u, v

u � v i� 8i : u[i] � v[i].

u < v i� u � v & u 6= v, and

u k v i� :(u < v) & :(v < u).

Notice that `�' and `<' are partial orders. The re
ex-
ive and symmetric concurrency relation `k' is a gener-
alization of the simultaneity relation of standard time.
Whereas the notion of \present" in standard time is
merely an extensionless intersection point between past
and future, here we have a larger range. Notice, how-
ever, that the concurrency relation is not transitive!

The following de�nition assigns a time to a cut:

De�nition 5 Let X be a cut and ci denote the cut event

of process Pi (or the maximal event of Pi belonging to

X if no special cut events exist|recall that we assume

the existence of an initial event for each process). Then

tX = sup(C(c1); : : : ; C(cn))

is called the global time of cut X. (Notice that sup is

associative).

As Figure 14 shows, di�erent cuts can have the
same time ((2, 1, 2, 0) in the example). However, for
consistent cuts the time is unique yielding a practical
consistency criterion for cuts:

Theorem 6 Let X and ci be de�ned as in De�nition 5.

X is consistent i� tX = (C(c1)[1]; : : : ; C(cn)[n]):

Proof:

(1) If X is consistent then by Theorem 4 we can assume
that c1; : : : ; cn happen at the same instant of real
time. Then Theorem 5 applies and yields the result.

(2) If X is inconsistent then there exists a message sent
after ci by some process Pi and received before cj
by another process Pj. If t denotes the timestamp
of the message then ci[i] < t[i] � cj [i]. Therefore
tX = (C(c1)[1]; : : : ; C(cn)[n]).

8 The structure of vector time

The non-linear vector time has an interesting struc-
ture. First we have the following theorem:

Theorem 7 For any n > 0, (Nn;�) is a lattice.

The proof is obvious. For any two vectors u; v 2
Nn the least upper bound is simply sup(u; v) and the
greatest lower bound is inf(u; v), where inf is de�ned
analogously to sup by replacing max by min. (Instead
of Nn, we can use Zn; Qn or Rn). Things become more
interesting if we consider only the possible time vectors
of an event set E. In analogy to Theorem 2 one can
prove

Theorem 8 The set of possible time vectors of an event

set E is a sublattice of (Nn;�).

In fact, it is possible to \identify" a consistent cut X
with its time vector tX . The identi�cation of possible
time vectors and consistent cuts leads to the following
main theorem:

Theorem 9 For an event set E, the lattice of consistent

cuts and the lattice of possible time vectors are isomor-

phic.

This is the isomorphism we were looking for! Again,
we leave the proof to the reader. Theorem 9 has a nice
and important consequence:

Theorem 10 8e; e0 2 E : e < e0 i� C(e) < C(e0) and
e k e0 i� C(e) k C(e0).

127

This gives us a very simple method to decide whether
two events e; e0 are causally related or not: We take
their timestamps C(e) and C(e') and check whether
C(e) < C(e0) or C(e0) < C(e). If the test succeeds, the
events are causally related. Otherwise they are causally
independent. The test can be simpli�ed if the processes
where the events occur are known:

Theorem 11 If e occurs at process Pi then for any

event e0 6= e : e < e0 i� C(e)[i] � C(e0)[i].

>From the pictorial meaning of the causality rela-
tion the correctness of Theorem 10 and Theorem 11 is
easy to see. If event e can causally a�ect event e0, then
there must exist a path of causality in the time diagram
which propagates the (local) time knowledge of event e
to event e0. Propagating time knowledge t along a path
can only increase t. Conversely, if event e0 \knows" the
local time of e, there must exist a causality path from e

to e0. (See also [6] and [5]).
Any path of the poset-diagram corresponds to a pos-

sible interleaving|a linear sequence of events which is
consistent with the causality relation. Therefore the set
of paths determines the possible development of global

virtual time. However, time cannot always spread freely
in all dimensions, messages put restrictions on the de-
velopment of time|a message sent by process Pi when
Ci[i] = s and received by process Pj when Cj [j] = r

induces the restriction C[i] < s ! C[j] < r or equiva-
lently :(C[i] < s & C[j] � r).

The time diagram depicted in Figure 15 shows four
messages, Figure 16 displays the lattice structure to-
gether with the area cut o� by the four restrictions
:(C[2] < 2 & C[1] � 4);:(C[2] < 5 & C[1] �

6);:(C[1] < 3 & C[2] � 4);:(C[1] < 2 & C[2] � 6):
(The lattice structure of systems of three processes can
be esthetically more pleasing.)

9 Minkowski's space-time

The standard model of time ful�lls axioms (1)-(5) of
Section 5. However, reality is not \standard". In fact,
because of the �nite speed of light, Minkowski's well-
known relativistic space-time model may re
ect reality
more accurately than the standard model of time. It
has some nice analogies to our vector model of time.

In Minkowski's model n-dimensional space and one-
dimensional time are combined together to give a n+1-
dimensional picture of the world. While in physical re-
ality n = 3, we restrict ourselves to the case n = 1 giv-
ing a two dimensional structure (i.e., a time diagram)
with one temporal and one spatial dimension. Due to
the �nite velocity of signals, an event can only in
uence
events which lie in the interior of the so-called future

light cone as depicted in Figure 17. (Notice the similar-
ity to Figure 9, both describe the same phenomenon).
Events P and Q are \out of causality", whereas S can
in
uence P , and P can in
uence R. Given the two coor-
dinates of events e and e0 (and the speed of light) it is a
simple arithmetic exercise to check whether the events
are out of causality or which event may in
uence the
other.

Notice that we have a partially ordered set of events,
and each event has a \space-time stamp" (its coordi-
nates). The causality preserving transformations (which
correspond to our \rubber band transformations") play
also an important role in Minkowski's space-time, these

128

are the famous Lorentz transformations leaving the light
cone invariant. The analogy goes even further|the
light cones of the two-dimensional Minkowski space
form a lattice. Figure 18 depicts the construction. We
simply identify a space-time point with its light cone.
The intersection of the future light cones de�ne the
supremum, whereas the intersection of the past light
cones de�ne the in�mum. (Notice that any two light
cones intersect). This identi�cation is analogous to our
identi�cation of cuts and time vectors.

At �rst sight, the strong structural analogy be-
tween Minkowski's space-time and our vector time is
surprising|it seems to indicate that vector time is
based on a fundamental and non-�ctitious concept.
However, the real world is distributed and the analogy
might not be as strong as it seems: The three dimen-

sional light cones do not form a lattice!

10 Application of vector time

An interesting application of the vector concept is
the �eld of distributed debugging. To locate a bug that
caused an error, the programmer must think about the
causal relationship between events in a program's execu-
tion. However, debugging in a distributed environment
is more di�cult than traditional debugging, mainly be-
cause of the increased complexity and unreproducible
race conditions. Tracing of events is therefore impor-
tant, and timestamped trace data can be used to detect
possible race conditions. Obviously, a potential race
condition exists if there is no causal relationship be-
tween two events. This can be detected by comparing
the timestamps of the vectors. Time vectors can also
help in proving that some event cannot be the cause
for another event, thus helping to locate an error. (No-
tice, however, that if e < e0, it is only possible that e
in
uences e0).

Our concept of vector time has been implemented
and integrated in a distributed debugging system on
our experimental multicomputer system [6]. Indepen-
dently of us the use of vectors of logical clocks for dis-
tributed debugging has recently been suggested and dis-
cussed by Fidge [5, 4]. A potential application similar
to distributed debugging are so-called trace checkers for
distributed systems which observe a sequence of events
and check whether it is a possible sequence of events
according to a given speci�cation [7].

For the purpose of performance analysis it is useful
to get information about potential concurrency. Two
events e, e' for which e k e0 can be executed concur-
rently. An analysis of the timestamped trace data of an
execution can therefore help to determine the degree of
parallelism.

A scheme very similar to our time vectors can be used

to detect mutual inconsistencies of multiple �le copies in
the context of network partitioning. In [15] Parker et
al. show how vectors can be used to detect situations
in which copies of a �le were modi�ed independently
in separate partitions. Each copy of a �le has a so-
called version vector whose i-th component counts the
number of updates made to the �le at site i. If u k v

(and u 6= v) for two version vectors u; v then a version

con
ict is signalled. Two �le copies with version vectors
u; v which are not in con
ict may be reconciled without
any further action, the version vector of the reconciled
�le is sup(u; v).

In a distributed simulation system each process has its
own logical clock. However, these clocks are not com-
pletely unrelated. A process can only safely advance its
clock if it is guaranteed that it will not receive a mes-
sage from some other process which is behind in time.
In fact, things are a little bit more complicated, but the
main point is that in order to get a high degree of par-
allelism it is essential that each process has a good ap-
proximation of the other processes' logical clocks. Here
the concept of vector time applies quite naturally and
piggybacking time vector on application messages in-
creases the speedup. A distributed simulation system
using this idea is currently being implemented.

Another use of vector time is the design of distributed

algorithms. Having in some sense the best possible ap-
proximation of global time should simplify the develop-
ment of distributed algorithms and protocols. We will
present one such application in the next section.

11 Computing global states on systems

without FIFO channels

In this section we \reinvent" a variant of the Chandy-
Lamport algorithm using time vectors and show how
snapshots can be computed when messages are not nec-
essarily received in the order sent. First, we concen-
trate on the local states of the processes, the messages
in transit will be considered subsequently.

Clearly, the notion of global state of a distributed
system is only meaningful for consistent cuts. Theorem
6 shows how it can be determined whether a given cut
is consistent or not. However, what we are looking for
is a method which guarantees to yield only consistent
cuts.

In the real world the snapshot algorithm (e.g., to
obtain a consistent population census) is simple:

(1) All \processes" agree on some \future" time s.

(2) A process takes its local snapshot at time s.

(3) After time s the local snapshots are collected to
construct a global snapshot.

129

If we want to adapt the algorithm for use in dis-
tributed systems without a common clock, then the pro-
cesses have to agree on a single future virtual time s or
on a set of virtual time instant s1; : : : ; sn which are mu-
tually concurrent and did not yet occur. The following
theorem is helpful.

Theorem 12 At the moment clock Ci ticks: : 9j :
Ci < Cj.

Proof (sketch): Use Theorem 5 and recall that mes-
sage transmission times are assumed to be non-zero.

This means that it is never too late to request a snap-
shot \now"; the clocks of other processes cannot be later
than Pi's own clock when executing a local event!

For simplicity of exposition we assume that Pi is the
only initiator requesting a snapshot. The �rst idea is as
follows:

(1) Pi \ticks" and then �xes its \next" time s =
Ci + (0; : : : ; 0; 1; 0; : : :; 0) to be the common snap-
shot time. (The \1" is on position i).

(2) Pi broadcasts s to all other processes.

(3) Pi does not execute any event until it knows that
every process knows s (e.g., by getting acknowledg-
ments).

(4) Then Pi \ticks" again (thereby setting Ci to s),
takes a local snapshot, and broadcasts a dummy
message to all processes. This forces all processes
to advance their clocks to a value � s.

(5) Each process takes a local snapshot and sends it
to Pi when its local clock becomes equal to s or
jumps from some value smaller than s to a value
larger than s.

The drawback that Pi is \frozen" until it has suc-
cessfully published the common snapshot time s can
be overcome by \inventing" a n + 1st virtual process
whose clock is managed by Pi. Pi is now free to use
its own clock in the usual way and can behave as any
other process. But then it becomes obvious that the
�rst n components of the vectors are of no use|they
can simply be omitted! Because the virtual clock Cn+1

ticks only when Pi initiates a new run of the snapshot
algorithm (which we assume will only happen after com-
pletion of a previous run), the �rst broadcast phase is
also unnecessary|the processes already know the next
snapshot time! It is also easy to see that instead of using
an integer counter for the snapshots a counter modulo 2
(i.e., an alternating boolean state indicator) is su�cient.

If we call the two states white (\before snapshot")
and red (\after snapshot") then we end up with a sim-
ple algorithm where each message is either white or red

(indicating whether it was sent before or after the snap-
shot) and each process (which is initiallywhite) becomes
red and immediately takes a local snapshot as soon as
it receives a red message for the �rst time. White pro-
cesses only send white messages and red processes only
send red messages. The initiating process becomes red
spontaneously and then starts a virtual broadcast al-
gorithm to ensure that eventually all processes become
red. To achieve that, it may directly or indirectly send
(red) dummy messages to all processes (e.g., by using
a virtual ring) or it may
ood the network by using a
protocol where a process sends dummy messages to all
its neighbors when it becomes red.

Notice that the algorithm is correct even if messages
are not received in the order sent. It is easy to see that
the cut induced by the snapshot algorithm (which con-
sists of all \white events") is consistent. There does
not exist a message sent by a red process which is re-
ceived by a white process because such a message would
color the receiving process red immediately before the
message is accepted.

The full global state of a consistent cut not only con-
sists of the local states but also of the messages in tran-

sit. Fortunately, those messages are easily identi�able|
they are white but are received by a red process. When-
ever a red process gets such a message it simply sends
a copy of it to the initiator.

The only remaining problem is termination. The ini-
tiator gets copies of all messages in transit but it does
not know when it has received the last one. In principle,
the problem can be solved by any distributed termina-

tion detection algorithm for non-FIFO channels [10] by
simply ignoring the red messages. However, a de�ciency
counting method is particularly attractive in this case
because a consistent snapshot of the message counters
can be taken at the same moment as the snapshot of
the local states.

For that purpose each process is equipped with a
counter being part of the process state which counts the
number of messages the process has sent minus the num-
ber of messages it has received. (However, messages of
the snapshot algorithm are not counted). By collecting
and accumulating these counters together with the local
snapshots the initiating process knows how many white
messages have been in transit and can thus determine
the end of the snapshot algorithm. (It knows how many
copies it will get). Because after termination of the al-
gorithm all processes are red and no white messages are
in transit, a subsequent run can start without reinitial-
ization simply by exchanging the roles of \white" and
\red".

It is interesting to compare this algorithm to the
snapshot algorithm by Lai and Yang [8] which also does
not require FIFO channels. In their algorithm complete

130

histories of sent and received messages are kept at ev-
ery node. Since these message histories are considered
to be part of the local state the initiator can compute
the di�erence and thus determine the messages in tran-
sit without waiting for message copies. While this algo-
rithm is \fast", it needs considerably more space than
our scheme.

Finally, it should be noted that the snapshot algo-
rithm can be used as a distributed termination detection

algorithm. The local states are of no interest then, only
the message counters are relevant. If the accumulated
message counter equal zero then no messages cross the
cut line and therefore the system is terminated [10].

Acknowledgments

The author would like to thank Michel Raynal and
Gerard Tel for useful comments on a draft version of
this paper.

References

[1] B. Awerbuch. Complexity of Network Synchroniza-
tion. Journal of the ACM, 32(4), 1985. 804-823.

[2] G. Bracha and S.Toueg. Distributed Deadlock De-
tection. Distributed Computing, 2, 1987. 127-138.

[3] K. Mani Chandy and Leslie Lamport. Distributed
Snapshots: Determining Global States of Dis-
tributed Systems. ACM Transactions on Computer

Systems, 3(1), February 1985. 63-75.

[4] C. J. Fidge. Partial orders for parallel debugging.
In Barton Miller and Thomas LeBlanc, editors,
Proceeding of the ACM SIGPLAN and SIGOPS

workshop on Parallel and Distributed Debugging,
pages 183{194, University of Wisconsin, Madison,
Wisconsin 53706, May 5-6 1988.

[5] C. J. Fidge. Timestamps in Message-Passing Sys-
tems that Preserve Partial Ordering. In Proceedings
of 11th Australian Computer Science Conference,
pages 56{66, February 1988.

[6] Dieter Haban and WolfgangWeigel. Global Events
and Global Breakpoints in Distributed Systems. In
Proceedings of the Twenty-First Annual Hawaii In-

ternational Conference on System Sciences, pages
166{175, January 1988.

[7] C. Jard and O. Drissi. Deriving Trace Checkers for
Distributed Systems. Technical Report 347, IRISA,
University of Rennes, France, 1987.

[8] Ten H. Lai and Tao H. Yang. On Distributed Snap-
shots. Information Processing Letters, 25(3), May
1987. 153-158.

[9] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications

of the ACM, 21(7), July 1978. 558-565.

[10] F. Mattern. Algorithms for Distributed Termina-
tion Detection. Distributed Computing, 2, 1987.
161-175.

[11] Carroll Morgan. Global and Logical Time in Dis-
tributed Algorithms. Information Processing Let-

ters, 20(4), May 1985. 189-194.

[12] G. Neiger and S. Toueg. Substituting for Real Time
and Common Knowledge in Distributed Systems.
Technical Report 86-790, Department of Computer
Science, Cornell University, November 1986. Re-
vised June 1987. Also see paper appeared in Pro-

ceedings of 6th ACM Symposium on Principles of

Distributed Computing, 1987, 281-293.

[13] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets,
Event Speci�cations and Domains. Part I. Theoret-
ical Computer Science, 13, 1981. 85-108.

[14] P. Panangaden and K. Taylor. Concurrent Com-
mon Knowledge: A new De�nition of Agreement
for Asynchronous Systems. Technical Report TR
86-802, Department of Computer Science, Cornell
University, 1986. Revised version TR 88-915, May
1988. Also in Proceedings of ACM 5th Symposium

on Principles of Distributed Computing, 197-209,
1988.

[15] D. S. Parker, Jr. et al. Detection of Mutual In-
consistency in Distributed Systems. IEEE Trans-

actions on Software Engineering, 9(3), 1983. 240-
247.

[16] Michel Raynal. A Distributed Algorithm to Pre-
vent Mutual Drift Between n Logical Clocks. In-

formation Processing Letters, 24, February 1987.
Pages 199-202.

[17] J. F. A. K. Van Benthem. The Logic of Time. D.
Reidel Publishing Company, 1983.

131

