
The Inherent Price of Indulgence∗

Partha Dutta and Rachid Guerraoui

Distributed Programming Laboratory

Swiss Federal Institute of Technology in Lausanne

Abstract

This paper presents a tight lower bound on the time complexity of
indulgent consensus algorithms, i.e., consensus algorithms that use unre-
liable failure detectors. We state and prove our tight lower bound in the
unifying framework of round-by-round fault detectors.

We show that any 3P -based t-resilient consensus algorithm requires at
least t + 2 rounds for a global decision even in runs that are synchronous.
We then prove the bound to be tight by exhibiting a new 3P -based t-
resilient consensus algorithm that reaches a global decision at round t +2
in every synchronous run. Our new algorithm is in this sense significantly
faster than the most efficient indulgent algorithm we knew of (which re-
quires 2t + 2 rounds).

We contrast our lower bound with the well-known t + 1 round tight
lower bound on consensus for the synchronous model, pointing out the
price of indulgence.

1 Introduction

1.1 Context

Indulgent algorithms [7] are distributed algorithms which can tolerate unreli-
able failure detection [2]; i.e., algorithms where, for an arbitrary period of time,
no process can distinguish a process which is up from one that has crashed:
these algorithms are indulgent towards their failure detector. This characteris-
tic makes indulgent algorithms particularly attractive in practical systems where
unpredictable delays make it very hard to accurately detect failures. We con-
sider indulgent algorithms that deterministically solve the (uniform) consensus

∗This work is partially supported by the Swiss National Science Foundation (project num-
ber 510-207).

1

problem [5] in a message-passing distributed system with n processes: we de-
note by t the maximum number of processes that might fail and assume that
processes can fail only by crashing.

Not surprisingly, indulgence entails a price: [2, 7] has shown that a majority
of correct processes (t < dn

2 e) is necessary for any consensus algorithm to tol-
erate unreliable failure detection, whereas non-indulgent algorithms can solve
consensus even with a minority of correct processes. One wonders whether the
unreliability of failure detection makes indulgent consensus algorithms also in-
herently less efficient than non-indulgent consensus algorithms. Basically, in
runs where the system is synchronous (and hence the failure detection is re-
liable), do indulgent solutions to consensus “take longer” than non-indulgent
solutions? Investigating synchronous runs of indulgent consensus algorithms is
interesting because, in practice, most runs are actually synchronous.

In this paper, we address this question by comparing (1) consensus algo-
rithms devised with a synchronous model in mind (non-indulgent algorithms)
with (2) consensus algorithms devised with the unreliable failure detector 3P
in mind (indulgent algorithms).1

To address this question, we consider the generic round-by-round fault de-
tector (RRFD) computation framework of [6]. Roughly speaking, in each round
of that framework, every process is supposed to send messages to all processes,
receive messages which are sent in that round, update its internal state depend-
ing on the messages received, and then move to the next round. While waiting
for messages, a process consults the local RRFD module which outputs a set of
crashed processes (some or all of these might actually be correct). A concrete
RRFD model is characterized by the predicate on its RRFD, and this predicate
expresses the synchrony and resilience guarantees of the model. Assumptions
of the synchronous model or assumptions of 3P are captured through concrete
RRFD models, which we denote by RFSR and RF3P , respectively.2

1.2 Background

We say that a run in an RRFD model is synchronous iff the RRFD also satisfies
the predicates of RFSR in that run. By definition, all runs in RFSR are syn-
chronous. A run of a consensus algorithm achieves a global decision at round
k if (1) all processes which ever decide in that run, decide at round k or at a
lower round and (2) at least one process decides at round k. As a measure of
time complexity in a model M (RFSR or RF3P), we seek the tight lower bound
kM such that: (1) every consensus algorithm in M has a synchronous run which
requires at least kM rounds for a global decision (i.e., every consensus algorithm

1Failure detector 3P (Eventually Perfect) outputs a set of suspected processes at each pro-
cess such that (1) (strong completeness) eventually every process that crashes is permanently
suspected by every correct process, and (2) (eventual strong accuracy) there is a time after
which correct processes are not suspected by any correct process. 3P is unreliable: even if a
process pi is up at some time τ , failure detector module at some process pj can falsely suspect
pi at τ .

2We give the RRFD definitions precisely in Section 2 before stating our results.

2

in M has a synchronous run in which some process decides at round kM or at
a higher round), and (2) there is a consensus algorithm in M which achieves a
global decision at round kM in every synchronous run.

It is well-known that kRFSR
= t+1: (1) every consensus algorithm in RFSR

has a run which requires t + 1 rounds for a global decision (provided t + 1 < n)
[10], and (2) a simple modification of FloodSet algorithm in [10] solves consensus
in RFSR and achieves global decision at round t + 1 in every run. In this paper
we seek kRF3P

: the tight lower bound for RF3P . Interestingly, the authors of [4]
speculated that such a bound would be greater than t + 1. In fact, the most
efficient algorithm we knew of has a bound of 2t + 2 [8].

1.3 Contributions

The contribution of this paper is to show that kRF3P
= t + 2; i.e., the price of

indulgence is exactly “one” round.
We first show that, for every consensus algorithm A in RF3P , among all

synchronous runs of A, there is at least one run in which some process decides
at round t + 2 or at a higher round, provided 0 < t < dn

2 e.
3 Our proof extends

the technique of [1], used to prove the t + 1 round lower bound for consensus
algorithms in a synchronous model, to models with unreliable RRFD: indistin-
guishability of runs in our proof results from process crashes as well as from false
suspicions. (Although we show the lower bound in the context of the uniform
consensus problem, it immediately extends to the non-uniform version of the
problem: [7] has shown that any indulgent algorithm which solves non-uniform
consensus, also solves uniform consensus.)

Then we exhibit a consensus algorithm in RF3P which achieves a global
decision at round t+2 in every synchronous run. It is a flooding algorithm which
tries to detect false suspicions by exchanging the set of suspected processes and
expedites decision whenever it detects the absence of false suspicions.

For pedagogical reasons, we first give a “simple” version of the algorithm to
show that our lower bound is tight. We then briefly explain (1) how to optimize
our algorithm to achieve the time complexity lower bound for failure-free case [9];
i.e., to reach a global decision at round 2 in failure-free synchronous runs (nice
runs), and (2) how to modify our algorithm to rely on a 3S-based asynchronous
round model instead of RF3P .4 The resulting algorithm is significantly more
efficient (in worst-case synchronous runs, i.e., synchronous runs of the algorithm
which require highest number of rounds for a global decision) than any other
3S-based consensus algorithms we know of. Our 3S-based algorithm achieves
a global decision at round 2 in failure-free synchronous runs and at round t+2 in

3We exclude the following two cases. (1) t = 0: processes can decide after exchanging
proposal values in the very first round (say on the proposal value of p1). (2) t ≥ dn

2
e: as

we have already pointed out, there is no indulgent solution to consensus when a majority of
processes may fail.

4Failure detector 3S (Eventually Strong) differs from 3P in its accuracy property: 3S

ensures only (eventual weak accuracy) that there is a time after which some correct process
is never suspected by any correct process.

3

at each process pi

k ← 1
forever do

compute m(i, k)
∀pj ∈ Π, send m(i, k) to pj

wait until ∀pj ∈ Π
received m(j, k) or pj ∈ D(i, k)

k ← k + 1

Figure 1: An abstract RRFD algorithm

every other synchronous runs. In contrast, the 3S-based consensus algorithm
of [8], which used to be the most efficient in worst-case synchronous runs among
the indulgent consensus algorithms we knew of, has a synchronous run which
requires 2t + 2 rounds for a global decision.

1.4 Roadmap

Section 2 briefly describes the distributed system model in which we state and
prove our result. Section 3 formally states our lower bound result with an
intuitive proof for a simple, yet non-trivial, case. The detailed proof of the
result is given in Appendix A. Section 4 exhibits a consensus algorithm which
achieves the lower bound. Its correctness proof is given in Appendix B. We
also detail the optimization of our algorithm for failure-free synchronous runs
in Appendix C.

2 Model

We consider a crash-stop message-passing distributed system consisting of a set
of n > 2 processes: Π = {p1, p2, ..., pn}. Every pair of processes can communi-
cate through send and receive primitives, which emulate a reliable communica-
tion channel in the following sense: (1) each message sent from a correct process
to a correct process is eventually received, (2) each message is received at most
once, and (3) the channel does not create or alter any message. A process ex-
ecutes the deterministic algorithm assigned to it or crashes. Processes do not
recover from a crash. A correct process is a process that never crashes; all other
processes are faulty.

A run of an RRFD based distributed algorithm [6] proceeds in rounds with
processes moving from one round to the next higher round until the algorithm
terminates. In each round k, every process pi is supposed to execute the fol-
lowing steps: (1) pi computes the message for this round, m(i, k), (2) pi sends
m(i, k) to all processes, and (3) pi receives some of the messages sent at round
k. While executing the third step, the processes consult the RRFD. For a given
round k, the RRFD outputs at every process pi a set of possibly faulty pro-
cesses D(i, k), such that pi receives m(∗, k) at round k from every processes
in Π − D(i, k). An abstract RRFD based algorithm is described in Figure 1.

4

An RRFD can be unreliable, namely, indicate a process to be faulty when it is
actually up. A concrete RRFD model can be completely defined by predicates
on the set D(i, k). We say that a process pi suspects pj when pj is in the set of
suspected processes output by RRFD at pi. It is worth noticing that a round
is “communication closed”, i.e., for any message m, either m is received by a
process pi in the same round in which it is sent, or m is never received by pi.
The restriction of a run r of an algorithm A to the first k rounds is called a
k-round partial run and is denoted by rk. (For each process pi, rk contains all
steps of pi in r until pi either crashes or pi completes round k.)

Synchronous round model: The RRFD model RFSR, where at most t pro-
cesses can fail by crashing, is defined by the following two predicates on D(i, k)
[6] (N denotes the set of positive integers):

A1. ((∀k ∈ N)(∀pi ∈ Π)(pi /∈ D(i, k))) ∧ (| ∪k∈N ∪pi∈ΠD(i, k)| ≤ t)

A2. (∀k ∈ N)(∀pl ∈ Π)(∪pi∈ΠD(i, k) ⊆ D(l, k + 1))

Roughly speaking, predicate A1 states that in any given run, a process never
suspects itself, and no more than t distinct processes are ever suspected. A2
states that if a processes pj crashes in round k, no processes receives a messages
from pj in a higher round.

Asynchronous round model enriched with 3P : We define the RRFD
model RF3P , where at most t processes can fail by crashing, by the following
three predicates on D(i, k):5

B1. (∀k ∈ N)(∀pi ∈ Π)(|D(i, k)| ≤ t)

B2. (∃k′ ∈ N)(((∀k ≥ k′)(∀pi ∈ Π)(pi /∈ D(i, k))) ∧ (|∪k≥k′ ∪pi∈ΠD(i, k)| ≤ t))

B3. (∃k′ ∈ N)(∀k ≥ k′)(∀pl ∈ Π)(∪pi∈ΠD(i, k) ⊆ D(l, k + 1))

Roughly speaking, B1 expresses the resilience guarantee of the model: at
every round k, a process eventually receives round k messages from at least
n− t processes. Predicates B2 and B3 simply state that the RF3P eventually
provides synchronous guarantees.

Synchronous run in RF3P : We say that a run r of an algorithm in RF3P is
synchronous iff the RRFD satisfies predicates A1 and A2 in r.

5Note that we give here an RRFD model with slightly stronger synchrony properties than
what 3P actually ensures: eventually, RF3P provides similar guarantees as RFSR. This
strengthens our lower bound result: if achieving a global decision at round t + 1 in every
synchronous run is impossible in RF3P then obviously it is impossible with weaker assumption
of 3P . After describing our consensus algorithm in RF3P , we then show how to modify the
algorithm to rely on asynchronous round model with 3S.

5

A consensus algorithm assists a set of processes to decide on a single value
among the values proposed by the processes. We define consensus here using
two primitives: propose(v) and decide(v). Each process proposes a value v
through the function propose(v) and a process decides v through decide(v).
Consensus ensures the following properties: (i) (validity) if a process decides v
then some process has proposed v, (ii) (uniform agreement) no two processes
decide differently, (iii) (termination) every correct process eventually decides,
and (iv) (integrity) no process decides twice.

An RRFD-based consensus algorithm A at each process pi is invoked through
procedure propose(∗) and progresses as a sequence of an arbitrarily large number
of RRFD-based rounds until either the consensus properties are satisfied or pi

crashes.

3 Lower Bound

Proposition 1. Every consensus algorithm in RF3P , with 0 < t < dn
2 e, has

a synchronous run in which some process decides at round t + 2 or at a higher
round.

3.1 Proof overview

The basic structure of the proof is as follows. We assume for a contradiction
that there is a consensus algorithm A in RF3P which achieves a global decision
at round t + 1 in every synchronous run. Then we construct two (t + 1)-round
partial runs r and r′ of A with the following properties:

(1) t− 1 processes crash in first t round of r and r′

(2) except some process pi, no other process can distinguish r from r′

(3) r and r′ appear as synchronous runs to pi

(4) pi decides different values and then crashes at the end of r and r′

Roughly speaking, since the processes (other than pi) cannot distinguish
r from r′, in any extension of r (or r′), these processes can never learn the
decision value of pi. The construction of the first t − 1 rounds of r and r′

follows the bivalency-based forward induction on round numbers, introduced
in [1]. (However, our notion of bivalency is different.) For the construction
of the next two rounds, we use process crashes as well as false suspicions to
generate the required indistinguishability. The complete proof (providing the
detailed construction of the runs) is presented in Appendix A. In the following,
we illustrate the idea of the proof for a simple, yet non-trivial, case.

3.2 A specific case

We informally explain here why there cannot exist any consensus algorithm A
in RF3P , with Π = {p1, p2, p3} and t = 1, such that, in every synchronous run
of A, a global decision is achieved within round 2.

6

0

0

p1

p2

p3

1

0

1

(a) R1

p1

p2

p3

1

1

1

0

1

(b) R2

p1

p2

p3
0

1

0

1

(c) R3

p1

p2

p3
1

1

0

1

(d) R4

Figure 2: Consensus runs

Assume for a contradiction that there exists a binary consensus algorithm
A such that, in every synchronous run of A, no process decides after round 2.
Without loss of generality, we can assume that, in every synchronous run of A,
the processes decide exactly at the end of round 2. Remember that (1) runs
with false suspicions are necessarily non-synchronous, and (2) property B1 of
RF3P requires that, in any run of A, a process can suspect at most one process
at a time (because t = 1).

We construct two synchronous runs of A, R1 and R2, and two partial runs
of A, R3 and R4. R3 and R4 are 2-round non-synchronous partial runs. In each
case, p1 proposes 1, p2 proposes 0, and p3 proposes 1. The first two rounds of
each run are depicted in Figure 2.6

• R1: Process p1 crashes initially. No other process crashes and there is no
false suspicion. Without loss of generality, we assume the decision value
to be 0,7 i.e, p2 and p3 decide 0 at the end of round 2. (Recall that in
synchronous runs of A, correct processes decide at the end of round 2.)

6The following two types of messages are not shown in the Figure 2 for clarity: (1) messages
sent by a process to itself, and (2) messages “lost” due to false suspicion. The presence of
messages lost due to false suspicion is evident in each run (remember that, in every round,
every process which is up sends messages to all other processes), e.g., in the first round of
R3, p1 sends messages to p2 and p3 but neither of the messages is received because p2 and p3

(falsely) suspect p1.
7Notice that the decision value in R1 does not depend on the value proposed by p1. There-

7

• R2: Process p2 crashes initially. No other process crashes and there is no
false suspicion. Clearly, the decision value in R2 should be the same if p2

had proposed 1 instead of 0. Hence, (by consensus validity) the decision
value is 1, i.e., p1 and p3 decide 1 at the end of round 2.

• R3: None of the processes crash. In round 1, p2 and p3 falsely suspect p1,
and p1 falsely suspects p2. In round 2, p1 and p2 falsely suspect p3, and
p3 falsely suspects p1. Process p3 decides at the end of round 2 because
p3 cannot distinguish the first two rounds of R1 from R3. To see why,
notice that in both cases, p3 receives no message from p1. Obviously,
p2 sends identical messages to p3 at round 1 of R1 and at round 1 of R3.
Furthermore, p2 can only distinguish the runs at the end of round 2 (when
p2 receives a message from p1 and suspects p3). Hence, p2 sends identical
messages to p3 at round 2 of R1 and at round 2 of R3. Thus, p3 receives
identical messages in both runs. Consequently, in every extension of R3,
(i) (as in R1) p3 decides 0 at the end of round 2, and (ii) (by consensus
agreement) in any extension of R3, p1 and p2 eventually decide 0.

• R4: None of the processes crash. In round 1, p1 and p3 falsely suspect p2,
and p2 falsely suspect p1. In round 2, p1 and p2 falsely suspect p3, and
p3 falsely suspects p2. Process p3 decides at the end of round 2 because
p3 cannot distinguish the first two rounds of R2 from R4. Thus, in every
extension of R4, (i) (as in R2) p3 decides 1 at the end of round 2, and
(ii) (by consensus agreement) in any extension of R4, p1 and p2 eventually
decide 1.

Notice that p1 and p2 cannot distinguish R3 from R4. Each process receives
identical messages in both partial runs. Consider any run R5 which extends R3

such that p3 crashes at round 3 before sending any message. In R5, p1 and p2

decide 0 (by consensus agreement). Now replace the first two rounds of R5 by
R4. Since, p1 and p2 cannot distinguish R3 from R4, they still decide 0 in R5:
violating consensus agreement, as p3 decides 1 in R4.

8

4 The consensus algorithm

We present here a consensus algorithm in RF3P , which we denote by At+2, for
0 < t < dn

2 e. At+2 achieves the lower bound of Proposition 1. Namely, besides
solving consensus, At+2 satisfies the following property:

Fast Decision: In every synchronous run of At+2, any process which ever
decides, decides at round t + 2 or at a lower round.

fore, if the decision value is 1, we can easily modify the proof by constructing runs in which
p1 proposes 0.

8Notice that partial runs R3 and R4, and process p3 respectively correspond to the r, r′,
and pi of Section 3.1.

8

The algorithm assumes an underlying independent consensus module C,9

accessed by procedures proposeC(∗) and decide(∗). The fast decision property
is achieved by At+2 regardless of the time complexity of C. More precisely, our
algorithm assumes:

(1) the RRFD computation model RF3P with 0 < t < dn
2 e

(2) no process ever suspects itself
(3) an independent consensus algorithm C in RF3P

(4) the set of proposal values in a run is a totally ordered set; e.g., each
process pi can tag its proposal value with its index i and then the values can be
ordered based on this tag

For presentation simplicity, we consider a slightly different consensus in-
tegrity property: for every process pi, no two decide(∗) invocations at pi have
different values. Thus, even though we allow each process to decide more than
once, the decision value should not change between decisions. The original in-
tegrity property can be recovered by a procedure which accepts the first decision
value and ignores the rest.

4.1 Basic idea

Our algorithm is a variant of the FloodSetWS 10 algorithm of [3], modified for
exchanging and tracking false suspicions. The algorithm has two phases: Phase 1
lasts the first t + 1 rounds and Phase 2 involves round t + 2 and the underlying
consensus algorithm C. In Phase 1, processes exchange their estimates of the
decision (initialized to the proposal value) and every process updates its estimate
to the minimum of all estimates seen in the round. The primary objective
of repeating this exchange for t + 1 rounds is to converge towards the same
estimate at all processes. However, this may be hindered by false suspicions,
i.e., processes may have different estimates at the end of Phase 1. Therefore, the
algorithm tries to detect the false suspicions to ensure the following elimination
property: given any two processes which complete Phase 1, either both processes
have the same estimate values or at least one of them detects a false suspicion.
The algorithm does not try to detect all false suspicions but only those which
can result in different estimate values at the end of Phase 1.

At round t + 2 (Phase 2), the processes exchange their (new) estimates: if a
process detects a false suspicion, then its new estimate is set to ⊥; otherwise, the
new estimate is the estimate value at the end of Phase 1. Due to the elimination
property of Phase 1, in every run, the number of distinct new estimate values
different from ⊥ is at most one. Processes decide at round t + 2 only if at
least n− t processes send non-⊥ estimate value. Otherwise, achieving decision
is delegated to algorithm C. (Due to consensus termination property of C, at
every correct process, procedure proposeC(∗) eventually invokes decide(∗).)

9This algorithm can be any traditional 3P -based or 3S-based consensus algorithm (e.g.,
the one based on 3S in [2]) transposed to the RF3P model.

10Consensus algorithm FloodSetWS assumes perfect failure detection (P) and achieves
global decision at round t + 1 in every run. It is itself inspired by the FloodSet consensus
algorithm of [10] in a synchronous system.

9

at each process pi

01. procedure propose(vi)
02. ki ← 1
03. Phase 1

04. while ki ≤ t + 1
05. compute()
06. ∀pj ∈ Π, send(estimate, ki, esti, Halti) to pj

07. wait until ∀pj ∈ Π, received(estimate, ki, ∗, ∗) from pj or pj ∈ D(i, ki)
08. ki ← ki + 1
09. Phase 2

10. compute()
11. ∀pj ∈ Π, send(newestimate, nEi) to pj

12. wait until ∀pj ∈ Π, received(newestimate, ∗) from pj or pj ∈ D(i, ki)
13. if every received(newestimate, nE) has nE 6= ⊥ then

14. vci ← any one of the nE values received
15. decide(vci)
16. else if received any (newestimate, nE′) message s.t. nE′ 6= ⊥ then

17. vci ← nE′

18. proposeC(vci)

19. procedure compute()
20. if ki = 1 then

21. msgSeti ← ∅; mistakei ← false; esti ← vi; Halti ← ∅; nEi ← vi; vci ← vi

22. if 2 ≤ ki ≤ t + 2 then

23. msgSeti ← {(estimate, ki − 1, ∗, Haltj) | pi received(estimate, ki − 1, ∗, Haltj) from pj

and pj /∈ Halti}
24. Halti ← Halti ∪ {pj | pi has not received(estimate, ki − 1, ∗, ∗) from pj}
25. if pi received(estimate, ki − 1, ∗, Haltj) from some process pj s.t. pi ∈ Haltj then

26. mistakei ← true
27. esti ← Min{est | (estimate, ki − 1, est, ∗) ∈ msgSeti}
28. if ki = t + 2 then

29. if | Halti | > t or mistakei = true then

30. nEi ← ⊥
31. else

32. nEi ← esti

Figure 3: The consensus algorithm

10

4.2 Description (Figure 3)

Processes invoke propose(∗) with their respective proposal value, and the proce-
dure progresses in RRFD based rounds. After receiving messages in any round
k (in Phase 1), the processes invoke procedure compute() at the beginning of
round k + 1 to update their local states. The algorithm tries to achieve consen-
sus in the first t + 2 rounds. Irrespective of whether a process decides at round
t + 2 or not, the process invokes the underlying consensus algorithm C.

Every process pi maintains the following variables: (1) ki: the current round
number; (2) esti: the estimate of pi which is set to the minimum value seen
by pi till round ki − 1, initialized to the proposal value vi; (3) Halti: the set
of processes suspected by pi in any lower round, (4) nEi: the new estimate of
pi, and (5) vci: the proposal value for the underlying consensus algorithm C,
initialized to the proposal value vi.
Phase 1: In this phase, which consists of the first t + 1 rounds, processes ex-
change estimate messages containing est and Halt. On receiving the messages
at round k, pi updates its variables at the beginning of round k+1 (by invoking
the procedure compute()) as follows:

- msgSeti is the set of messages received by pi at round k such that pi did
not suspect the sender in some round lower than k (i.e., once pi suspects a
process pj , all subsequent messages from pj are ignored by pi while computing
msgSeti).

- esti is updated as the minimum est value in msgSeti.
- Halti is the set of processes suspected by pi at round k or some lower

round.
- mistakei is true iff pi detects that some process has falsely suspected pi.

Namely, if pi receives a message from any process pj such that pi ∈ Haltj , then
pi sets mistakei as true.
Phase 2: This phase starts at round t + 2. At round t + 2, processes exchange
their nE (newestimate messages) and these are adopted as follows. If pi does
not detect a false suspicion within the first t + 1 rounds, then it sets nEi to
the minimum est value it has seen (i.e., the latest esti value). Otherwise, nEi

is set to ⊥. Process pi detects a false suspicion when (line 29) the cardinality
of Halti is greater than t (pi has suspected more than t processes, therefore
at least one of the suspicions is false) or mistakei is true (some process falsely
suspected pi). On exchanging nE values, if pi receives only non-⊥ nE values,
then pi decides immediately on any nE value received and sets vci to that value.
Otherwise, either pi receives some nE′ 6= ⊥ and sets vci to nE′, or every nE
value received by pi is ⊥ and vci retains its initial value, vi. Subsequently, pi

invokes proposeC(vci).

4.3 Outline of the proof

The validity and termination properties of the algorithm are rather straight-
forward. The integrity and agreement property follows from our elimination
property: if there are two distinct processes pi and pj such that, pi and pj

11

7: wait until (∀pj ∈ Π, received(estimate, ki, ∗, ∗) from pj or pj ∈ 3Spi
) and (received(estimate,

ki, ∗, ∗) from at least n− t processes)
12: wait until (∀pj ∈ Π, received(newestimate, ∗) from pj or pj ∈ 3Spi

) and (re-
ceived(newestimate, ∗) from at least n− t processes)

Figure 4: Modifications for using 3S

send newestimate messages with nEi 6= ⊥ and nEj 6= ⊥, respectively, then
nEi = nEj . It immediately follows that if any process decides on some value
d at round t + 2, then every process which completes round t + 2 has invoked
proposeC(d). A detailed correctness proof of the elimination property of the
algorithm is given in Appendix B. Integrity and agreement properties follows
from the agreement and validity property of C.

To see how the fast decision property is ensured, notice that the condition at
line 29 is false in every synchronous run: (1) From predicate A1 it follows that
no process can suspect more than t processes in any synchronous run. Thus, the
size of the set Halt is never greater than t in a synchronous run. (2) Consider
process pi. Variable mistakei is set to true in some round k only if pi received
a message from some process pj such that Haltj contains pi. So, pj must have
suspected pi at some round k′ < k. As pi is up at round k, predicate A1 and
A2 is violated (pi ∈ D(j, k′) but pi /∈ D(i, k)), and hence, in synchronous runs
mistakei is always false.

Hence, in every synchronous run, processes set nE different from ⊥. Thus,
every newestimate message has nE 6= ⊥, and no process completes round t+2
without deciding (line 13).

4.4 Extensions

1. Algorithm At+2 can be easily transformed to a consensus algorithm with
3S [2, 8], which we denote by A3S , as follows: (1) substitute underlying con-
sensus algorithm C by any 3S-based consensus algorithm C ′ (e.g., of [2]), and
(2) modify line 7 and line 12 as shown in Figure 4. Correctness of A3S is easy
to verify, since consensus termination is ensured by the presence of at least n− t
correct processes, and the termination property of C ′. More interestingly, A3S

retains the fast decision property of At+2 because this property is relevant only
in synchronous runs where the synchrony guarantees are much stronger than
those of either RF3P or 3S-based asynchronous rounds.

2. Algorithm At+2 (and A3S) can be easily optimized to achieve a global deci-
sion at round 2 in failure-free synchronous runs as follows. If a process detects
absence of suspicion at round 1 (i.e., received Halt = ∅ from n processes at
round 2) then it can safely conclude that the estimates at all processes at the
end of round 1 are identical and equal to the minimum value among all pro-
posed values. Thus, the process can decide on any estimate it receives at round
2. Appendix C details this optimization and sketches its correctness proof.

12

5 Acknowledgment

We thank Petr Kouznetsov, Bastian Pochon, and the anonymous reviewers for
their helpful comments on earlier drafts of the paper.

References

[1] M. K. Aguilera and S. Toueg. A simple bivalency proof that t-resilient
consensus requires t + 1 rounds. Information Processing Letters, 71(3-
4):155–158, 1999.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, 1996.

[3] B. Charron-Bost, R. Guerraoui, and A. Schiper. Synchronous system and
perfect failure detector: solvability and efficiency issues. In Proceedings of
the IEEE International Conference on Dependable Systems and Networks
(DSN), pages 523–532, New York, June 2000.

[4] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[6] E. Gafni. Round-by-round fault detectors: Unifying synchrony and asyn-
chrony. In Proceedings of the 17th ACM Symposium on Principles of Dis-
tributed Computing (PODC-17), pages 143–152, Puerto Vallarta, Mexico,
1998.

[7] R. Guerraoui. Indulgent algorithms. In Proceedings of the 19th ACM Sym-
posium on Principles of Distributed Computing (PODC-19), pages 289–298,
Portland, OR, July 2000.

[8] M. Hurfin and M. Raynal. A simple and fast asynchronous consensus proto-
col based on a weak failure detector. Distributed Computing, 12(4):209–223,
1999.

[9] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when
there are no faults - a tutorial. Technical Report MIT-LCS-TR-821, MIT,
May 2001.

[10] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

13

A Proof of Proposition 1

Proposition 1. Every consensus algorithm in RF3P with 0 < t < dn
2 e has

a synchronous run in which some process decides at round t + 2 or at a higher
round.
Proof: Suppose by contradiction that there is a binary consensus algorithm A
(possible proposal values are 0 and 1) in every synchronous run of which, any
process which ever decides, decides at the end of round t + 1. We prove five
lemmata (Lemma 2 to Lemma 5) on algorithm A. Lemma 5 contradicts Lemma
2.

Before proving the lemmata we propose some definitions and notations. A
synchronous run r of A is a serial run iff at most one process may crash in
every round of r. Since every serial run is a synchronous run, in every serial
run of A, every process which ever decides, decides at the end of round t + 1.
A finite execution of A is an l-round serial partial run iff it is a restriction of
some serial run of A to the first l rounds. A m-round partial run rm is a serial
extension of an l-round serial partial run rl (l < m) iff (1) rl is the restriction
of rm to the first l rounds, and (2) rm is a m-round serial partial run. A m-
round partial run rm is an asynchronous extension of a l-round serial partial
run rl (l < m) iff (1) rl is the restriction of rm to the first l rounds, and (2)
(l < k ≤ m)(∀px ∈ Π)(∪pi∈ΠD(i, l) ⊆ D(x, k)).11

A k-round serial partial run rk is 0-valent (1-valent) iff the only decision value
in all serial extension of rk is 0 (1). A k-round serial partial run is univalent if it
is either 0-valent or 1-valent; otherwise, it is bivalent. An initial configuration
C0 is 0-valent (1-valent) iff the only possible decision value in all serial runs
starting from C0 is 0 (1). An initial configuration is univalent if it is either
0-valent or 1-valent; otherwise, C0 is bivalent.

We denote the message sent by any process pi at round k of run r by mr(i, k).
Mr(i, k) denotes the set of messages received by pi at round k of run r.

Lemma 2: Every t-round serial partial run is univalent.
Proof: Suppose by contradiction that there is a t-round serial partial run rt

which is bivalent. Suppose that r0 is a serial extension of rt such that no process
crashes after round t. Without loss of generality we assume that r0 has decision
value 0. Since run r0 is serial, every processes which ever decides in r0, decides
0 at the end of round t + 1. Furthermore, as rt is bivalent, there is a serial run
r1 which has decision value 1: every process which ever decides in r1, decides 1
at the end of round t + 1. Notice that as both runs r0 and r1 are extensions of
rt, processes cannot distinguish the runs at the beginning of round t + 1, and
therefore, the messages sent by any process at round t + 1 are identical in both
runs, i.e., ∀pl ∈ Π, mr0(l, t + 1) = mr1(l, t + 1).

11Note that (1) any serial extension is also an asynchronous extension, (2) in asynchronous
extensions which are not serial, processes may be falsely suspected, and (3) condition 2 in the
definition of asynchronous extensions states that, if a process is suspected in a serial partial
run rl then it continues to be suspected in every asynchronous extension of rl.

14

Consider a process pi which is correct in both runs r0 and r1 (t < dn
2 e

implies that there is a process which is correct in both runs). Mr0(i, t + 1) and
Mr1(i, t + 1) are the set of messages received by pi at round t + 1 of r0 and r1,
respectively. Since pi is correct, it must decide (at round t + 1 of serial runs r0

and r1). To decide at round t + 1, pi must be able to distinguish r0 from r1

at round t + 1, which implies that Mr0(i, t + 1) 6= Mr1(i, t + 1). As no process
crashes at round t + 1 of r0, Mr1(i, t + 1) ⊂ Mr0(i, t + 1).

Now consider an asynchronous extension of rt by one round, a0,1. Round
t + 1 of a0,1 is identical to round t + 1 of r0 except that pi receives Mr1(i, t + 1)
instead of Mr0(i, t + 1) (recall that Mr1(i, t + 1) ⊂ Mr0(i, t + 1)), i.e., pi is the
only process which can distinguish the first t + 1 rounds of r0 from the partial
run a0,1. Process pi cannot distinguish the partial run a0,1 from the first t + 1
rounds of r1 and decides 1 at the end of a0,1. Consider a process pj which is
correct in r0 and distinct from pi (0 < t < dn

2 e implies that t+2 ≤ n, i.e., there
are two correct processes in any run). Clearly, pj cannot distinguish the first
t + 1 rounds of r0 from a0,1. Thus, pj decides 0 in a0,1, and any extension of
a0,1 violates consensus agreement: a contradiction. 2

Lemma 3: There is an initial configuration which is bivalent.
Proof: Suppose by contradiction that every initial configuration is univalent.
Consider the initial configurations C0 and Cn in which all processes propose 0
and 1, respectively. From consensus validity it follows that C0 is 0-valent and
Cn is 1-valent. Define Ci (0 < i < n) as the initial configuration in which
every process pj such that j ≤ i proposes 1 and all other processes propose 0.
Consider a serial run rCi

starting from Ci (0 ≤ i < n) in which process pi+1

crashes initially and other processes decide d ∈ {0, 1} at round t + 1. Notice
that even if the initial configuration in rCi

is changed to Ci+1, the decision value
remains d (because pi+1 crashes before sending any messages in rCi

). Thus, if
Ci (0 ≤ i < n) is d-valent then Ci+1 is also d-valent.

Using the above result and a simple induction we can show that, if C0 is
0-valent, then so is Cn: a contradiction. 2

Lemma 4: There is a (t− 1)-round serial partial run which is bivalent.
Proof: The proof is by induction on round number k (0 ≤ k < t− 1).

Base Step: From Lemma 3 it follows that there is a 0-round serial run which
is bivalent.

Induction Hypothesis: There is a k-round serial partial run rk which is
bivalent (0 ≤ k < t− 1).

Induction Step: We assume that every one round serial extension of rk is
univalent. We show that this leads to a contradiction. Therefore, there is a one
round serial extension of rk which is bivalent, and hence, there is a (k+1)-round
serial partial run which is bivalent.

Suppose that every one round serial extension of rk is univalent. Let r0
k+1 be

a (k+1)-round serial partial run which is an extension of rk such that no process
crashes at round k+1. Without loss of generality, we can assume that r0

k+1 is 0-
valent. Since rk is bivalent, there is a (k+1)-round serial partial run r∗k+1 which

15

is an extension of rk and which is 1-valent. There must be exactly one process
p′1 which crashes in round k + 1 of r∗k+1 and there is a (possibly empty) set of
processes {p′2, ..., p

′
m} that can distinguish r0

k+1 from r∗k+1 (0 ≤ m−1 < n): i.e.,
processes which received a message from p′1 at round k + 1 of r0

k+1 and did not
receive a message from p′1 at round k + 1 of r∗k+1.

Consider the following (k + 1)-round serial partial runs r1
k+1, ..., r

m
k+1 such

that: (1) r1
k+1 is identical to r0

k+1, except that in r1
k+1, p′1 crashes at round k+1,

though the round k + 1 message sent from p′1 to other processes are received at
round k + 1. (2) rj

k+1 (2 ≤ j ≤ m) is identical to r0
k+1 except that, in rj

k+1, p′1
crashes at round k + 1 and does not send (k + 1)-round messages to {p′2, ..., p

′
j}

(though p′1 sends (k + 1)-round messages to {p′j+1, ..., p
′
m} and those messages

are received in the same round). Now consider the following two claims which
contradicts the fact that r∗k+1 is 1-valent.

4.1. If ri
k+1 (0 ≤ i < m) is 0-valent then so is ri+1

k+1: Partial runs ri
k+1 and

ri+1
k+1 differ only in the state of process p′i+1 at the end of round k+1. Consider a

k +2 round serial extension rk+2 of ri
k+1 in which p′i+1 crashes at the beginning

of round k+2 (before sending any message in round k+2) and no other processes
crash in round k + 2. Also, consider a k + 2 round serial extension r′k+2 of ri+1

k+1

in which p′i+1 crashes at the beginning of round k + 2 (if p′i+1 = p′1 then it has
already crashed in round k + 1) and no other process crashes in round k + 2.12

Obviously, at the end of round k +2 no process can distinguish rk+2 from r′k+2.
Note that since k + 2 < t + 1, processes decide after round k + 2. Hence, there
are serial extensions of ri

k+1 and ri+1
k+1 which are indistinguishable at the end of

round t + 1. So, if ri
k+1 (0 ≤ i < m) is 0-valent, then ri+1

k+1 is also 0-valent. It
follows that rm

k+1 is 0-valent.
4.2. r∗k+1 is 0-valent: Serial partial runs r∗k+1 and rm

k+1 are identical. There-
fore, r∗k+1 is 0-valent: a contradiction. 2

Lemma 5: There is a t-round serial partial run which is bivalent.
Proof: Suppose by contradiction that every t-round serial partial run is uni-
valent. From Lemma 4 we know that there is a bivalent (t − 1)-round serial
partial run, which we denote by rt−1. Let r0

t be a one round serial extension of
rt−1 such that no process crashes at round t. Without loss of generality, we can
assume that r0

t is 0-valent. Since rt−1 is bivalent, there must be a one round
serial extension r∗t of rt−1 which is 1-valent. There must be exactly one process
p′1 which crashes in round t of r∗t and there is a (possibly empty) set of processes
{p′2, ..., p

′
m} that can distinguish r0

t from r∗t (0 ≤ m − 1 < n): i.e., processes
which received a message from p′1 at round t of r0

t and did not receive a message
from p′1 at round t of r∗t .

Consider the following t-round serial partial runs r1
t , ..., rm

t such that: (1) r1
t

is identical to r0
t , except that in r1

t , p′1 crashes at round t, though the round t
message sent from p′1 to other processes are received at round t. (2) rj

t (2 ≤

12Note that, p′i+1
can crash at the beginning of round k+2 in r′

k+2
because, by the definition

of serial runs, at most k+1 < t processes can crash in the first k+1 rounds. k+1 < t because
the induction is done over 0 ≤ k < t − 1.

16

j ≤ m) is identical to r0
t , except that in rj

t , p′1 crashes at round t and does
not send t-round messages to {p′2, ..., p

′
j} (though p′1 sends t-round messages to

{p′j+1, ..., p
′
m} and those messages are received in the same round). Now consider

the following two claims which contradicts the fact that r∗t is 1-valent.
5.1. If ri

t (0 ≤ i < m) is 0-valent then so is ri+1
t : The proof is given in the

following subsection. The claim implies that rm
t is 0-valent.

5.2. r∗t is 0-valent: Partial runs rm
t and r∗t are identical. Therefore r∗t is

0-valent: a contradiction.

Proof of Claim 5.1

The proof of Claim 4.1 does not work for the present case. To see why, notice
that in Claim 4.1, k + 1 processes have crashed in serial partial run ri+1

k+1. Since

k+1 < t (in Lemma 4), we can crash one more process in any extension of ri+1
k+1,

which is necessary to show that ri
k+1 and ri+1

k+1 have the same valency. However,

in the present case, t processes have already crashed in ri+1
t .

Proof: Suppose by contradiction that ri
t is 0-valent and ri+1

t is 1-valent. Serial
partial runs ri

t and ri+1
t differ only in the state of p′i+1 at the end of round t.

There are two cases: (1) p′i+1 = p′1, or (2) p′i+1 6= p′1.

If p′i+1 = p′1 (i.e., p′i+1 is up at the end of ri
t = r0

t but crashes in ri+1
t = r1

t),
then we reach a contradiction as follows. From the definition of serial runs we
know that at most t processes can crash in ri+1

t . Since ri
t and ri+1

t are identical
except for state of p′i+1 (p′i+1 crashes in ri+1

t but not in ri
t), at most t−1 processes

could have crashed in ri
t. So, we can construct a serial run r′ by extending ri

t in
which p′i+1 crashes at the beginning of round t + 1 (before sending any message
in that round). From round t + 1 onwards, no process can ever learn whether
r′ is a serial extension of ri

t or a serial extension of ri+1
t . Consequently, if ri

t is
0-valent then so is ri+1

t : a contradiction.
Therefore, p′i+1 6= p′1. Process p′i+1 is the only process which can distinguish

ri
t from ri+1

t at the end of round t: p′i+1 receives a t-round message from p′1 in

ri
t and does not receive a t-round message from p′1 in ri+1

t . For convenience of
presentation let us denote p′i+1 by px and p′1 as py.

We now construct two synchronous runs s1 and s0 in which px decides dif-
ferent values.

• s1: This run is a one round serial extension of ri+1
t in which no process

crashes at round t + 1. Since partial run ri+1
t is 1-valent and s1 is a serial

(t + 1)-round partial run, px decides 1 at the end of round t + 1.

• s0: This run is a one round serial extension of ri
t in which no process

crashes at round t + 1. Since partial run ri
t is 0-valent and s0 is a serial

(t + 1)-round partial run, process px decides 0 at the end of round t + 1.

We now construct two (t + 1)-round asynchronous partial runs a0 and a1

(these runs correspond to the asynchronous partial runs r and r′ mentioned in
Section 3.1).

17

• a1: This is an asynchronous (t + 1)-round partial run which is defined as
follows for each round k:

– k ≤ t− 1: The partial run is identical to the first t− 1 rounds of s1.

– k = t: No process crashes in this round. Unlike s1, py does not crash
in round t of this partial run. But, every process (except py) receives
the same set of messages as in round t of s1. (Any process which does
not receive a message from py in round t of this run, falsely suspects
py.) Process py receives some arbitary set of messages, Ma1(y, t).

Observations: (1) At the end of round t of a1, only py can distinguish
the first t rounds of a1 from the first t rounds of s1. (2) At most t−1
processes has crashed in first t round of a1. To see why, notice that
the first t−1 rounds of a1 is identical to first t−1 rounds of s1. As s1

is a serial run, at most t− 1 processes can crash in first t− 1 rounds
of s1 (and a1). No process crashes in round t of a1.

– k = t + 1: Due to false suspicion, (1) processes distinct from px, do
not receive any message from px, and (2) px does not receive any
message from py. Process px cannot distinguish this partial run from
s1, and therefore, decides 1 at the end of this round and then crashes.

Observations: (1) No process suspects more than t processes in a
round: in round t and t + 1 every process suspects at most t − 1
processes which have already crashed in first t−1 rounds, and either
px or py. (2) To see why px cannot distinguish between a1 and s1,
recall that no process (except py) can distinguish first t rounds of a1

from that of s1. Therefore, every process (except py) sends the same
message in round t + 1 of both partial runs. As px does not receive
any message from py in round t + 1 of both runs, it receives identical
messages in round t + 1 of both runs.

• a0: This is an asynchronous (t + 1)-round partial run which is defined as
follows for each round k:

– k ≤ t− 1: The partial run is identical to the first t− 1 rounds of s0.

– k = t: No process crashes in this round. Unlike s0, py does not crash
in round t of this partial run. But, every process (except py) receives
the same set of messages as in round t of s0. (Any process which does
not receive a message from py in round t of this run, falsely suspects
py.) Process py receives the same set of messages as in a1, Ma1(y, t).

– k = t + 1: Due to false suspicion, (1) processes distinct from px, do
not receive any message from px, and (2) px does not receive any
message from py. Process px cannot distinguish this partial run from
s0, and therefore, decides 0 at the end of this round and then crashes.

Observations: It is easy to verify that (1) no process suspects more
than t processes in a round, and (2) px cannot distinguish between
a0 and s0. Furthermore, no process which is up at the end of the two

18

partial runs (a1 and a0) can distinguish the two runs. To see why,
notice that, at the end of round t, only px can distinguish between
the partial runs: px receives m(y, t) in a0 and does not receive m(y, t)
in a1. In round t+1 of both runs, processes (other that px) does not
receive any message from px. Thus, px is the only process which can
distinguish a1 from a0, and it crashes at the end of both partial runs.

Thus, we have constructed two (t + 1)-round partial runs a0 and a1, which
are indistinguishable to all processes which are up at the end of round t+1, and
there is a process which decides different values and then crashes in a0 and a1.
Consider a run r0,1 which extends a1. By consensus agreement, every correct
process eventually decides 1 in this run. Now we replace first t+1 rounds of r0,1

by a0. As no process which is up after round t+1 can distinguish a0 from a1, so
correct processes still decide 1 in modified r0,1: violating consensus agreement,
as px decides 0 in a0. 2

B Correctness of the Consensus Algorithm of
Figure 3

Validity and termination properties of At+2 are straightforward. We focus here
on the elimination property (from which uniform agreement, integrity, and fast
decision properties can be derived easily). For convenience of discussion, we
introduce the following notation. Given any variable xi at process pi, we denote
by xi[ki] the value of the variable xi immediately after the completion of pro-
cedure compute() at round ki (1 ≤ ki ≤ t + 2). If pi does not invoke procedure
compute(), or fails to return from the procedure at round ki (maybe because pi

has crashed in a lower round), then xi[ki] is undefined. For example, esti[1] is
the value of esti just after line 5 at round 1 and esti[t + 2] is the value of esti
just after line 10 at round t + 2.

Lemma 6. (Elimination) If there are two distinct processes pi and pj such
that (1) pi and pj send newestimate messages, (2) nEi[t + 2] 6= ⊥, and (3)
nEj [t + 2] 6= ⊥, then nEi[t + 2] = nEj [t + 2].
Proof: Suppose by contradiction that there exist two distinct processes pi and
pj such that, (1) nEi[t + 2] = c 6= ⊥, (2) nEj [t + 2] = d 6= ⊥, and (3) c 6= d. We
prove four lemmata (Lemma 7 to Lemma 10) based on this assumption. Lemma
10 contradicts Lemma 8.

Without loss of generality we can assume that c < d. For a run of At+2 we
define set Ck as follows. C1 is the set of processes whose proposal values are
less than or equal to c and Ck (2 ≤ k ≤ t + 2) is the set C1∪{pj | ∃k′ ≤ k,
estj [k

′] ≤ c}. From the definition of Ck, we can immediately make the following
three observations for the given run of At+2.
O1: |C1| ≥ 1. Otherwise, if every process proposes a value greater than c, then
nEi[t + 2] must be different from c.

19

O2: For 1 ≤ k ≤ t + 1, Ck ⊆ Ck+1. This follows directly from the definition of
Ck.
O3: For 1 ≤ k ≤ t+1, ∀pi ∈ Ck, if pi sends an estimate message in any round
k′ ≥ k then esti[k

′] ≤ c. A process always receives its own estimate message,
so the updated est in line 27 is always less than or equal to previous est.

Lemma 7: Consider the state of any process pl after completing procedure
compute() at round k (2 ≤ k ≤ t + 2). Let senderMSl[k] be the set of processes
which are the sender of the messages in msgSetl[k]. Then, senderMSl[k] =
Π−Haltl[k].
Proof: Consider any process pm ∈ Π. There are three exhaustive and mutually
exclusive cases regarding messages from pm to pl in round k−1 (2 ≤ k ≤ t+2):
- If pl does not receive an estimate message from pm at round k − 1, then
pm ∈ Haltl[k] (line 24) and pm /∈ senderMSl[k].
- If pl receives an estimate message from pm and pm /∈ Haltl[k − 1], then
pm ∈ senderMSl[k] (line 23) and pm /∈ Haltl[k].
- If pl receives an estimate message from pm and pm ∈ Haltl[k − 1], then
pm /∈ senderMSl[k] and pm ∈ Haltl[k] (line 24). Thus, a process is either in
senderMSl[k] or Haltl[k]. 2

Lemma 8: |Ct+1| ≤ t.
Proof: Suppose by contradiction that |Ct+1| > t. Consider any process pm ∈
Ct+1. From Observation O3, it follows that either pm sends an estimate mes-
sage with est ≤ c at round t + 1 or does not send any estimate message (if
pm crashes). Now consider the messages received by process pj at round t + 1.
(Recall that nEj [t + 2] = d > c.) The set msgSetj [t + 2] does not contain
any message from pm. Otherwise, nEj [t + 2] must be less that or equal to
c. Therefore, from Lemma 7 it follows that pm ∈ Haltj [t + 2]. Consequently,
Ct+1 ⊆ Haltj [t + 2], and |Haltj [t + 2]| ≥ |Ct+1| > t. It thus follows from line
29 that nEj [t + 2] is ⊥: a contradiction. 2

Lemma 9: pi ∈ Ct+2 and pi /∈ Ct.
Proof: Notice that nEi[t + 2] = c 6= ⊥ implies that esti[t + 2] = c (line 32).
Thus, from the definition of Ct+2 it follows that pi ∈ Ct+2.

For the next part of the proof, suppose by contradiction that pi ∈ Ct. Con-
sider any process pm ∈ Π − Ct+1. From the definition of Ct+1, we know that
estm[t+1] > c. Therefore, msgSetm[t+1] does not contain any estimate message
from pi. (Otherwise, on receving est ≤ c from pi, pm has to set estm[t+1] ≤ c.)
Therefore, from Lemma 7 it follows that pi ∈ Haltm[t + 1]. Furthermore, ev-
ery process in Π− Ct+1 either crashes or sends an (estimate, t + 1, ∗, Halt′)
message such that pi ∈ Halt′.

As nEi[t + 2] 6= ⊥, so we know that mistakei[t + 2] = false. This implies
that pi has not received any (estimate, t + 1, ∗, Halt′) message such that
pi ∈ Halt′. Therefore, Π − Ct+1 ⊆ Halti[t + 2]. From Lemma 8 it follows
that |Π − Ct+1| ≥ n − t > t (recall that t < dn

2 e). So, |Halti[t + 2]| > t: a
contradiction with nEi[t + 2] 6= ⊥. 2

20

07.a. if k = 2 then

07.b. if every received (estimate, 2, est, Halt) message
has Halt = ∅ then

07.c. vci ← any est value received
07.d. if received (estimate, 2, est, Halt) message

from all processes in Π then

07.e. decide(vci)

Figure 5: Optimizer for At+2

Lemma 10: (1) For all k such that 1 ≤ k ≤ t: Ck ⊂ Ck+1. (Ck is a proper
subset of Ck+1). (2) |Ct+1| ≥ t + 1.
Proof: (1) Consider any 1 ≤ k ≤ t. Recall from Observation O2, Ck ⊆ Ck+1.
Thus, either Ck ⊂ Ck+1 or Ck = Ck+1. Suppose by contradiction that Ck =
Ck+1.

For any process pm ∈ Π − Ck+1, msgSetm[k + 1] does not contain an
(estimate, k, ∗, ∗) message from any process in Ck; otherwise, estm[k + 1]
must be less than or equal to c and pm ∈ Ck+1. Therefore, from Lemma 7,
Ck ⊆ Haltm[k + 1]. Since Ck = Ck+1, so Ck+1 ⊆ Haltm[k + 1]. Thus, in
subsequent rounds, processes in Π−Ck+1 ignore all messages from any process
in Ck+1 while updating est, and therefore est is always greater than c (at pro-
cesses in Π− Ck+1). Therefore, after round k + 1, the set C never changes (no
process in Π − C ever adopts a value less than or equal to c as its est), i.e.,
Ck+1 = Ck+2 = ... = Ct+2. A contradiction with Lemma 9.

(2) Part (1) of this lemma implies that 1 ≤ k ≤ t, |Ck+1| − |Ck| ≥ 1. We
know from Observation O1 that |C1| ≥ 1. Therefore, |Ct+1| ≥ t + 1. 2

C An optimization

Algorithm At+2 can be improved to achieve a global decision at round 2 in
every failure-free synchronous run (commonly known as nice runs). At the end
of round 2, if any process pi is certain that there were no suspicions in round 1
(pi receives round 2 messages from each of the n processes with Halt = ∅) then
pi decides immediately on any est value received and sets the proposal variable
vci for the underlying consensus algorithm C to that value. Otherwise, if pi does
not detect any suspicion at round 1 (pi does not receive round 2 messages from
all n processes, however, every round 2 messages received by pi has Halt = ∅)
then pi sets vci to any est value received. Figure 5 describes the modification
more precisely. For the optimization, the lines in Figure 5 are inserted between
line 7 and line 8 of Figure 3.

It is straightforward to see that Figure 5 performs the required optimization
without violating any of the consensus properties or the fast decision property.
Suppose that some process pi decides d at round 2. To see why consensus
agreement is not violated, notice that pi decides in line 7.e only if there has
been a complete exchange of estimate messages at round 1 (i.e., no process

21

suspected any process). As the proposal values form a totally ordered set, every
estimate message at round 2 had the same est value d (d is precisely the
minimum of all proposed values), and therefore, every message sent at round 2
is (estimate, 2, d, ∅). Thus, the only possible decision value at round 2 is d,
and processes set both vci and esti to d. Therefore, any process which decides
at round t + 2, decides d and any process which invokes proposeC(∗), does so
with value d. Agreement is obvious.

22

