
Online Reconfiguration in Replicated Databases Based on Group
Communication

Bettina Kemme
School of Computer Science
McGill University, Montreal

kemme@cs.mcgill.ca

Alberto Bartoli
Facoltà di Ingegneria
Università di Trieste

bartolia@univ.trieste.it

Özalp Babaoğlu
Department of Computer Science

University of Bologna
babaoglu@cs.unibo.it

Abstract

Over the last years, many replica control protocols have
been developed that take advantage of the ordering and reli-
ability semantics of group communication primitives to sim-
plify database system design and to improve performance.
Although current solutions are able to mask site failures ef-
fectively, many of them are unable to cope with recovery of
failed sites, merging of partitions, or joining of new sites.
This paper addresses this important issue. It proposes effi-
cient solutions for online system reconfiguration providing
new sites with a current state of the database without in-
terrupting transaction processing in the rest of the system.
Furthermore, the paper analyzes the impact of cascading
reconfigurations, and argues that they can be handled in an
elegant way by extended forms of group communication.

1. Introduction and Motivation

Replicating data across several sites is a well-known
technique for increasing availability and performance in
distributed databases but introduces the problem of keep-
ing all copies consistent. Replica control mechanisms can
be classified as being either eager, i.e., updates are coordi-
nated before transactions commit [9], or lazy, i.e., updates
are propagated only after transactions commit (e.g., [20]).
Although eager replication can easily guarantee 1-copy-
serializability and can be made fault-tolerant in a straight-
forward way, we believe it is fair to say that eager solutions
have had very limited practical impact. Database designers
believe that eager replication is too complex, has poor per-
formance and does not scale. Instead, commercial database
systems are based primarily on lazy strategies favoring per-
formance over correctness: most of their solutions guaran-
tee neither data consistency nor fault-tolerance [11].

Motivated by this gap between theory and practice, re-
cent proposals for replicated databases [1, 2, 21, 18, 12,

15, 14, 17] propose new approaches that exploit the rich
semantics of group communication systems [10, 19] to im-
plement an eager-style replica control. Most of these solu-
tions propagate the updates of the transactions using a total
order multicast that delivers all messages at all sites in the
same order. The database uses this order as a pattern to
follow in the case of conflicts, i.e., conflicting updates are
serialized in the order that the group communication sys-
tem delivered them. Several simulation studies [18, 15, 12]
and a real implementation [14] have proven the superior
performance of such an approach compared to traditional
eager replica control mechanisms. The proposed solutions
are able to handle effectively site and communication fail-
ures [2, 15]. This is accomplished primarily through the
virtual synchrony properties of the underlying group com-
munication system, which notifies about failures in such a
way that surviving sites receive exactly the same set of mes-
sages before being informed about the failure.

What is often missing from the various proposals is how
failed sites can rejoin the system after recovery, how parti-
tions can merge after repairs or how new sites can be added
to a running system. Reconfiguration that is necessary when
the number of sites increases is a far more complex task
than that necessary when the number of sites decreases. In
particular, before a joining site can execute transactions, an
up-to-date site has to provide the current state of the data to
the joining site. One possible solution is to require suspend-
ing transaction processing during this data transfer, an ap-
proach taken, e.g., by [2]. This option, however, may violate
the availability requirements of many critical systems if the
amount of data to be copied is extremely large. Instead, all
reconfigurations should be handled online whereby transac-
tion processing continues and is interfered as little as pos-
sible by reconfiguration. We are not aware of any existing
reconfiguration mechanism that fulfills this requirement.

This paper proposes efficient and elegant solutions to on-
line reconfiguration in replicated databases. We discuss var-
ious alternatives for data transfer to joining sites, all of them
allowing concurrent transaction processing. Given that it

is impractical to perform data transfer as a single “atomic
step”, we pursue solutions that admit cascaded reconfigura-
tions during the data transfer itself. An important contribu-
tion of our approach is a clear separation between the tasks
of the group communication system and the tasks of the
database system: while the former is responsible for com-
munication and group management, the latter is charged
with handling data transfer and coordination of transactions.
Such separation is important in practice because it simpli-
fies the integration of existing database technology.

We present our approach in two steps. First, we pro-
pose reconfiguration algorithms based on the basic virtual
synchrony paradigm offered by most group communication
systems. Within this context, various data transfer strategies
are discussed, ranging from transferring the entire database
to more sophisticated schemes admitting piecewise recon-
figuration. Relying on basic virtual synchrony, however, re-
sults in complex reconfiguration protocols if further failures
may occur during the data transfer. For this reason, we show
in a second step how to modify the previous algorithms us-
ing an enriched virtual synchrony model, called EVS [4].
The resulting framework enables simpler solutions that ad-
mit various failure scenarios.

We note that this paper pursues a database perspective to
reconfiguration focusing on database issues. As a result, our
treatment of group communication in general, and virtual
synchrony in particular, is necessarily abbreviated.

The paper is structured as follows. The next section pro-
vides a brief overview of virtual synchrony and replica con-
trol based on group communication. Section 3 outlines the
principal problems that need to be solved for online recon-
figuration. Section 4 presents various alternatives for online
reconfiguration based on the virtual synchrony model. Sec-
tion 5 refines the previous solutions by using enriched form
of virtual synchrony to appropriately encapsulate reconfig-
uration. Section 6 concludes the paper.

2. Basic Concepts

2.1. Virtual Synchrony

We assume an asynchronous system where neither mes-
sage delays nor computing speeds can be bounded with cer-
tainty. Messages may be lost and sites may fail by crash-
ing (we exclude Byzantine failures). Crashed sites may
recover. Sites are equipped with a group communication
system supporting virtual synchrony [10, 19]. Virtual syn-
chrony provides applications with the notion of group mem-
bership and with a reliable multicast communication primi-
tive (a message is sent to all members of the group). Virtual
synchrony provides consistent information about the set of
group members that appear to be currently reachable. This
information takes the form of views. The system determines

a new view as a result of crashes, recoveries, network parti-
tions and merges, or explicit group joins and leaves.

New views are communicated to sites through view
change events. A site that delivers a view change event
���������
	�� is informed that the new view is 	 . In this case
we say that the site installed 	 . We say that an event (e.g.,
the delivery of a message) occurs in view 	 at a given site if
and only if the last view to be installed at the site before the
event was 	 . Given two views 	 and
 , we say that 	 and

 are consecutive if and only if there is a site for which

is the next view to be installed after 	 . 	 and
 are con-
current if and only if there is no site that installed both 	
and
 . Intuitively, concurrent views reflect different per-
ceptions of the group membership, typically as a result of
partitions.

A fundamental property of virtual synchrony is that view
changes are globally ordered with respect to message deliv-
eries: given two consecutive views 	 and
 , any two sites
that install both views must have delivered the same set of
multicast messages in view 	 .

We say that any view with a majority of sites is a pri-
mary view (the number of sites is assumed to be static and
known to all sites). As clarified in the next sections, our
algorithms allow transaction processing only at sites in the
primary view. Extending our discussion to dynamic groups
or other definitions of primary view (e.g., a view containing
a majority of the previous primary view) is straightforward.
We assume that the composition of concurrent views do not
overlap. If this is not provided by the group communication
system [5, 6], we assume a thin software layer on top of the
virtual synchrony layer, that hides from the application pri-
mary views that are not installed by a majority of sites (as,
e.g., in [22]).

The replica control protocols of the next section use a to-
tal order multicast: any two sites that deliver two multicast
messages deliver them in the same order [10, 19]. Further-
more, we shall assume a uniform reliable multicast with the
following guarantee. Let 	 and
 be two consecutive pri-
mary views and let ��� and ��� be sites that installed 	 . If
��� is a member of
 but ��� is not (��� crashes or installs
some non-primary view
�� as the next view after), and
� � delivers message � in 	 , then � � also delivers � before
installing
 . In other words, messages delivered by � � in
	 constitute a subset of those delivered by � � in 	 .

Note that we do not specify which messages have to be
delivered in minority views. As we discuss in Section 2.3,
members of minority views behave as if they had failed by
ignoring delivered messages and refraining from executing
transactions. The above adaptation of “uniformity” to par-
titionable systems happens to suffice for the replica con-
trol protocols of the next section and can easily be imple-
mented with minimal changes to existing group communi-
cation systems (e.g. [16]).

2

2.2. Replica Control

The replicated database system consists of a set of sites.
Each site runs an instance of the database management sys-
tem and maintains a copy of the database. Each site is a
group member. We assume for the time being that all sites
are in the same view. In the next sections we shall extend
the discussion to accommodate failures and recoveries.

We use the transaction model of [9]. A transaction is a
sequence of read and write operations on objects. As for
replication, we use the Read-One-Write-All (ROWA) strat-
egy: a transaction performs read operations on the local
copy while write operations are applied to all copies. Con-
current transactions with conflicting operations (accessing
the same object and at least one of them is a write) must be
isolated from each other. We use 1-copy-serializability as
correctness criteria: all sites execute conflicting operations
in the same order and there exists a serial execution of the
transactions with the same order of conflicting operations.

Various ROWA protocols based on group communica-
tion primitives have been proposed [1, 2, 21, 18, 12, 15,
14, 17]. They vary in the number of messages per trans-
action, the ordering mechanisms used (FIFO order, total
order etc.), and their concurrency control. For simplicity,
we describe reconfiguration in the context of only one of
these protocols [1]. We have chosen this protocol because
it is simple to describe and there exist various protocols that
follow similar execution and communication patterns (only
one message per transaction using the total order multi-
cast) [12, 15, 14], and these protocols have shown good per-
formance. However, reconfiguration associated with other
replica or concurrency control schemes will be very similar.

The replica control protocol that we consider is de-
scribed in the following. We assume that objects are tagged
with version numbers. A transaction

�
is submitted to some

site � in the system and executed in several phases. For
now, we assume that either all read operations precede the
write operations, or all write operations are delayed until all
read operations have been performed. The first two phases
are local to � , while all other phases are executed at all sites:

I. Local Read Phase: For each read operation ������� on ob-
ject � acquire a shared read lock and execute the opera-
tion on the local copy.

II. Send Phase: Once all read operations are executed bun-
dle a single transaction message �
	 containing all write
operations and the identifiers of the objects read by �
along with the respective version numbers. Send � 	 us-
ing the total order multicast.

III. Serialization Phase: Upon delivery of a transaction mes-
sage � 	 perform in an atomic step:

1. Assign global identifier: Assign a globally unique
identifier ��
�������� to � . ��
�������� is the sequence number
of its transaction message �
	 , i.e., the position of �
	
in the total order of all delivered transactions.

2. Version Check: For each object � read by � , if the
local version number of � (after applying all updates
of transactions delivered before �) is greater than the
version number read by � , then abort and terminate � .

3. Lock Phase: Request all write locks for � . If there is a
local transaction ��� in its local phase with a conflicting
read lock, abort ��� .

IV. Write Phase: As soon as the lock for a write operation� ����� is granted, perform the corresponding write opera-
tion. Assign the version number ��
�������� to the object � .

V. Commit Phase: As soon as all write operations have
been performed, release all locks and commit � .

Only phase III is executed serially for all incoming trans-
actions. The execution of write operations (phase IV) is
only serial in the case of conflicts. Non-conflicting opera-
tions can be executed concurrently and different sites may
even commit transactions in different orders as long as they
do not conflict. This is important since processing mes-
sages serially as assumed for most applications deployed
over group communication (including, e.g., [2]) would re-
sult in significantly lower throughput rates. Our protocol
uses the sequence number of the transaction message ���
as the global identifier ����� � � � of

�
. This has important ad-

vantages. First, ����� � � � can be determined independently
at each site. Second, it represents the serialization order of
transactions. Last, by using the ����� for tagging objects, we
have the guarantee that all sites have the same version num-
ber for an object at a given logical time point. Notice that
version numbers are necessary to detect whether read op-
erations have read stale data. The protocol is serializable
since read/write conflicts are handled by aborting the read-
ing transaction, write/write conflicts are ordered in the same
way at all sites according to the total order of the multicasts,
and write/read conflicts are handled by traditional 2-phase-
locking (the read waits until the write releases the lock).

2.3. Failures

In [15], we have shown that the replica control protocols
described in the previous section can easily be extended to
cope with site and communication failures by (i) sending
messages using uniform reliable multicast as defined in Sec-
tion 2.1 and by (ii) restricting transaction processing to the
sites of the primary view. If a site leaves the primary view
and installs a non-primary view, it simply stops processing
transactions and ignores all incoming messages. Members
of a consecutive primary view simply continue as before.
They do not need to perform any further coordination to
handle the failure. We have shown that (i) and (ii) guaran-
tee transaction atomicity. That is, whenever a site commits a
transaction

�
,
�

will be committed at all sites that are mem-
ber of a primary view for a sufficiently long time. Moreover,
no other site aborts

�
(a site might fail before committing�

, but then,
�

was still active or had not started executing at

3

the time of the failure). The corresponding behavior holds
in the case a site aborts a transaction

�
.

With weaker forms of message delivery (e.g., reliable de-
livery), transaction atomicity can be violated: a failed site
� might have committed a transaction

�
shortly before the

failure even though � � was not delivered at the sites that
continue in a primary view [15]. Upon recovery of � ,

�
must be reconciled (see, e.g., [13]).

3. Reconfiguration in Replicated Databases

Before transaction processing can begin, the system
“bootstraps” as follows. An initial set of sites that defines a
majority and that has a copy of the database start by joining
the group. Transaction processing begins as soon as they
have installed a view that includes all of them, defining the
first primary view. At this point other sites may start and
join the group. These “new” sites may or may not have the
initial copy of the database. A site that crashes and recovers
will perform some clean-up on its copy of the database (see
below) and then will join the group again.

In the following, we shall describe the actions neces-
sary to enable joining sites to resume transaction processing
when they installs a primary view. � � depicts a site that is
recovering after a failure (� � had crashed or a network par-
tition had occurred), ��� depicts a new site, ��� depicts either
type of joining site. Furthermore, ��� denotes a peer site
transferring the current database state to ��� . Several tasks
and issues for online reconfiguration can be identified:
� Single Site Recovery As in centralized systems, � � first

needs to bring its own database into a consistent state.
This requires the redoing of updates of committed trans-
actions that were not yet reflected in the database when
the failure occurred and the undoing of updates of trans-
actions that were aborted or still active at the time of
the failure. For this, each site usually maintains a log
during normal processing such that for each write op-
eration on object � the before- and after-images of �
are appended to the log. Since single site recovery is a
standard database technology performed before � � re-
joins the group, we refer to [9] for details.

� Data Transfer A peer site � � of the primary view must
provide ��� with the current state of the database. The
simplest solution is to send an entire copy (this is the
only solution in the case of a new site). Alternatively,
�	� only sends the data that was updated after � � failed.

� Determination of a Synchronization Point: Care has
to be taken in the case transaction processing is not sus-
pended during the data transfer. We must guarantee that
for each transaction in the system, either the updates of
the transaction are already reflected in the data trans-
fered to � � or � � is able to process the transaction after
the transfer has successfully terminated. Determining

the synchronization point depends strongly on the data
transfer technique that is employed.

In the following, we shall assume that a primary view al-
ways exists. In the case the primary view disappears (i.e., a
total failure), transaction processing may resume only after
execution of a creation protocol for determining the set of
all transactions committed in the system and for applying
the changes of such transactions at all participating sites.
In the context of the replica control protocols presented in
section 2.2, the creation protocol, in general, requires the
involvement of all sites. This is ultimately due to the asyn-
chrony between the database system and the group com-
munication system: a site actually commits a transaction

�
some time after the delivery of the transaction message ��� ;
during this time the site could install a new view and/or
fail. For example, suppose there are three sites � ��
 � ��
 ��

all members of the primary view 	 . � � sends the transac-
tion message � � that is delivered in 	 at all sites. It might
happen that � � commits

�
and then fails, whereas both � �

and ��
 first install a new primary view
 excluding � � , and
then fail before committing

�
. In that case, only the log of

��� will contain the commit record of
�

. Therefore it is nei-
ther enough that the creation protocol involves a majority
of sites nor that it involves all sites of the last primary view

 . Instead, the logs of all sites in the system have to be
considered. We omit the details of the creation protocol (it
merely requires comparing the highest transaction identifier
� ����� of transactions applied by each site �). Note that if ���
and �
 had not failed they would have committed

�
guar-

anteeing that the members of the primary view commit all
transactions that are committed by any site in the system.

4. A Suite of Reconfiguration Algorithms

Efficiency of a given reconfiguration strategy depends on
a number of parameters: the size of the database, the trans-
action throughput, the read/write ratio within the workload,
the system utilization and so on. As a consequence, one
should be able to adapt the strategy to the specific scenario,
in particular, with respect to the data transfer task. In the fol-
lowing we will discuss stepwise redefined transfer strategies
aiming to solve three issues. First, the data transfer should
interfere as little as possible with ongoing transaction pro-
cessing. Second, it should require as little CPU and net-
work overhead as possible. And third, the solutions should
be easy to implement with existing database technology.

4.1 Data Transfer within the Group Communica-
tion System

Some group communication systems are able to perform
data transfer during the view change (e.g. [10, 3, 22]). The
essential aspects of this feature are as follows. Let 	 and

4

 be two consecutive primary views and let
 be the first
view including the joining site � � . The application defines
the state that has to be transferred to ��� (by providing mar-
shalling/unmarshalling routines that will be invoked by the
system when needed). During the view change protocol, the
group communication system fetches the state from the ap-
plication layer of some member of 	 , then incorporates this
state at the application of � � and finally delivers the view
change event ���������
 � . During the view change protocol
the activity of the application is suspended and the system
does not deliver application-originated messages. As a re-
sult, all sites that install
 do so with the same state.

Such an approach has important disadvantages. First,
the group communication system can only send the entire
database, because the system does not know which data
has actually been changed since � � ’s failure. This may be
unacceptable if � � is recovering from a short down-time.
Second, the database would have to remain unchanged for
the entire data transfer. Considering the enormous size of
current databases, this can clearly violate the common 24-
hour/7-day availability requirement. Last, group communi-
cation systems usually assume that they have control over
the common group state. The database, however, is con-
trolled by the database system, and if the group commu-
nication wants to access the data, it has to do so through
the traditional interface, i.e., it has to submit transactions.
While this might be feasible, it will be highly inefficient.
Similar remarks apply to approaches in which the system
relays to � � all messages delivered during � � ’s down-time,
rather than the application-defined state (e.g., [2]). In this
case �	� might have to apply thousands of transactions and
not be able to catch up with the rest of the system.

4.2. Data Transfer within the Database System

As a result of the previous considerations, we believe
that the data transfer should be performed by the database
system using the appropriate database techniques. The
group communication system should only provide the ap-
propriate semantics to coordinate the data transfer.

We shall consider the following framework for all alter-
natives depicted in the following sections: Let
 be the
primary view installed when � � joins the group. During the
view change no database related state is transferred. Upon
the delivery of ���������
 � , sites that were members of the
previous primary view 	 elect one of them to act as peer
site �	� for �	� . Election can be performed without message
exchange, based on the compositions of 	 and
 . Trans-
action processing continues unhindered at all sites in
 ,
except for ��� and ��� . �	� transfers the data to ��� and ��� in-
stalls it. The data transfer need not occur through the group
communication platform but could, e.g., be performed via
TCP between � � and � � . For all but the last of the follow-

ing data transfer strategies, the synchronization point in re-
gard to concurrent transaction processing will be as follows:
�	� transfers a database state including the updates of all
transactions which were delivered before the view change
���������
 � . However, the data does not include the updates
of transactions delivered after ���������
 � . Instead, ��� en-
queues all transaction messages delivered after ��� � ���
 �
and processes them once the data transfer is completed. Af-
ter that, � � can start executing its own transactions. We first
assume that no further view changes occur during reconfig-
uration. We relax this requirement in Section 5.

4.3. Transferring the Entire Database

A simple option for data transfer is to transfer the entire
database. This is mandatory for new sites but also attrac-
tive for recovering sites if the database is small or if most of
the data has been updated since � � failed. In order to syn-
chronize with concurrent transactions, � � transfers the data
within the boundaries of a “data transfer transaction”

���
:

I. Lock Phase: Upon delivery of ����� � � � � , create transaction� � and request in an atomic step read locks for all ob-
jects in the database. Order these read locks directly after
all write locks associated with transaction messages deliv-
ered before ����� � � � � . Successive transactions requesting
a write lock for an object locked by

� � must wait until
� �

releases the lock.
II. Data Transfer Phase: Whenever a lock on object � is

granted, read � and transfer it to �	� (which incorporates
� into its database and sends an acknowledgment back).
As soon as the acknowledgment is received, release the
lock and normal processing can continue on � . Of course,
both ��
 and �	� can pack multiple objects and acknowledg-
ments, respectively, in a single message.

Notice, that read operations can continue unhindered on
� � . Write operations are only delayed on objects that are
not yet transferred. Also note that in order to reduce the
number of locks,

� �
can request course granularity locks

(e.g., on relations) instead of fine granularity locks on in-
dividual objects. The normal transactions can still request
locks on a per object basis. The most important aspect in
here is that

� �
’s read locks must cover the entire database.

4.4. Checking Version Numbers

While transferring the entire database is simple to im-
plement, it will often be highly inefficient, e.g., when � �
has been down for a very short time or when big parts of
the database are seldomly updated. In such cases it may be
more efficient to determine which part of the database ac-
tually needs to be transferred, i.e, which objects have been
changed since � � ’s failure, and to transfer only this part.

To do so, � � must know up to when � � has executed
transactions. For this, � � informs � � about its cover trans-

5

action. The cover transaction for a site � is the transac-
tion with the highest global identifier ����� � ����� such that
� has successfully terminated all transactions with � �����
� ��� � ��� � . � � can easily determine � ��� � ��� ��� by scanning
its single site recovery log (details are omitted for space rea-
sons). Now recall that: (i) all sites have the same global
identifiers for transactions (namely the sequence numbers
of the corresponding transaction messages), and (ii) con-
flicting transactions are serialized according to their � ��� s
at all sites. Accordingly, if � � sends the objects that were
updated by committed transactions with �����	� � ��� � ��� � � ,
then � � will receive all changed data.

Since the replica control protocol of Section 2.2 tags
each object with the transaction that was the last one to up-
date it, it is easy to determine the objects that have been
changed since

��

�������
��� � . The data transfer phase of the
protocol of Section 4.3 can be modified as follows:

I. Data Transfer Phase: Whenever a lock on object � is
granted, check whether the version is labeled with a trans-
action � for which ��
���������� ��
�� ������� � . If this is the case,
transfer � as in the previous section, otherwise ignore �
and release the lock immediately.

4.5. Restricting the Set of Objects to Check

The optimization of the previous section still needs to
scan the entire database, which may involve a considerable
overhead. Moreover, an object is locked from the start of� �

until it is either transferred or considered non-relevant.
Thus, transaction processing on ��� can be delayed for quite
some time. Finally, not all replica control protocols tag
objects with version numbers as required by the protocol.
In this section, we present an alternative that avoids these
problems: (i) it does not rely on the use of version numbers
as object tags, thus it can be applied to any database sys-
tem; (ii) it does not require scanning all the objects in the
database; and (iii) it unlocks non-relevant objects sooner.

We propose to maintain a reconstruction table RecTable
at each site keeping information about recently changed
data. That is, a record of � � � � �"!
� consists of an object
identifier ��� � � � and a global identifier � ��� indicating that�

�$�

was the last transaction to update � . � � � � �"!
� should
hold a record for each object � updated by transaction

�
if

there is at least one site � that might not have yet executed
�

(e.g., � is not in the primary view when
�

commits). Only
in the case of a data transfer � � � � �"!
� must be completely
up-to-date (see below). Otherwise, it can be maintained by
a background process whenever the system is idle:

I. Registration of updates: Let object � be last updated by
committed transaction � . If %'& � �(�*),+$& has already a record
for � , then set the transaction identifier of this record to
��
�������� , otherwise insert a new record ��
��������.-���
���������� .

II. Deleting records: Let ��
�� ������� be the global identifier

of the cover transaction for site � . Let ��
�� �����"/1032 be
the minimum of all ��
�� ����� � . Sites maintain a conser-
vative estimate of ��
�� ����� /1032 through regular exchange
of ��
�� ����� values (in particular, by using for site � not in
the primary view the last ��
�� �4��� � announced by � while
in the primary view). When a site increases its estimate
of ��
�� ����� /1032 , it deletes from %5& � �(��)�+$& each record with
��
�������� such that ��
������ �76 ��
�� ����� /�082 .
Based on � � � � �"!
� , the data transfer protocol of section

4.3 can be modified by changing the lock phase as follows:

I. Lock Phase and Determining the Data Transfer Set: Upon
delivery of ��� ��� � � � , create transaction

� � , request a sin-
gle read lock on the entire database and wait until all trans-
actions delivered before ����� � �:9 � have terminated and
their updates are registered in %5& � �(��)�+$& .
Let

� ; �=<?>
���������@ ��
������ �.-���
����BA�%5& � �C��),+$& and ��
��D�
��
�� ����� � �FE . Request read locks on objects � , with

�������� A � ; �

and release the lock on the database. At
this point, proceed with the data transfer phase as usual
for the objects whose identifiers are in

� ; �
.

In contrast to the previous protocols we now set only
a single lock on the entire database. Once the data set
to be transferred is determined, which can be done easily
with � � � � �"!
� , this lock is replaced by the fine granularity
locks on the individual objects. Hence, non-relevant data is
locked for only a very short time.
�G� � � �H!I# � may be implemented as a traditional table

in a relational database system. In this case,
�KJ��

can
be constructed with the simple SQL statement “SELECT��� � � � from � � � � �"!
� where �����L������� � ��� ��� ”. Fast re-
sponse to this query may be obtained by having an index on
� � � � �"!
� with the global identifier being the search key.
In the same way, an index on the object identifier will fas-
ten the registration of new updates to � � � � �"!
� . Notice
that maintenance of �G� � � �H!I# � is mostly asynchronous and
changes to � � � � �"!
� do not need to be forced to disk; thus
we believe that its impact during normal transaction pro-
cessing be small. Finally, notice that � ��� � ��� �5� � can only
increase and that when all sites are up and in the primary
view records that are no longer needed are continuously
deleted. In the case of relational databases we estimate the
maximum additional space overhead to be the same as for
two additional indices for each relation in the database.

4.6. Filtering the Log

So far, � � has had to set read locks to synchronize the
data transfer with concurrent transaction processing. Al-
though the previous optimizations, amongst other things,
shortened the time such locks are set on non-relevant data,
locks on relevant data are still long.

We can avoid setting locks on the current database if the
database system maintains multiple object versions. In this

6

case, transactions can update the objects of the database un-
hindered while � � will simply transfer the versions of the
objects that were current when ��� � ���
 � was delivered. No
data transfer transaction needs to be created and transac-
tions at �	� can access the current database objects unhin-
dered. Multiple versions are given, for instance, if the log
maintained for single site recovery stores for each update of
object � the entire physical after-image of � . The details
of such a protocol can be found in [8].

4.7. Lazy Data Transfer

All the previous solutions use the view change as a syn-
chronization point in that � � enqueues all transaction mes-
sages delivered after � � � � �
 � and eventually applies them
to its local (up-to-date) copy of the database. While this is a
simple and intuitive approach, it has several disadvantages.
First, the peer node ��� has to delay transaction processing
on data that must be transferred (unless there exist multi-
ple object versions). Second, if the workload is high and
the data transfer takes a long time, then the joining site ���
might not be able to store all transaction messages deliv-
ered during the data transfer, or it might not be able to apply
these transactions fast enough to catch up with the rest of the
system. Finally, a failure of � � requires � � to leave and re-
join the system and to restart the data transfer from scratch:
since the sites that could take over after � � ’s failure have
continued transaction processing, they might not be able to
provide � � with the state of the database that was current
upon the delivery of � � � � �
 � . These drawbacks can be
avoided if we decouple the synchronization point from the
delivery of ���������
 � [7]:
� � � initially discards transaction messages delivered in

 and � � starts a data transfer as described below.
When the transfer is nearly completed, � � and � � will
determine a specific delimiter transaction

� �
, delivered

in
 . � � transfers all changes performed by transac-
tions with ����� � � . �	� starts enqueueing transaction
messages with ����� such that ����� � � and will apply
these transactions once the data transfer is completed.

� �	� transfers the data in several rounds. Only in the last
round (when

� �
is determined), the transfer is synchro-

nized with concurrent processing by setting appropriate
locks. The idea is to send in each round the objects that
were updated during the data transfer of the last round.
The last round is started either when the number of ob-
jects that are left to be transferred does not exceed a
given threshold

� ���
�
or a maximum number � ���
� ���

of rounds has been reached.
Before discussing this solution in more detail, we high-

light its advantages. First, ��� has a better control of when
to perform the data transfer and at which speed. Second, � �
has to enqueue and apply far less transactions. Third, the

approach allows for much better concurrency as transaction
processing at � � is delayed only in the last round which
we expect to be fast, since it will only transfer little data.
Finally, failures of ��� before reconfiguration is completed
can be handled more efficiently. As we shall see below, in
each round � , the updates up to a certain transaction

�

�����
are transferred. ��� only has to inform the new peer site � ��
up to which

�

�$� �
it received the updates from � � , and � ��

can continue the data transfer starting from that transaction.
The actions at � � are as follows:

Round �
 � � �C� �����	� �
1. Determine the delimiter transaction ��
 0
� � of this round: If

 <��
then let ��
���0 be the identifier of the last transac-

tion delivered before ��� � � �:9 � . Otherwise, let ��
�� 0 be the
identifier of the last transaction that was delivered before
the round started. Wait until all updates of transactions
with ��
�� 6���
���0 are included in %5& � �(��)�+$& (i.e., at least the
updates of all transactions up to ��
 0�� � will be transferred).

2. Determine the data to be transferred: If
 <��
then let

��
������ < ��
�� �4�*�"��� , otherwise ��
������ < ��
�� 0���� . Let
� ; � <

>
���������@ ��
������ �.-���
�����A�%5& � �(��)�+$& and ��
�� ����
�� ��� E
3. Data transfer: For each
���������A � ; �

acquire a short
read lock on � , read � , release the lock and then trans-
fer � to �	� (the short read lock is only used to guarantee
that only committed data is read). Furthermore, inform
� � about ��
���0 (for fail-over).

4. Termin. Check I: If
 < %'/ ��!#" � then go to Round $.

5. Termin. Check II: Let
� ; � 2&%�! � < >
���������@ ��
��������.-���
����CA

%'& � �(�*),+$& and ��
�� � ��
�� 0 E . If ' � ; � 2(%�! ��6*) / �+! then go
to Round $. Otherwise, increase
 and repeat.

Round � :

1. Determine the delimiter transaction � � : Inform � � that
this is the last round, and wait for a response (upon re-
ception of this message, �	� starts enqueueing transac-
tions and responds with the identifier ��
��+,��(-.,/-&0
& of the
first enqueued transaction). Upon reception of the re-
sponse, let ��
�� 2 be the identifier of the last transaction
delivered at �
 that already requested its write locks:
� < ����� ����
���2�-���
��+,���-1,2-30
&4" � � .

2. Final data transfer: The data transfer of the last round is
performed by a transaction

� � ordered as follows:
� �

transfers all changes of transactions with ��
�� 6 � but no
changes from transactions with ��
�� � � (they will be ap-
plied by � �). � � now follows any of the protocols de-
scribed in the previous sections. For instance:

a. Lock Phase and Determining the Data Transfer Set: If
� < ��
���2 , request immediately a read lock on the en-
tire database. Otherwise, wait until ��
 0
�
+576
�6.� %.��� has
requested its write locks and then request the read
lock on the entire database. Wait until all transactions
with ��
�� 6 � are included in %5& � �(��)�+�& . Let

� ; � <
>
���������@ ��
��������.-���
����CA	%5& � �(��)�+$& and ��
���� ��
�� 0 E . Re-
quest a read lock for each object � with
��������1A � ; �
and release the lock on the database.

b. Data Transfer: As in section 4.3.

7

V6

V7

V8

V9

V10

V5
V0

V1
V3

V2

S0
S1
S2
S3

S1
S2

S0

S3

S0
S1
S2
S3

V4

S0

S1
S2
S3
S4

S4

S1

S2
S3
S4

S2

S1
S3
S4

Figure 1. Example of virtual synchrony

Note that the set
�KJ	� � � ��� constructed within the termi-

nation check II is an estimate of the
�KJ��

that will be con-
structed in the next round, because transaction processing is
not suspended. We suggest that in the first round data are
transferred per data partition (e.g., per relation). In case of
failures during this round, the new peer site does not need to
restart but simply continue the transfer for those partitions
that � � has not yet received.

5. Cascading Reconfigurations

A key problem for all solutions presented so far is that
further view changes may occur before reconfiguration is
completed. The problem is that reconfiguration is not an
atomic step but may take a long time. The possibility of
view changes during reconfiguration may greatly compli-
cate the details. As an example, consider Figure 1 (ovals
indicate views; grey-shaded ovals indicate primary views;
consecutive views are connected by an arrow). Suppose that
��� acts as peer site when �
 joins the primary view 	�� and
suppose that ��� leaves the primary view (�) before recon-
figuration has completed. Only ��
 and ��� know that re-
configuration has not yet completed. It follows that � � and
��� in 	�� do not know whether �
 is able to process transac-
tions or whether one of them has to resume the data transfer.
Similarly, ��
 does not know which of the other sites can act
as a peer site for its reconfiguration. In fact, ��
 cannot even
tell that there will indeed be an up-to-date peer site: from its
point of view, it might be the case that no predecessor of this
primary view was primary. The following example shows
a further complication: ��� and ��� start reconfiguration in
view 	�� for �
 and ��
 . Then, a partition excludes � � , lead-
ing to the primary view 	�� . Finally, � � partitions and � �
reenters the new primary view 	 ��
 . If � � � � � 	 ��
�� is de-
livered before reconfiguration for ��
 and �
 is completed,
then there would be a primary view in which no member is
able to process transactions. A further sub-protocol capable
of discovering this situation is necessary.

This complexity is induced because a member of a pri-
mary view is not necessarily an “up-to-date member”. Only

if the data transfer is done as part of the view change proto-
col or if the application is able to perform the data transfer
very quickly, the application-dependent notion of “up-to-
date member” is essentially the same as “member of the
primary view”. However, as previously pointed out, such
forms of data transfer are unsuitable for database systems.

The next sections outline an extension of the traditional
group communication abstraction, called enriched view syn-
chrony (EVS) [4], and its possible use in the context of
database applications [7]. EVS will allow us to easily han-
dle the failure scenarios described in this section.

5.1. EVS

EVS replaces the notion of a view by the notion of en-
riched view, also called e-view. An e-view is a view with
additional structural information. Sites in an e-view are
grouped into non-overlapping subviews and subviews are
grouped into non-overlapping subview-sets. Figure 2 de-
picts examples where the outer ovals denote views, the
dashed ovals indicate subview-sets and the inner squares
denote subviews. As before, a view change notifies about
a change in the composition of the e-view (sites that ap-
pear to be reachable) and such changes are performed
automatically by the system. Additionally, EVS intro-
duces e-view change events that notify about a change
in the structure of the e-view in terms of subviews and
subview-sets (dashed arrows in the figure indicate e-view
changes). In contrast to view changes, e-view changes are
requested by the application through dedicated primitives.
These primitives will allow us to encapsulate reconfigu-
ration: Subview-SetMerge(subview-set-list)
creates a new subview-set that is the union of the subview-
sets given in subview-set-list (e.g., the e-view � 	�� is in-
stalled as a result of a Subview-SetMerge(); note that this
e-view differs from the previous one in structure but not in
composition). SubviewMerge(subview-list) cre-
ates a new subview that is the union of the subviews given
in subview-list. The subviews in subview-list must belong
to the same subview-set and the resulting subview belongs
to the subview-set containing the input subviews (e.g., the
e-view � 	�� is installed as a result of a Subview-Merge()).

The characteristics of EVS are summarized as follows:
The system maintains the structure of e-views across view
changes (in � 	�� , �
 and � �
 ���
 ��� , respectively, are still
in their own subviews and subview-sets). E-view changes
between two consecutive view changes are totally ordered
by all sites in the view. Finally, if a site installs an e-view
� � and then sends a message � , then any site that delivers
� delivers it after installing � � . Note, that the original defi-
nition of EVS [4] does not consider total order and uniform
delivery. However, accommodating these properties will be
simple since they are orthogonal to the properties of EVS.

8

EV3 EV5EV4
EV0

EV1

EV2

S1
S0

S2
S3

S3

S0
S1
S2

S0
S1
S2

S3

S0
S1
S2

S3

S1
S0

S2
S3

Figure 2. Example of EVS

5.2. Reconfiguration Using EVS

Transaction processing will be allowed only within a
“primary subview”, i.e., the subview with a majority of
sites. Sites whose current subview is not primary do not
process transactions (but might enqueue transaction mes-
sages if they are currently in a reconfiguration process).
Figure 2 illustrates the main idea. At EV0 we assume all
sites to have identical copies of the database, they are in
the same subview and this subview is a primary subview.
Then ��
 leaves the primary view because of a partition or
failure and re-enters in � 	�� . Note that ��
 is not a mem-
ber of the primary subview but remains in its own sub-
view and subview-set. Reconfiguration is initiated by the
peer site, say � � , in the primary subview which submits the
Subview-SetMerge message. When the corresponding
e-view change is delivered (� 	��), each site knows that re-
configuration has started. � � starts transferring data to �
 ,
following any of the solutions presented previously. When
the transfer is completed and �
 is able to process transac-
tions autonomously, � � submits the SubviewMerge. The
delivery of the corresponding e-view change (� 		�) , which
includes �
 in the primary subview, represents the final syn-
chronization point, i.e., all sites know that ��
 has the cor-
rect database state and executes transactions by itself. In
other words, reconfiguration is encapsulated within the e-
view changes � 	�� and � 		� .

In short, a primary view is represented differently de-
pending on whether transaction processing is enabled in
that view or not, the former being the case only when the
view contains a primary subview. Moreover, the represen-
tation indicates which sites can process transactions (those
in the primary subview) and which sites are being brought
up-to-date (those whose subview is not primary but whose
subview-set contains a primary subview). The resulting
framework enables simpler algorithms with respect to vir-
tual synchrony as it was depicted in Figure 1:
� A joining node enters the primary view as a result of a

decision taken by the system, but it is the database sys-
tem that decides when to issue the SubviewSet-Merge()
for starting the data transfer. This can be any time after
the view change, e.g., when the workload is low.

� When a site joins a primary view, it realizes locally,
whether there is an operational primary subview or not.
In the first case, it can remain quiet waiting for a peer
site. In the latter case a creation protocol has to be run.

� When a peer site ��� fails (i.e., leaves the primary view
and primary subview) before the data transfer to a join-
ing site � � has completed, the sites remaining in the
primary subview will realize locally that � � is not yet
up-to-date: � � will be member of the their subview-set
but not of their subview.

� When a site � � enters the primary subview, all sites in
the view know that � � is up-to-date and operational.

� When a peer site � � fails and the view excluding � � is
still primary but there is no longer a primary subview,
all sites in the primary subview realize locally that trans-
action processing must be suspended.

The handling of view changes and e-view changes by
any site � in the primary subview can be summarized
as follows (MySubview-Set and MySubview refer to the
subview-set and subview of �):

I. View change excluding or including new sites:
1. New sites: for each new subview-set 0 � - 0 in the view:

(i) choose deterministically a peer site �
 in the primary
subview (�
 will be the peer site for all sites in 0 � - 0); (ii) if
� < �
 , then issue whenever appropriate a
Subview-SetMerge(MySubview-Set,sv-s).

2. Site ��
 left the view and �
 was the peer for a site
� � : Determine deterministically the new peer site � �
 .
If � < � �
 then: If � and � � are in different subview-
sets, then issue a Subview-SetMerge(MySubview-
Set,Subview-Set-of- �	�) when appropriate (�
 left
the primary subview before initiating the merge); other-
wise, resume the data transfer (� and � � are already in
the same subview-set but not yet in the same subview).

3. A site � � for which � was the peer site left the view: stop
the data transfer to �	� .

4. � has left the primary subview (thus the primary view):
stop processing transactions and stop any data transfer
to recovering sites for which � is the peer site (this may
occur as a result of partitions).

II. E-view change notifying about the merging of subview-
sets: for each new subview 0 � in the subview-set of � :
if � is the peer site �
 (determined in step I.1), then start
data transfer to all sites in 0 � .

III. E-view change notifying about the merging of subviews:
Recovery of the merged sites is completed.

Moreover, when the data transfer for all sites of a subview
��� for which � acts as peer site is completed, � issues
Subview-Merge(MySubview,sv).

The behavior of the joining site ��� depends on the spe-
cific reconfiguration algorithm. With all proposed options
except for lazy data transfer, ��� discards transactions until
it is in the same subview-set as the primary subview (start
of reconfiguration). Then it starts enqueueing transactions

9

and applies them after its database is up-to-date. With lazy
data transfer, the delimiter transaction

� �
will be a trans-

action delivered between the Subview-SetMerge and the
SubviewMerge event. The protocol guarantees that join-
ing sites will receive the current database state and join the
primary subview as long as there exists a primary subview
for sufficiently long time (given by I.1, I.2, II, and the Sub-
viewMerge). Also, only sites of the primary subview exe-
cute transactions and their databases are always up-to-date.

6. Conclusions

This paper provides an in-detail discussion of online re-
configuration in replicated database systems using group
communication. The focus on the paper is on two impor-
tant issues: efficient data transfer and fault-tolerance.

In regard to data transfer we propose several protocols
with which we depict the main alternatives for a database
supported data transfer and the most important issues to
consider: determining the data that must be transferred, ex-
ploiting information available within the database (e.g., ver-
sion numbers, log), maintaining additional information to
fasten recovery, allowing for high concurrency, etc.

We do not provide a final statement which of the data
transfer solutions to choose. First, for some of them specific
characteristics of the underlying database system must be
given. If these features are not provided they have to be im-
plemented and integrated into the database system. This can
be very difficult and might not pay off. But the efficiency
of the solutions also depends on parameters like the size of
the database, the percentage of data items updated since the
recovering site failed, etc. We are planning to explore these
issues by a real implementation based on Postgres-R [14].

Making the data transfer a task of the database introduces
problems in regard to fault-tolerance. Since reconfiguration
is not an atomic operation, simple virtual synchrony does
not reflect sufficiently the state of the different sites in the
system. EVS, in contrast, promotes a programming style
in which the notion of “up-to-date” member depends on
the membership of the primary subview, not of the primary
view. Using EVS we are able to encapsulate the reconfig-
uration process, and the database system receives a more
realistic picture of what is happening in the system.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databases. In Proc.
of Euro-Par, Passau, Germany, 1997.

[2] Y. Amir. Replication Using Group Communication over
a Partioned Network. PhD thesis, Hebrew University of
Jerusalem, 1995.

[3] Y. Amir, G. V. Chockler, D. Dolev, and R. Vitenberg. Effi-
cient state transfer in partitionable environments. In Proc. of
the ERSADS Seminar, Zinal, Switzerland, 1997.

[4] Ö. Babaoğlu, A. Bartoli, and G. Dini. Enriched view syn-
chrony: A programming paradigm for partitionable asyn-
chronous distributed systems. IEEE Transactions on Com-
puters, 46(6):642–658, June 1997.

[5] Ö. Babaoğlu, R. Davoli, L. Giachini, and P. Sabattini. The
inherent cost of strong-partial view-synchronous communi-
cation. In J.-M. Hélary and M. Raynal, editors, Distributed
Algorithms, Lecture Notes in Computer Science, pages 72–
86. Springer Verlag, 1995.

[6] Ö. Babaoğlu, R. Davoli, and A. Montresor. Group com-
munication in partitionable systems: Specification and algo-
rithms. Technical Report UBLCS-98-1, Dept. of Computer
Science, University of Bologna, Apr. 1998. To appear in
IEEE Transactions for Software Engineering.

[7] A. Bartoli. Handling membership changes in replicated
databases based on group communication. Technical report,
Facoltà di Ingegneria, Università di Trieste, 2000.

[8] A. Bartoli, B. Kemme, and Ö. Babaoğlu. Online reconfigu-
ration in replicated databases. Technical report, University
de Bologna, Italy, 2000.

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Massachusetts, 1987.

[10] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpan-
gou, K. Kane, F. Schmuck, and M. Wood. The ISIS - system
manual, Version 2.1. Technical report, Dept. of Computer
Science, Cornell University, Sept. 1993.

[11] M. Buretta. Data Replication. Wiley Computer Publ., 1997.
[12] J. Holliday, D. Agrawal, and A. E. Abbadi. The performance

of database replication with group multicast. In Proc. of
FTCS, Madison, Wisconsin, 1999.

[13] B. Kemme. Database Replication for Clusters of Worksta-
tions. PhD thesis, ETH Zürich, 2000.

[14] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication.
In Proc. of VLDB, Cairo, Egypt, 2000.

[15] B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
ACM Transactions on Database Systems, September 2000.

[16] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system. Communi-
cations of the ACM, 39(4):54–63, 1996.

[17] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and
G. Alonso. Scalable replication in database clusters. In Proc.
of DISC, Toledo, Spain, 2000.

[18] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic
broadcast in replicated databases. In Proc. of Euro-Par,
Southampton, England, 1998.

[19] D. Powell and other. Group communication (special issue).
Communications of the ACM, 39(4):50–97, April 1996.

[20] C. Pu and A. Leff. Replica control in distributed systems:
An asynchronous approach. In Proc. of SIGMOD, Denver,
Colorado, 1991.

[21] I. Stanoi, D. Agrawal, and A. El Abbadi. Using broadcast
primitives in replicated databases. In Proc. of ICDCS, Ams-
terdam, Holland, 1998.

[22] A. Vaysburd. Building Reliable Interoperable Distributed
Objects with the Maestro Tools. PhD thesis, Cornell Univer-
sity, 1998.

10

