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ABSTRACT 
The topology of a wireless multi-hop network can be con- 
trolled by varying the transmission power at each node. In 
this paper, we give a detailed analysis of a cone-based dis- 
tributed topology control algorithm. This algorithm, intro- 
duced in [16], does not  assume that  nodes have GPS in- 
formation available; rather it depends only on directional 
information. Roughly speaking, the basic idea of the algo- 
ri thm is that  a node u transmits  with the minimum power 
P~,,a required to ensure tha t  in every cone of degree a around 
u, there is some node that  u can reach with power Pma- We 
show that  taking a = 57r/6 is a necessary and sufficient con- 
dition to guarantee tha t  network connectivity is preserved. 
More precisely, if there is a path from a to t when every 
node communicates at  maximum power then, if a <_ 5~r/6, 
there is still a path in the smallest symmetric graph Ga con- 
taining all edges (u, v) such that  u can communicate with v 
using power p~,a. On the other hand, if ~ > 51r/6, connec- 
tivity is not necessarily preserved. We also propose a set of 
optimizations tha t  further reduce power consumption and 
prove that  they retain network connectivity. Dynamic re- 
configuration in the presence of failures and mobility is also 
discussed. Simulation results are presented to demonstrate 
the effectiveness of the algorithm and the optimizations. 

1. INTRODUCTION 
Multi-hop wireless networks, such as radio networks [6], ad- 
hoc networks [10] and sensor networks [2, 11], are networks 
where communication between two nodes may go through 
multiple consecutive wireless links. Unlike wired networks, 
which typically have a fixed network topology (except in case 
of failures), each node in a wireless network can potentially 
change the network topology by adjusting its transmission 
power to control its set of neighbors. The primary goal of 
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topology control is to design power-efficient algorithms that  
maintain network connectivity and optimize performance 
metrics such as network lifetime and throughput.  As pointed 
out by Chandrakasan et. al [1], network protocols tha t  min- 
imize energy consumption are key to the successful usage of 
wireless sensor networks. To simplify deployment and recon- 
figuration upon failures and mobility, distributed topology 
control algorithms that  utilize only local information and 
allow asynchronous operations are particularly attractive. 

The topology control problem can be formalized as follows: 
We are given a set V of possibly mobile nodes located in 
the plane. Each node u E V is specified by its coordi- 
nates, (x(u), y(u)) at any given point in time. Each node 
u has a power function p where p(d) gives the minimum 
power needed to establish a communication link to a node 
v at distance d away from u. Assume that  the maximum 
transmission power P is the same for every node, and the 
maximum distance for any two nodes to communicate di- 
rectly is R, i.e. p(R) = P. If every node transmits with 
power P ,  then we have an induced graph GR = (V, E) where 
E = {(u,v)]d(u,v) < R} (where d(u,v) is the Euclidean 
distance between u and v). 

It  is undesirable to have nodes transmit  with maximum 
power for two reasons. First, since the power required to 
t ransmit  between nodes increases as the n t h  power of the 
distance between them, for some n _~ 2 [13], it may re- 
quire less power for a node u to relay messages through a 
series of intermediate nodes to v than  to t ransmit  directly 
to v. In addition, the greater the power with which a node 
transmits,  the greater the likelihood of the transmission in- 
terfering with other transmissions. 

Our goal in performing topology control is to find a subgraph 
G of Gn such that  (1) G consists of all the nodes in Gn  but  
has fewer edges, (2) if u and v are connected in GR, they 
are still connected in G, and (3) a node u can t ransmit  to 
all its neighbors in G using less power than  is required to 
t ransmit  to all its neighbors in Gn. Since minimizing power 
consumption is so important,  it is desirable to find a graph G 
satisfying these three properties that  minimizes the amount  
of power that  a node needs to use to communicate with all its 
neighbors. For a topology control algorithm to be useful in 
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practice, it must be possible for each node u in the network 
to construct its neighbor set N(u)  = {vl(u,v ) E G} in a 
distributed fashion. Finally, if GR changes to G~ due to 
node failures or mobility, it must be possible to reconstruct 
a connected G'  without global coordination. 

In this paper we consider a cone-based topology-control al- 
gorithm introduced in [16], and show that  it satisfies all 
these desiderata. Most previous papers on topology control 
have utilized position information, which usually requires 
the availability of GPS at each node. There are a number  
of disadvantages with using GPS. In particular, the acqui- 
sition of GPS location information incurs a high delay, and 
GPS does not work in indoor environments or cities. By 
way of contrast, the cone-based algorithm requires only the 
availability of directional information. Tha t  is, it must be 
possible to estimate the direction from which another node 
is transmitting. Techniques for estimating direction without 
requiring position information are available, and discussed 
in the IEEE antenna  and propagation community as the 
Angle-of-Arrival problem. The standard way of doing this 
is by using more than  one directional an tenna  (see [8]). 1 

The cone-based algorithm takes as a parameter an angle a. 
A node u then tries to find the minimum power p,,,a such 
that  t ransmit t ing with p~,~ ensures tha t  in every cone of 
degree a around u, there is some node that  u can reach 
with power p~,~. In [16], it is shown that  taking a _< 2~/3 
is sufficient to preserve network connectivity. Tha t  is, let 
Ga be the symmetric closure of the communication graph 
that  results when every node transmits with power p,,,a (so 
that  the neighbors of u in G~ are exactly those nodes that  u 
can reach when transmit t ing with power P=,a together with 
those nodes v tha t  can reach u by t ransmit t ing with power 
p~,~). Then it is shown that  if there is a path from u to v 
in GR, then there is also such a path in G2,r/3. Moreover, it 
is also shown tha t  for a reasonable class of power cost func- 
tions and for ct <_ lr/2, the network has competitive power 
consumption. More precisely, given arbitrary nodes u and v, 
it is shown that  the power used in the most power-efficient 
route between u and v in Ga is no worse than  k+2ks in (a /2 )  
times the power used in the most power-efficient route in GR 
(where k is a constant that  depends on the power consump- 
tion model; ff only transmission power is considered and the 
transmission power p(d) is proportional to the n th  power of 
the distance d, we have k = 1). Finally, some optimizations 
to the basic algorithm are presented. In the present paper, 
we show that  taking a = 51r/6 is necessary and sufficient to 
preserve connectivity. That  is, we show that  if a _< 51r/6, 
then there is a path from u to v in GR iff there is such a path 
in G~ (for all possible node locations) and that  if ct > 51r/6, 
then there exists a graph GR that  is connected while G~ is 
not. Moreover, we propose new optimizations and show that  
they preserve connectivity. Finally, we discuss how the algo- 
ri thm can be extended to deal with dynamic reconfiguration 
and asynchronous operations. 

There are a number of other papers in the literature on 
topology control; as we said earlier, all assume that  position 
information is available. Hu [4] describes an algorithm that  

1 Of course, ff GPS information is available, a node can sim- 
pler piggyback its location to its message and the required 
directional information can be calculated from that.  

does topology control using heuristics based on a Delauney 
triangulation of the graph. There seems to be no guarantee 
that  the heuristics preserve connectivity. Rzananathan and 
Rosales-Haln [12] describe a centralized spanning tree algo- 
ri thm for achieving connected and biconnected static net- 
works, while minimizing the maximum transmission power. 
(They also describe distributed algorithms that  are based on 
heuristics and are not guaranteed to preserve connectivity.) 
R~doplu and Meng [14] propose a distributed position-based 
topology control algorithm that  preserves connectivity; their 
algorithm is improved by Li and Halpern [9]. In a different 
vein is the work described in [3, 7]; although it does not 
deal directly with topology control, the notion of 0-graph 
used in these papers bears some resemblance to the cone- 
based idea described in this paper. Relative neighborhood 
graphs [15] and their relatives (such as Gabriel graphs, or 
GO graphs [5]) are similar in spirit to the graphs produced 
by the cone-based algorithm. 

The rest of the paper is organized as follows. Section 2 
presents the basic cone-based algorithm and shows that  a = 
51r/6 is necessary and sufficient for connectivity. Section 3 
describes several optimizations to the basic algorithm and 
proves their correctness. Section 4 extends the basic algo- 
ri thm so that  it can handle the reconfiguration necessary to 
deal with failures and mobility. Section 5 briefly describes 
some network simulation results tha t  show the effectiveness 
of the basic approach and the optimizations. Section 6 con- 
cludes the paper. 

2. THE BASIC CONE-BASED TOPOLOGY 
CONTROL (CBTC) ALGORITHM 

We consider three communication primitives: broadcast, 
send, and receive, defined as follows: 

• bcast(u,p, m)  is invoked by node u to send message 
m with power p; it results in all nodes in the set 
{vlp(d(u, v)) <_ p} receiving m. 

• send(u, p, m, v) is invoked by node u to sent message 
m to v with power p. This primitive is used to send 
unicast messages, i.e. point-to-point messages. 

• recv(u, m, v) is used by u to receive message m from v. 

We assume that  when v receives a message m from u, it 
knows the reception power p '  of message m. This is, in gen- 
erai, less than the power p with which u sent the message, 
because of radio signal at tenuation in space. Moreover, we 
assume that,  given the transmission power p and the recep- 
tion power p' ,  u can estimate p(d(u, v)). This assumption is 
reasonable in practice. 

For ease of presentation, we first assume a synchronous model; 
that  is, we assume that  communication proceeds in rounds, 
governed by a global clock, with each round taking one t ime 
unit. (We deal with asynchrony in Section 4.) In each round 
each node u can examine the messages sent to it, compute, 
and send messages using the beast and send communication 
primitives. The communication channel is reliable. We later 
relax this assumption, and show that  the algorithm is cor- 
rect even in an asynchronous setting. 
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The basic Gone-Based Topology Control (GBTC) algorithm 
is easy to explain. The algorithm takes as a parameter an 
angle a. Each node u tries to find at least one neighbor in 
every cone of degree a centered at u. Node u starts running 
the algorithm by broadcasting a "Hello" message using low 
transmission power, and collecting replies. It  gradually in- 
creases the transmission power to discover more neighbors. 
It  keeps a list of the nodes that  it has discovered and the 
direction in which they are located. (As we said in the intro- 
duction, we assume that  each node can estimate directional 
information.) It then checks whether each cone of degree a 
contains a node. This check is easily performed: the nodes 
are sorted according to their angles relative to some refer- 
ence node (say, the first node from which u received a reply). 
It  is immediate tha t  there is a gap of more than  a between 
the angles of two consecutive nodes iff there is a cone of 
degree a centered at u which contains no nodes. If there 
is such a gap, then u broadcasts with greater power. This 
continues until  either u finds no a-gap or u broadcasts with 
maximum power. 

Figure 1 gives the basic GBTC algorithm. In the algorithm, 
a "Hello" message is originally broadcasted using some min- 
imal power p0. In  addition, the power used to broadcast 
the message is included in the message. The power is then 
increased at each step using some function Increase. As 
in [9] (where a similar function is used, in the context of 
a different algorithm), in this paper, we do not investigate 
how to choose the initial power p0, nor do we investigate 
how to increase the power at each step. We simply assume 
some function Increase such that  Increasek(po) = P for suf- 
ficiently large k. As observed in [9], an obvious choice is to 
take IncreaseO~ ) = 2p. If the initial choice of p0 is less than 
the total  power actually needed, then it is easy to see that  
this guarantees tha t  u 's  estimate of the transmission power 
needed to reach a node v will be within a factor of 2 of the 
minimum transmission power actually needed to reach v. 
Upon receiving a "Hello" message from u, node v responds 
with an Ack message. (Recall tha t  we have assumed that  v 
can compute the power required to respond.) Upon receiv- 
ing the Ack from v, node u adds v to its set N~ of neighbors 
and adds v 's  direction dir~,(v) (measured as an angle rela- 
tive to some fixed angle) to its set D~ of directions. (Recall 
that  we have assumed that  u can compute this angle.) The 
test gap-a(D~,) tests if there is a gap greater than  a in the 
angles in D~. 

CBTC(a) 

N~ *-- O ; / / t h e  set of discovered neighbors of u 
D~ *-- O ; / / t h e  directions from which the Acks have come 
p~, ~-- p0; 

wh i l e  (p,  < P and gap-a(D,))  do 
p~ *- Increase(p~); 
bcast(u, pu, ("Hello" ,p~)) and gather Acks; 
N,, +-- N,, U {v : v discovered}; 
D .  ~ D .  u { ~ . ( v )  : v discovered} 

F i g u r e  1: T h e  bas ic  c o n e - b a s e d  a l g o r i t h m  r u n n i n g  
a t  e a c h  n o d e  u. 

Let Na(u)  be the final set of discovered neighbors computed 
by node u at the end of running GBTG(a);  let p~,~ be the 
corresponding final power. Let N~ = {(u, v) E V x V : v E 
N~(u)}. Note that  the N~ relation is not symmetric. As 
the following example shows, it is possible that  (v, u) E N~ 
but  (u, v) ~ N~. 

EXAMPLE 2.1. Suppose that V = {uo,ul ,u2,  us, v}. (See 
Figure ~.) Further suppose that d(uo, v) = R. Choose e with 
0 < e < ~'/12 and place ux,u2,us so that (1) Zvuout  = 
Lvuoug. = ~r/3 + e = a/2,  (~) Zuxvuo = Lu2vuo = Ir/3 -- c 

(so that Zvuauo = Zvu~uo = Irl3), (3) Zvuous = Ir (so 
that Z ~ x ~ o ~  = Z , , 2 ~ o ~ s  = 2 ~ / 3  - ~) a ~  (4)  d ( , ,o ,~ , s )  = 
R/2 .  Note that, given c and the positions of uo and v, the 
positions of ul ,  u2, and us are determined. Since Lutuov  > 
Luoutv  > Lulvuo,  it follows that d(u~,v) > d(uo,v) = R > 
d(uo, uO;  similarly d(u2,v) > R > d(uo,u2). (Here and 
elsewhere we use the fact that, in a triangle, larger sides 
are opposite larger angles.) It easily follows that Na(uo) = 
{u l ,u2 ,uz}  while Na(v)  = {u0}, as long as 2~r/3 < a _< 
5r /6 .  Thus, (v, uo) E N~, but (uo, v) ~ N , .  

U 1 

2rd3--e / rd3+e " ' " .  
Us u o , - a %  R n/3-e'b_ v 

2n/ 3+~ . . .  - 
o s  ~ 

U 2 

F i g u r e  2: N~ m a y  n o t  b e  s y m m e t r i c .  

Let G~ -- (V, E~), where V consists of all nodes in the net- 
work and Ea  is the symmetric closure of Na; tha t  is, (~, v) E 
E~ iff either (u, v) E N~ or (v, u) E g~ .  We now prove the 
two main results of this paper: (1) if a < 59r/6, then G~ 
preserves the connectivity of GR and (2) if a > 5~r/6, then 
Ga may not preserve the connectivity of GR. Note tha t  Ex- 
ample 2.1 shows the need for taking the symmetric closure 
in computing G~. Although (u0, v) E GR, there would be 
no path from u0 to v if we considered just  the edges deter- 
mined by N~, without taking the symmetric closure. (The 
fact tha t  a > 27r/3 in this example is necessary. As we 
shall see in Section 3.2, taking the symmetric closure is not 
necessary if a <_ 27r/3.) As we have already observed, each 
node u knows the power required to reach all nodes v such 
that  (u,v) E Ea:  it is just  the max ofpma and the power 
required by u to reach each of the nodes v from which it 
received a "Hello" message. (As we said earlier, if u receives 
a "Hello" message from v, since it includes the power used 
to t ransmit  it, u can determine the power required for u to 
reach v.) 

THEOREM 2.1. I f  a < 57r/6, then G~ preserves the con- 
nectivity of GR; u and v are connected in Ga iff they are 
connected in Ca.  
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PROOF. Since G~ is a subgraph of GR, it is clear that  if 
u and v are connected in G~, they must be connected in 
GR. To prove the converse, we start with the following key 
lemma. 

LEMMA 2.2. I f  a <_ 57r/6, and 4 and v are nodes in V 
such that (4, v) • E (that is, (u, v) is an edge in the graph 
GR, so that d(4, v) < R),  then either (u, v) • E,, or there 
exist 4 ' , v '  • V such that (a) d(u ' ,v ' )  < d(u,v) ,  (b) either 
4' = 4 or (4, 4') E E~, and (c) either v' = v or (v, v') • Ea. 

PROOF. A few definitions will be helpful in this and the 
following proof. Given two nodes 4'  and v', 

• Let cone(u ' , a ,v ' )  be the cone of degree a which is 
bisected by the line u'v' ,  as in Figure 3; 

• Let c/re(u, r)  be the circle centered at u with radius r;  

• Let rad~,o be the distance d(4, v) of the neighbor v 
farthest from 4 in N~(4); that  is, p(rad~,~) = p~,~; 

• Let rad~,o be the distance d(u, v) of the neighbor v 
farthest from 4 in E~. 

F i g u r e  3: cone(u', a ,  v') 

If (4,v) • E~, we are done. Otherwise, it must be the case 
that  d(u,v)  > max(rad~,~, rad~-~). Thus, both 4 and v ter- 
minate CBTC(a)  with no a-gap. It  follows that  cone(u, a, v ) n  
No(u)  ¢ ~ and cone(v,a ,u)  n N~(v)  ~ ~. Choose z • 
cone(v, a, 4) n N~(v)  such that  Z z v 4  is minimal. (See Fig- 
ure 4.) Suppose without loss of generality tha t  z is in the 
halfplane above ~ .  If z is actually in cone(v, 21r/3, 4), since 
d(v, z) < rad~,c, < d(4, v), it follows that  d(z, 4) < d(u, v). 
For otherwise, the side z4  would be at least as long as any 
other side in the triangle vz4,  so that  L z v 4  would have to 
be at least as large as any other angle in the triangle. But 
since L z v u  < Ir/3, this is impossible. Thus, taking u' = 4 
and v' = z, the lemma holds in this came. So we can assume 
without loss of generality tha t  z q~ cone(v, 2~r/3, u} (and, 
thus, tha t  cone(v, 2~r/3,4) ON,~(v) = ~). Let y be the first 
node in Nc,(v) tha t  a ray that  starts at vz  would hit as it 
sweeps past vu going counterclockwise. By construction, y 
is in the half-plane below ~-ff and L z v y  <_ ~. 

Similar considerations show that,  without loss of generality, 
we can assume that  cone(u, 21r/3, v) n No(u)  = 0, and that  

there exist two points w , z  • N~(4)  such that  (a) w is in the 
halfplane above ~-~, (b) x is in the halfplane below ~ ,  (c) at 
least one of w and x is in cone(u, a, v), and (d) Lwux < a. 
See Figure 4. 

s 

r % 

/ " All circles 
t ~ h a v e  r a d i u s  d 

i s " " " I Only black pgints 
i , . ~ z  "~, a ~  ~ a ~ a  n~des. 
I " d . " \  t '~ 
' t i t .  ;" \ / t  ' ,  

........... ....... i 
! ,,' 

~ Y s s  J 

F i g u r e  4: I l l u s t r a t i o n  for t h e  p r o o f  of  L e m m a  2.2. 

If d(w, v) < d(4, v), then the lemma holds with u '  = w 
and v '  = v, so we can assume that  d(w, v) >_ d(4, v). Simi- 
laxly, we can assume without loss of generality that  d(z, u) >_ 
d. We now prove that  d(w, z) and d(x, y) cannot both be 
greater than  or equal to d. This will complete the proof 
since, for example, if d(w, z) < d, then we can take 41 = w 
and v '  = z in the lemma. 

Suppose, by way of contradiction, that  d(w, z) _> d and 
d(z , y )  > d. Let t be the intersection point of drc(z,d)  
and c/rc(v,d) tha t  is closest to 4. Recall tha t  at least one 
of w and x is in cone(u, a, v). As we show in the full paper, 
since node w must  be outside (or on) both circles c/rc(z, d) 
and circ(v,d), we have Z w 4 v  > L t4v  (see the closeup on 
the far right side of Figure 4). 

Since d(t, z) = d(t, v) = d(4, v) = d, and d(z ,v)  < d, it 
follows that  Z z v t  > ~r/3. Thus, 

Ltv4  = L z v u  - L zv t  < L z v 4  - 1r/3 and 
L t v u  = ~r - 2 x Lt4v,  

and so 

L z v u  - ~r13 > ~r - 2 x L tuv  and, 
L tuv  > 21r/3 - Lzvul2 .  

Since Lumv >_ Ltuv,  we have that  

Zw'uv > 2~'/3 - Lzu4/2. (I) 

By definition of z, L z v u  < a /2  < 51r/12, so Zumv > 27r /3-  
51r/24 = 1Dr/24 > a/2.  Thus, it must be the case that  

¢ ~one(4, a , . ) ,  so ~ • ~ ( 4 ,  a, ~). 

Argument identical to those used to derive (1) (replacing 
the role of w and z by y and x, respectively) can be used to 
show that  

Z y v u  > 21r/3 - Zxuv/2 C2) 
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From (1) and (2), we have 

Lwuv  + L x u v  
> (2~/3 - Lzvu /2 )  + (4~r/3 - 2 x Lyvu)  
= 27r - Z z v u / 2  - 2 × Zyvu  

Since Lwuv  q- L x u v  <_ a <_ 57r/6, we have that  57r/6 > 
27r - Z z v u / 2  - 2 × Lyvu.  Thus, 

Lzvu /2  + 2 x L y v u  = ( ( L z v u  + Lyvu)  +3  x Lyvu)  /2 > 7~r/6. 

Since L z v u  + L y v u  < a < 57r/6, it easily follows that  
Lyvu  > ~r/2. As we showed earlier, / z v u  >_ Lzv t  > ~r/3. 
Therefore, L z v u  + L y v u  > 57r/6. This is a contradic- 
tion. []  

The proof of Theorem 2.1 now follows easily. Order the 
edges in E by length. We proceed by induction on the the 
rank of the edge in the ordering, using Lemma 2.2, to show 
that  if (u, v) • E,  then there is a path from u to v in Go. 
It  immediately follows that  if u and v are connected in GR, 
then there is a path from u to v in Go. []  

The proof of Theorem 2.1 gives some extra information, 
which we cull out as a separate corollary: 

COROLLARY 2.3. I f  a <_ 51r/6, and u and v are nodes in 
V such that (u,v)  e E,  then either (u, v) • Eo or there 

a ~[~d~]$ U 0 . . .  U k  6"llch t h a t  1[~0 = u ,  U k  = v .  (~-i ,  'ai-I-1) • 
Ea, and d(u~,m+l) < d(u,v) ,  f o r  i = 0 . . . .  , k  - 1. 

Next we prove that  degree 51r/6 is a tight upper bound; 
if a > 51r/6, then CBTC(a)  does not necessarily preserve 
connectivity. 

THEOREM 2.4. I ra  > 5r /6 ,  then CBTC(a)  does not nec- 
essarily preserve connectivity. 

S 
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F i g u r e  5: A d i s c o n n e c t e d  g r a p h  if  a = 5~/6 + e. 

PROOF. Suppose a ---- 51r/6-I-e for some e :> 0. We 
construct a graph GR = (V, E) such that  CBTC(a)  does 
not preserve the connectivity of this graph. V has eight 
nodes: uo,m,u2,ua,vO,Vl,V2,v3.  (See Figure 5.) We call 
uo, ul ,  u2, u3 the u-cluster, and vO, Vl, V2, V3 the v-cluster. 
The construction has the property tha t  d(uo, vo) = R and 
for i , j  = 0,1,2,3,  we have d(uo, ui) < R,  d(vo, vi) < R,  and 
d ( m , v j )  > R i f i + j  > 1. Tha t  is, the only edge between 
the u-cluster and the v-cluster in GR is (u0, v0). However, in 
Go, the (uo,vo) edge disappears, so tha t  the u-cluster and 
the v-cluster are disconnected. 

In Figure 5, s and s '  are the intersection points of the cir- 
cles of radius R centered at u0 and v0, respectively. Node 
U l  is chosen so that  Zuxuovo = Ir/2. Similarly, Vl is cho- 
sen so that  Zvivouo = Ir/2 and u l  and Vl are on oppo- 
site sides of the line uovo. Because of the right angle, it is 
clear that ,  whatever d(uo, u l )  is, we must  have d(v0,Ul) > 
d(vo,uo) ---- R; similarly, d(uo, vl)  > R whatever d(vo, vl) 
is. Next, choose us so that  Luxuou2 = rain(a,  lr) and uou2 
comes after uoul as a ray sweeps around counterclockwise 
from uovo. It  is easy to see tha t  d(vo,u~) > R, whatever 
d(uo,u2) is, since Zvouou2 _> 7r/2. For definiteness, choose 
u2 so that  d(uo, u2) = R/2 .  Node v2 is chosen similarly. 
The key step in the construction is the choice of u3 and v3. 
Note tha t  Zs'UOUl = 5~r/6. Let u3 be a point on the line 
through s' parallel to ~ slightly to the left of s '  such that  
Zu3uoul < a. Since a -- 5 r / 6  + e, it is possible to find 
such a node u3. Since d(uo, s') ---- d(vo, s') = R by construc- 
tion, it follows that  d(u0, u3) < R and d(vo, u3) > R. It  is 
clearly possible to choose d(vo, Vl) sufficiently small so that  
d(u3, Vl) > R. The choice of v3 is similar. 

It  is now easy to check that  when u0 runs CBTC(a) ,  it will 
terminate with Pu0,o -- max(d(u0, ua), R/2)  < R; similarly 
for v0. Thus, this construction has all the required proper- 
ties. []  

3. OPTIMIZATIONS 
In  this section, we describe three optimizations to the basic 
algorithm. We prove that  these optimizations allow some of 
the edges to be removed while still preserving connectivity. 

3.1 The shrink-back operation 
In  the basic CBTC(cQ algorithm, u is said to be a boundary 
node if, at the end of the algorithm, u still has an a-gap. 
Note tha t  this means that,  at the end of the algorithm, a 
boundary node broadcasts with maximum power. An opti- 
mization, sketched in [16], would be to add a shrinking phase 
at the end of the growing phase to allow each boundary node 
to broadcast with less power, if it can do so without reduc- 
ing its cone coverage. To make this precise, given a set dir of 
directions (angles) and an angle a ,  define cover~(dir) = {0: 
for some 0' e dir, [ 0 - 0 '  Imod27r < a/2}.  We modify 
CBTC(a)  so that,  at each iteration, a node in Nu is tagged 
with the power used the first t ime it was discovered. Sup- 
pose that  the power levels used by node u during the algo- 
r i thm were p l , . - .  ,pk. If u is a boundary  node, pk is the 
maximum power P.  A boundary node successively removes 
nodes tagged with power p~, then pk-1, and so on, as long 
as their removal does not change the coverage. That  is, 
let dirl, i = 1 , . . .  , k, be the set of directions found with 
all power levels pl or less, then the minimum i such that  
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covero(din) = covero(dir),) is found. Let N~(u) consist o f  
all the nodes in N~(u) tagged with power pl or less. Let 
Ng = {(u,v) : v • Ng(u)}, and let E~ be the symmetric 
closure of N~,. Finally, let G~ = (V,E~). 

THEOREM 3.1. I f  ct < 57r/6, then G~ preserves the con- 
nectivity of GR. 

PROOF. It is easy to check that  the proof of Theorem 2.1 
depended only on the cone coverage of each node, so it goes 
through without change. []  

Note that  this argument actually shows that  we can remove 
any nodes from Nu that  do not contribute to the cone cov- 
erage. However, our interest here lies in minimizing power, 
not in minimizing the number of nodes in N~. There may 
be some applications where it helps to reduce the degree of 
a node; in this case, removing further nodes may be a useful 
optimization. 

3.2 Asymmetric edge removal 
As shown by Example 2.1, in order to preserve connectivity, 
it is necessary to add an edge (u, v) to Eo if (v, u) • No, 
even if (u, v) ~ No. In Example 2.1, a > 21r/3. This is 
not an accident. As we now show, if a < 21r/3, not only 
don' t  we have to add an edge (u, v) if (v, u) • No, we can 
remove an edge (v, u) if (v, u) • No but  (u, v) ~ No. Let 
E~  = {(u,v) : (u,v)  • No and (v,u) • No}.  Thus, while 
Eo is the smallest symmetric set containing No, E~- is the 
largest symmetric set contained in No. Let GX = (V, E~-). 

THEOREM 3.2. I f  a <_ 2~r/3, then G~ preserves the con- 
nectivity of GR. 

PROOF. We start  by proving the following lemma, which 
strengthens Corollary 2.3. 

LEMMA 3.3. I f  a < 2~r/3, and u and v are nodes in V 
such that (u, v) • E,  then either (u, v) • No or there exists 
a path u o . . . u k  such that uo = u, u~ = v, (v~,v~+l) • No, 
and d(ul, ui+l) < d(u, v), for i = 0 , . . .  , k - 1. 

PROOF. Order the edges in E by length. We proceed 
by strong induction on the rank of an edge in the ordering. 
Given an edge (u, v) • E of rank k in the ordering, if (u, v) • 
No, we are done. If not, as argued in the proof of Lemma 2.2, 
there must be a node w • cone(u, er, v) f3 No(u). Since a < 
2~r/3, the argument in the proof of Lemma 2.2 also shows 
that  d(w, v) < d(u, v). Thus, (w, v) • E and has lower rank 
in the ordering of edges. Applying the induction hypothesis, 
the lemma holds for (u,v).  This completes the proof. []  

Lemma 3.3 shows that  if (u,v) E E, then there is a path 
consisting of edges in No from u to v. This is not good 
enough for our purposes; we need a path consisting of edges 
in E~-. The next lemma shows that  this is also possible. 

LEMMA 3.4. I f  a <_ 21r/3, and u and v are nodes in V 
such that (u, v) • N~, then there exists a path uo . . . uk such 
that u0 = u, uk = v, (ul, ui+l)  • E~ ,  f o r i  = 0 , . . .  , k -  1. 

PROOF. Order the edges in No by length. We proceed 
by strong induction on the rank of an edge in the ordering. 
Given an edge (u, v) • No of rank k in the ordering, if 
(u, v) • E~,  we are done. If not, we must have (v, u) ¢~ No. 
Since (v, u) • E,  by Lemma 3.3, there is a path from v to 
u consisting of edges in No all of which have length smaller 
than d(v,u). If any of these edges is in No - E~ ,  we can 
apply the inductive hypothesis to replace the edge by a path 
consisting only of edges in E~-. By the symmetry of E~,  
such a path from v to u implies a path from u to v. This 
completes the inductive step. [] 

The proof of Theorem 3.2 is now immediate from Lem- 
mas 3.3 and 3.4. []  

To implement asymmetric edge removal, the basic GBTC 
needs to be enhanced slightly. After finishing GBTC(a),  a 
node u must send a message to each node v to which it sent 
an Ack message that  is not in No(u),  telling v to remove 
u from No(v) when constructing E~-. It is easy to see that  
the shrink-back optimization discussed in Section 3.1 can 
be applied together with the removal of these asymmetric 
edges. 

It  is clear that  there is a tradeoff between using GBTC(51r/6) 
and using CBTC(21r/3) with asymmetric edge removal. In 
general, P~,5~/s (i.e., p(rad~,5=/s) ) will be smaller than P,,,~=/a. 
However, the power p(radms=/s) with which u needs to 
t ransmit  may be greater than  P~,5~lS since u may need to 
reach nodes v such that  u • Ns~/8(v) but  v ~ Nh~/8(u). 
In  contrast, if ct = 21r/3, then asymmetric edge removal al- 
lows u to still use p=,~/a and may allow v to use power less 
than  Po,2~/3. Our experimental results confirm this. See 
Section 5. 

3.3 Pairwise edge removal 
The final optimization aims at  further reducing the trans- 
mission power of each node. In addition to the directional 
information, this optimization requires two other pieces of 
information. First, each node u is assigned a unique in- 
teger ID denoted IDa, and tha t  ID~ is included in all of 
u 's  messages. Second, although a node u does not need to 
know its exact distance from its neighbors, given any pair of 
neighbors v and w, node u needs to know which of them is 
closer. This can be achieved as follows. Recall that  a node 
grows its radius in discrete steps. It includes its transmission 
power level in each of the "Hello" messages. Each discov- 
ered neighbor node also includes its transmission power level 
in the Ack. When u receives messages from nodes vl and 
v~, it can deduce which of vl and vz is closer based on the 
transmission and reception powers of the messages. 

Even after the shrink-back operation and possibly asym- 
metric edge removal, there are many edges that  can be 
removed while still preserving connectivity. For example, 
if three edges form a triangle, we can clearly remove any 
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one of them while still maintaining connectivity. This op- 
timization (where the longest edge is removed) is used in 
[16]. In this section, we improve on this result by show- 
ing that  if there is an edge from u to vl and from u to v2, 
then we can remove the longer edge even if there is no edge 
from vl to v~, as long as d(Vl,V2) < max(d(u, vl) ,d(u,  v2)). 
Note that  a condition sufficient to guarantee tha t  d(Vl, v~) < 
max(d(u, Vl), d(u, v2)) is that  ./VlUV2 < ~r/3 (since the longest 
edge will be opposite the largest angle). 

To make this precise, we use the notion of an edge ID. Each 
edge (u,v) is assigned an edge ID eid(u,v) : (Q, i2, i3), 
where i l  : d(u, v), i2 -= max( ID, ,  IDv), and is : min(ID,,, 
IDv). Edge IDs are compared lexicographically, so that  
( i , j , k )  < ( i ' , j ' , k ' )  iff either (a) i < i ' ,  (b) i : i '  and j < j ' ,  
or (c) i = i ' ,  j = j ' ,  and k < k'. 

DEFINITION 3.5. I f  v and w are neighbors of u, Lvuw < 
~r/3, and eid(u,v) > eid(u, w), then (u,v) is a redundant  
edge. 

As the name suggests, redundant  edges are redundant ,  in 
that  it is possible to remove them while still preserving con- 
nectivity. The following theorem proves this. 

THEOREM 3.6. For a < 5~r/6, all ~Aundant edges can be 
removed while still preserving connectivity. 

PROOF. Let E~a r consist of all the non-redundant  edges 
in Eo. We show tha t  if (u,v) • Ea - E~a ~, then there is a 
path from u to v consisting only of edges in E~ ~. Clearly, 
this suffices to prove the theorem. 

Let e l , e2 , - . .  , e ~  be a listing of the redundant  edges (i.e, 
those in E~ - E~a r ) in increasing lexicographic order of edge 
ID. We prove, by induction on k, that  for every redundant  
edge ek = (uk,v~) there is a path from uk to vh consisting 
of edges in E~ r. For the base case, consider el -- (Ul,Vl). 
By definition, there must exist an edge (u l ,w l )  such that  
Z~tlUl~01 • 71"/3 and eid(ul,Vl) • e id(ul ,wl) .  Since el 
is the redundant  edge with the smallest edge ID, (Ul,Wl) 
cannot be a redundant  edge. Since L~/I~I~J./1 < Ir/3, it 
follows tha t  d(Wl,Vl) < d(Ul,Vl). If (Wl,'O1) • Eo, then 
(Wl, vl) • E~ ~ (since (ul ,  Vl) is the shortest redundant  edge) 
and (ul ,Wl),  (Wl,Vl) is the desired path of non-redundant  
edges. On the other hand, if (Wl,Vl) ~ Ea  then, since 
d(wl ,v l )  < d(u l ,v l )  <_ R and ct < 5~r/6, by Corollary 2.3, 
there exists a path  from Wl to Vl consisting of edges in E~ 
all shorter than  d(wl,Vl).  Since none of these edges can be 
redundant  edge, this gives us the desired path. 

For the inductive step, suppose that  for every ej = (uj ,  vj), 
1 _< j < i - 1, we have found a path H~ between uj  and 
vj, which contains no redundant  edges. Now consider e~ ---- 
(u~, v~). Again, by definition, there exists another edge (ui, w~) 
with eid(ul, vi) > eid(ui, wl) and Zv~uiwl < ~r/3. If (u~, w~) 
is a redundant  edge, it must be one of ej 's, where j _< i - 1. 
Moreover, if the path Hi (from Corollary 2.3) between v~ and 
wl contains a redundant  edge e~, we must have [ej[ < [eli 
and so j < i -  1. By connecting (ui,wi) with Hi and replac- 
ing every redundant  edge ej on the path with H~, we obtain 

a path HI between ul and vi that  contains no redundant  
edges. This completes the proof. [] 

Although Theorem 3.6 shows that  all redundant  edges can 
be removed, this doesn't  mean that  all of them should nec- 
essarily be removed. For example, if we remove some edges, 
the paths between nodes become longer, in general. Since 
some overhead is added for each link a message traverses, 
having fewer edges can affect network throughput. In ad- 
dition, if routes are known and many messages are being 
sent using point-to-point communication between different 
senders and receivers, having fewer edges is more likely to 
cause congestion. Since we would like to reduce the trans- 
mission power of each node, we remove only redundant  edges 
with length greater than  the longest non-redundant  edges. 
We call this optimization the pairurise edge removal opti- 
mization. 

4. DEALING WITH RECONFIGURATION, 
ASYNCHRONY, A N D  F A I L U R E S  

In a multi-hop wireless network, nodes can be mobile. Even 
if nodes do not move, nodes  may die if they run out of energy. 
In addition, new nodes may he added to the network. We 
need a mechanism to detect such changes in the network. 
This is done by the Neighbor Discovery Protocol (NDP). A 
NDP is usually a simple beaconing protocol for each node to 
tell its neighbor that  it is still alive. The beacon includes the 
sending node's ID and the transmission power of the beacon. 
A neighbor is considered failed if a pre-defined number of 
beacons are not  received for a certain time interval T. A 
node v is considered a new neighbor of u if a beacon is 
received from v and no beacon was received from v during 
the previous T interval. 

The question is what power a node should use for beaconing. 
Certainly a node u should broadcast with sufficient power 
to reach all of its neighbors in Ea  (or E~ ,  if a _< 2~r/3). As 
we will show, i f u  uses a beacon with power p(rad~,a) (recall 
that  p(rad~,a) is the power tha t  u must use to reach all its 
neighbors in Ea),  then this is sufficient for reconfiguration 
to work with the basic cone-based algorithm (possibly com- 
bined with asymmetric edge removal if a < 27r/3, in which 
case we can use power p(rnd~-,a)). 

We define three basic events: 

A join,, (v) event happens when node u detects a bea- 
con from node v for the first time; 

A leave~,(v) event happens when node u misses some 
predetermined number  of beacons from node v; 

An aChange~,(v) event happens when u detects that  
v's angle with respect to u has changed. (Note this 
could be due to movement by either u or v.) 

Our reconfiguration algorithm is very simple. It  is conve- 
nient to assume that  each node is tagged with the power 
used when it was first discovered, as in the shrink-back op- 
eration. (This is not necessary, but  it minimizes the number  
of times that  CBTC needs to be rerun.) 
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• If a leave~,(v) event happens, and if there is an a- 
gap after dropping dir~,(v) from D~, node u reruns 
CBTC(a)  (as in Figure 1), starting with power p(rad~,~) 
(i.e., taking p0 ---- p(rad~,~)). 

• If a join~,(v) event happens, u computes dir,(v) and 
the power needed to reach v. As in the shrink-back 
operation, u then removes nodes, starting with the 
farthest neighbor nodes and working back, as long as 
their removal does not change the coverage. 

• If an aChange~,(v) event happens, node u modifies the 
set D~ of directions appropriately. If an a-gap is then 
detected, then CBTC(a) is rerun, again starting with 
power p(rad~,~). Otherwise, nodes are removed, as in 
the shrink-back operation, to see if less power can be 
used. 

In general, there may be more than  one change event that  
is detected at a given time by a node u. (For example, if u 
moves, then there will be in general several leave, join and 
aChange events detected by u.) If more than  one change 
event is detected by u, we perform the changes suggested 
above as if the events are observed in some order, as long 
as there is no need to rerun CBTC. If CBTC needs to be 
rerun, it deals with all changes simultaneously. 

Intuitively, this reconiiguration algorithm preserves connec- 
tivity. We need to be a little careful in making this precise, 
since if the topology changes frequently enough, the recon- 
figuration algorithm may not ever catch up with the changes, 
so there may be no point at which the connectivity of the 
network is actually preserved. Thus, what we want to show 
is that  if the topology ever stabilizes, so tha t  there are no 
further changes, then the reconfiguration algorithm even- 
tually results in a graph that  preserves the connectivity of 
the final network, as long as there are periodic beacons. It  
should be clear tha t  the reconfiguration algorithm guaran- 
tees that  each cone of degree a around a node u is covered 
(except for boundary nodes), just  as the basic algorithm 
does. Thus, the proof that  the reconiiguration algorithm 
preserves connectivity follows immediately from the proof 
of Theorem 2.1. 

While this reconfiguration algorithm works in combination 
with the basic algorithm CBTC(a) and in combination with 
the asymmetric edge removal optimization, we must be care- 
ful in combining it with the other optimizations discussed 
in Section 3. In  particular, we must be very careful about 
what power a node should use for its beacon. For example, 
if the shrink-back operation is performed, using the power 
to reach all the neighbors in G~ does not suffice. For sup- 
pose that  the network is temporarily partitioned into two 
subnetworks G1 and G2; for every pair of nodes ut  E Gz 
and u2 E G~, the distance d(ul,u2) > R. Suppose that  u l  
is a boundary node in G1 and u2 is a boundary node in G2, 
and that,  as a result of the shrink-back operation, both ul  
and u2 use power P '  < P.  Further suppose that  later nodes 
ul  and u2 move closer together so that  d(ul, u2) < R. If P~ 
is not sufficient power for uz to communicate with u2, then 
they will never be aware of each other's presence, since their 
beacons will not reach each other, so they will not detect 
that  the network has become reconnected. Thus, network 
connectivity is not preserved. 

This problem can be solved by having the boundary nodes 
broadcast with the power computed by the basic CBTC(a)  
algorithm, namely P in this case. Similarly, with the pair- 
wise edge removal optimization, it is necessary for u ' s  beacon 
to broadcast with p(radu,a), i.e., the power needed to reach 
all of u 's  neighbors in Ea,  not just  the power needed to 
reach all of u 's  neighbors in E~ r. It  is easy to see tha t  this 
choice of beacon power guarantees tha t  the reconfiguration 
algorithm works. 

It  is worth noting that  a reconfiguration protocol works per- 
fectly well in an asynchronous setting. In particular, the 
synchronous model with reliable channels that  has been as- 
sumed up to now can be relaxed to allow asynchrony and 
both communication and node failures. Now nodes are as- 
sumed to communicate asynchronously, messages may get 
lost or duplicated, and nodes may fail (although we consider 
only crash failures: either a node crashes and stops sending 
messages, or it follows its algorithm correctly). We assume 
that  messages have unique identifiers and that  mechanisms 
to discard duplicate messages are present. Node failures re- 
suit in leave events, as do lost messages. If node u gets a 
message after many messages having been lost, there will be 
a join event corresponding to the earlier leave event. 

5. EXPERIMENTAL RESULTS 
In order to understand the effectiveness of our algorithm 
and its optimizations, we generated 100 random networks, 
each with 100 nodes. These nodes are randomly placed in a 
1500 x 1500 rectangular region. Each node has a maximum 
transmission radius of 500. 

In Figure 6, the results from one of these random networks 
are used to illustrate how CBTC and the various optimiza- 
tions improve network topology. Figure 6(a) shows a topol- 
ogy graph in which no topology control is employed and ev- 
ery node transmits with maximum power. Figures 6(b) and 
(c) show the corresponding graphs produced by CBTC(2~r/3) 
and CBTC(57r/6), respectively. From them, we can see 
that  both CBTC(2~r/3) and CBTG(5~r/6) allow nodes in 
the dense areas to automatically reduce their transmission 
radius. Figures 6(d) and (e) illustrate the graphs after the 
shrink-back operation is performed. Figure 6(f) shows the 
graph for a = 21r/3 as a result of the shrink-back operation 
and the asymmetric edge removal. Figures 6(g) and (h) 
show the topology graphs after all applicable optimizatious. 

Table 1 compares the cone-based algorithm with a = 21r/3 
and a = 51r/6 in terms of average node degree and aver- 
age radius. It  also shows the effect of t ransmit t ing at maxi- 
mum power (i.e., with no at tempt  at topology control.) The 
results are averaged over the 100 random networks men- 
tioned earlier. As expected, using a larger value for a re- 
sults in a smaller node degree and radius. However, as we 
discussed in Section 3.2, there is a tradeoff between using 
CBTC(27r/3) and CBTC(57r/6). Just using the basic algo- 
rithm results in tad,,5=/8 ---- 436.8 < rad~,2=/a ---- 457.4. But 
after applying asymmetric edge removal with a ---- 21r/3, 
the resulting radius is 301.2 (this number is not shown in 
the table); asymmetric edge removal can result in signifi- 
cant savings. After applying all applicable optimizatious, 
both a --- 21r/3 and a ---- 5vr/6 end up with essentially the 
same average node degree of 3.6 and almost the same aver- 
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Average 
Node Degree 
Average radius 

Basic 
a = 5 ~ / 6  ~ = 2 ~ / 3  

12.3 15.4 
435.8 457.4 

with opl 

a = 5~/61  a 21r/3 
10.3 12.8 

:573.7 398.1 

with opx and o192 
a = 2"x/3 

7.0 
275.8 

with all o/9 
a : 5 ~ ' / 6  a = 2 r / 3  

3.5 3.5 
155.9 150.5 

Max l~ower 

25.6 
50O 

T a b l e  1: A v e r a g e  d e g r e e  a n d  r a d i u s  of  t h e  c o n e - b a s e d  t o p o l o g y  c o n t r o l  a l g o r i t h m  w i t h  d i f f e r en t  a a n d  
o p t i m i z a t i o u s  ( o p l - s h r i n k - b a c k ,  o p t - a s y m m e t r i c  edge  r emova l ,  op3-pa i rwise  edge  r emova l ) .  

age radius. However, there are some secondary advantages 
to take a ---- 5~r/6. In general, CBTC(5~r/6) will terminate 
sooner than  CBTC(21r/3) and so expend less power during 
its execution (since P,,,5~/e < p,,,2=/3). Thus, especially if 
reconiiguration happens often, there are advantages to using 
CBCT(5~r/6). 

The last column in Table 1 gives the performance numbers 
for the case of no topology control, under  the assumption 
that  each node uses the maximum transmission power of 
p(500). Using topology control cuts down the average degree 
by a factor of more than  7 (3.6 vs. 25.6) and cuts down the 
average radius by a factor of more than  3 (155.9 or 160.6 
vs. 500). Clearly, this is a significant improvement. 

6. DISCUSSION 
We have analyzed the distributed cone-based algorithm and 
proved that  51r/6 is a tight upper bound on the cone de- 
gree for the algorithm to preserve connectivity. We have 
also presented three optimizations to the basic a lgori thm--  
the shrink-back operation, asymmetric edge removal, and 
pairwise edge removal--and proved that  they improve per- 
formance while still preserving connectivity. Finally, we 
showed that  there is a tradeoff between using CBTC(a)  with 
a = 5~r/6 and a = 21r/3, since using a = 21r/3 allows an ad- 
ditional optimization, which can have a significant impact. 
The algorithm extends easily to deal with reconfiguration 
and asynchrony. Most importantly, simulation results show 
that  it is very effective in reducing power demands. 

Reducing energy consumption has been viewed as perhaps 
the most important  design metric for topology control. There 
are two standard approaches to reducing energy consump- 
tion: (1) reducing the transmission power of each node as 
much as possible; (2) reducing the total  energy consump- 
tion through the preservation of minimum-energy paths in 
the underlying network. These two approaches may conflict: 
reducing the transmission power required by each node may 
not result in minimum-energy paths (see [16] for a discus- 
sion) or vice versa. Furthermore, there are other metrics to 
consider, such as network throughput and network lifetime. 
Reducing energy consumption tends to increase network life- 
time. (This is particularly true if the main reason that  nodes 
die is due to loss of battery power.) However, there is no 
guarantee that  it will. For example, using minimum-energy 
paths for all communication may result in hot spots and con- 
gestion, which in tu rn  may drain bat tery power and lead to 
network partition. Using approach (1) in this case may do 
better (although there is no guarantee). If topology control 
is not done carefully, network throughput  can be hurt. As 
we have already pointed out, eliminating edges may result 
in more congestion and hence worse throughput,  even if it 
saves power in the short run. The right tradeoffs to make 
are very much application dependent. We hope to explore 

these issues in more details in future work. 
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(a) no  topology control  (b) a = 21r/3, basic a lgori thm 

(c) a = 5~r/6, basic a lgori thm (d) a = 2~r/3 wi th  shr ink-back 

(e) a ---- 5~r/6 wi th  shr ink-back (f) a = 2~r/3 wi th  shr ink-back 

(g) a = 5~r/6 with all applicable opt imizat ions  

and  asymmetr ic  edge removal 

(h) c~ ---- 21r/3 wi th  all opt imizat ions  

F i g u r e  6: T h e  n e t w o r k  g r a p h s  a s  a r e s u l t  o f  d i f f e r e n t  o p t i m i z a t i o n s .  
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