
Round-by-Round Fault Detectors:
Unifying Synchrony and Asynchrony”

(Extended Abstract)

Eli Gafni
(eli@cs . ucla . edu)

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90024
U.S.A.

Abstract

This paper presents a new family of models of
distributed-computation which combines features
from synchronous, asynchronous, and failure-detector-
augmented systems. Like synchronous systems,
computation in this family of models evolves in
rounds, and communication missed at a round is
lost. Unlike synchronous systems, information that is
missed at a round does not necessarily imply a real
process failure. The features of a specific model is cap-
tured in an abstract module called the round-by-round
fault detector. The abstraction of system features into
such a module facilitates the comparison of different
systems, by contrasting their associated fault detectors.
We show that this family of models unifies the study
of synchrony, asynchrony, message-passing and shared
memory. We further show that this approach leads
to the development of shorter and simpler proofs of
important results such as a lower bound on the number
of rounds to achieve k-set agreement in a synchronous
system. We believe that studying distributed systems
through the proposed unifying framework will lead to
new results and insights.

*Work supported by UCLA Academic Senate Grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial ahntage end thet
copies bear this notice and the full citation on the f& page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
PODC! 98 Puerto Valkuta Mexico
Copyright ACM 1998 O-89791-977-7/98/ 6...$5.00

1 Introduction

For many years, researchers studying synchronous
message-passing systems have considered algorithms
composed of rounds of computation. In each round,
a process sends a message to the others and then waits
to receive messages from the other processes. The syn-
chronous nature of the system ensures that, by the end
of the round, each process receives all messages sent
to it in that round by correct processes. In the par-
lance of Elrad and Francez [l] then, each round of a
synchronous system is a communication-closed-layer.

Asynchronous message-passing systems are not
communication closed. However, round-based algo-
rithms for f-resilient asynchronous systems, in which
communication-closedness is enforced by discarding
messages which are late and buffering messages which
are early, have been developed in the context of the
asynchronous Byzantine-Agreement problem [2,3]. In
such algorithms, a process executing a round waits un-
til it has received at least n - f messages for that round.
The bound on the number of failures ensures that this
will not block the algorithm. However, it was not clear
to researchers whether round-based asynchronous sys-
tems are equivalent to the ones in which late messages
are not discarded [3].

Researchers turned their attention again to round-
based asynchronous systems in [4]. There, studying
the topological properties of system, they referred to
round-based systems as iterated systems. The moti-
vation for that name was the fact that the topological
structure induced by round-based models, is an iter-
ation of the topological structure induced by a single

143

round. One of the contributions in [4] was the realiza-
tion for the first time that there is a nicely structured
iterated model that is equivalent to shared-memory.

The new idea in this paper is to study round-
based models and abstract away the implementation of
the communication exchange between processes, be it
shared memory, message-passing or any other mech-
anism. The properties of the communication mecha-
nisms and system guarantees (such as resilience), are
captured by a module called the round-by-round fault-
detector (RRFD). In round r, a process emits its “mes-
sage” for the round. Each process pi, from the set
of processes S, communicates with the RRFD and for
each process pj E S waits until it receives the mes-
sage emitted by pj at round T, or the RRFD instructs it
not to wait for such a message, by indicating that pj is
faulty. When for each process pj, process pi has either
received pj’s message, or it got an indication that pj is
faulty, it can then proceeds to the next round.

As with failure detectors considered elsewhere in the
literature [5,6,7,8], RRFD’s are unreliuble-they may
indicate pj at round r as faulty to some processes and
deliver pj ‘s message to others, as well as indicate pj to
be faulty in one round, only to deliver a message from
it in the next round.

Thus, an RRFD system evolves in rounds. In each
round each process emits data to all other processors.
Each process pi receives from the system a set of sus-
pected processes D(i,r), and the data emitted by a
subset S(i, r) of the processes. The system guaran-
tees that S(i,r) U D(i,r) = S. Process pi proceeds
to the next round and computes new messages to emit,
based on the data it received and the set D(i, r). RRFD
systems differ in the predicates over the sets D(;,r)
(i = l,... (72, r = 0, 1, . . .) that they guarantee. Al-
though it is always the case that D(i, t-) # S (if one
interprets D(i,r) as a set of “late” processes, not all
processes can be late), we do not preclude pi E D(i, T),
since pi may be late to round r and “learn” that from the
RRFD. Such a process, though, may “know” the mes-
sage it sent through its local state at the beginning of
the round.

Using this notation, an abstract algorithm using an
RRFD functions as follows (for pi):

144

r := 1
forever do

compute message m;,, for round T
emit mi,r
wait until Vpj E S

received mj,r or
Pj E m,4

r-:=1”+1
end

An RRFD system satisfying predicate P solves a
task T if there exist an emit-receive format algorithm
such that, for any D(i, r) family of sets (pi E S, T > 0)
that satisfies P, if processes start with inputs from T,
then eventually, after enough rounds, processes commit
to outputs that satisfy T’s input/output requirements.

This way of viewing a fault detector contrasts with
earlier research withfailure detectors [5,6, 7, 81. That
research considered a fixed (asynchronous) system in
which failures were “unannounced” and difficult to de-
tect. A failure detector is used to augment these systems
by “announcing” (perhaps unreliably) which processes
were faulty. That work viewed a failure detector as a
“helpful” entity. In contrast, this paper defines a system
based on the round-by-round fault detector to which it
corresponds. There is no notion of “augmenting” a sys-
tem by a failure detector, but rather it is an integral part
of the system. It is for this reason that the fault-detector
may be considered in-fact to be an adversary. The more
freedom the RRFD has to present different sets of faulty
processes, the more power it has and the harder it will
be to solve problems in the corresponding system.

The remainder of the paper is organized as fol-
lows. Section 2 presents many traditional systems in
the RRFD framework. Section 3 shows how RRFD’s
can be used to study traditional problems in distributed
computing. It proposes an RRFD system that is equiv-
alent to a system that has an access k-set agreement
object. Section 4 shows how RRFD’s can be used to
relate synchronous and asynchronous systems by prov-
ing a theorem that relates the solvability of problems in
an asynchronous system to the existence of a bounded
solution in a synchronous system (under certain failure
bounds). A corollary of this result shows how asyn-
chronous impossibility results [9, 10, 11, 121 can be
used to give direct proofs of synchronous lower bounds
[13, 141. Section 5 shows how the semi-synchronous
model of Dolev, Dwork, and Stockmeyer [15] can be
understood in terms of RRFD’s and uses this to solve
an open problem in that model. Related work is con-

sidered in Section 6, and concluding remarks appear in
Section 7.

2 Examples of RRFD systems

This section shows how a variety of traditional systems
may be thought of in terms of round-by-round fault de-
tectors.

Let PA be the predicate defining an RRFD system
A, and let PB define an RRFD system B over the same
number of processes. We say that A is a submodel of
B iff PA + PB. Obviously, if A is a submodel of B
then A can be used to implement B. (By “implement”,
we mean that an algorithm can be devised by which an
RRFD system with A can simulated such a system with
B. If A is a submodel of B, then a trivial algorithm
suffices.) The converse does not hold. An RRFD sys-
tem A may implement an RRFD system B and not be
a submodel of B.

This paper proposes to investigate systems by find-
ing their RRFD counterparts. The RRFD counterparts,
being part of the same family, bring forth the common-
alities and the differences between the systems. There
are many possibilities for choosing an RRFD conterpart
of a given system. There are some questions one may
ask about the conterpart of a non-RRFD system N:

1.

2.

3.

Find an RRFD system M such that M and N are
equivalent, in the sense that they implement each
other.

Given a system N are there weakest and strongest
RRFD systems Qw and Qs, respectively, equiva-
lent to N, such that any RRFD system Q equiv-
alent to N, Q is a submodel of Qw and Qs is a
submodel of Q.

Find an RRFD system M that corresponds to N
in the sense that is equivalent to N, but in addition
“resembles” N the most. We did not yet find a
definition of this notion that is satisfactory to us.

What follows is rather informal discussion of RRFD
systems that “correspond” to well known non-RRFD
models of interest.

1. System N is a synchronous message-passing sys-
tem with at most f < n processes that may fail by
send-omission.

The RRFD system A we propose is

(~PiNWPi 6 ~(G-))MJr>0 up&9 qe)I I f.
(1)

145

2.

3.

System N implements A by process pi designat-
ing D(i,r) as the set of processes from which it
failed to receive an r-round message by the end
of the rth round. System A implements N, by pi
simulating the reception of the clock-tick when it
is ready to move to the next round.

System N is a synchronous message-passing sys-
tem with at most f faulty processes that fail by
crashing.

The RRFD system A we propose satisfies predi-
cate 1 and, in addition

(2)
It is thus explicit in the model definition that the
crash-fault model is a sub-model of the send-
omission-fault model.

System N is an asynchronous message-passing
system with at most f crash-failures.

The RRFD system A we propose satisfies

(VT > O)WPi E WI~Wl 5 f). (3)

Note the differences between this and predicate 1.
The synchronous system ensures that the union of
all D(i, r) has size at most f. The asynchronous
system makes a guarantee only on a set-by-set ba-
sis (this can be improved to a round-by-round ba-
sis; see below).

System N implements A by simulating rounds,
discarding messages that have been missed, and
buffering messages which are too early. Each
round a process waits until it receives n - f mes-
sages of the round. To see that system A imple-
ments N, run A in full information mode. When
process pi receives a round r message at round T
from pj it can recreate all the simulated messages
it missed from pj since the last round it received a
message from pj. It can thus simulate their FIFO
reception at that moment. Thus this simulation
maps the runs (and views) of the RRFD system A,
to (a subset of) runs of system N. Consequently
A implements N.

To appreciate the difficulties one may encounter in
explicitly identifying a weakest RRFD for certain
systems, notice that contrary to intuition A is not
weakestforNifn > 2ff2. Iff < tand2t <n,
an RRFD system can allow t processes to miss t

other processes. Formally, consider an RRFD sys-
tem B that satisfies: (El& C 5’) (I&I 5 t A (Vpi E
S-Q)W(+)l I fN’~i E QW(O-)I 5 4.
Two rounds of B implement a round of A (and
thus N). Obviously, A is a strict sub-model of B.

4. System N is an asynchronous SWMR shared
memory system with at most f crash-faulty pro-
cesses.

In this system we have an array of registers
Cl,... , C,. Process pi repeatedly writes into Cj
and then reads all the other variables in some ar-
bitrary order until it reads at least n - f values it
did not read before. It is surprisingly difficult to
find a natural explicit predicate (rather than spec-
ifying the predicate by a state machine) that cap-
tures N. This indicates to us that our understand-
ing of this ubiquitous system is operational rather
than declarative. Among many choices we settled
for an RRFD system A that satisfies predicate 3
and, in addition

This predicate says that, in any round, there is
at least one process that is declared faulty to no
process. Being a sub-model of the RRFD sys-
tem in item 3, it has at least as much power.
But we avoid the “network-partition” problem that
message-passing with 2f 2 n encounters. For in-
stance, to emulate pi's write operation of a value
21 to its register, run A in a full-information mode
where pi indicates it is writing ‘u. At the round that
all messages received in A by pi reflect the fact
that of TJ being written in the simulated system N,
pi may terminate the simulated writing operation.
In the subsequent round any process will know of
u. To see that N implements A, notice that the first
process to write will be read by all.

To see the implementation of shared-memory by
message-passing [23] in the context of RRFDs,
notice that, if 2f < n, then two rounds of the
RRFD system in item 3 implement a round of A.
(In the second round each process emits the set of
correct processes it heard from in the first round.
The simulated set D(i, V) is the set of processes pi

has not heard of by the end of the second round.
The reason predicate 4 is satisfied is that since in
the first round all heard from a majority, there must
be at least one process that was heard by majority.

5.

6.

146

All processes will receive the value of such a pro-
cess by the end of the second round.)

As for being a weakest RRFD, notice that shared-
memory also satisfies (Vpi, pj)(pj E D(i, r) *
pi $! O(j, r)). But notice that this predicate does
not imply predicate 4 since we can have pl miss
p’~ that misses ~3, etc. until pn misses pl. Thus,

at the least we need to take the conjunction of the
two predicates.

To see that the RRFD with this predicate is an
alternative to predicate 4, notice that, if after rE
rounds no processor is known by all, then the
“does not know” relation must contain a cycle,
since we have a directed graph in which each pro-
cess has at least one outgoing edge, corresponding
to the “does not know” relation. Information is
passed on the cycle in the reverse direction in all
k rounds. Thus a cycle must be of length at least
k+ 1. Consequently, after n rounds there cannot be
a cycle. (We conjecture that two rounds suffice.)

System N is an asynchronous Atomic-Snapshot
shared-memory system with at most f processes
that may fail by crashing. This system is similar
to that in item 4 except that the array is written
and scanned using atomic-snapshot operations.

This system has a natural RRFD system A that
corresponds to N. Its predicate satisfies predi-
cate 3 and, in addition

Showing that this RRFD implements f-resilient
Atomic-Snapshot shared-memory is a simple
corollary of [4].

Notice that this predicate (with 3) implies
(b)(UpiE~)D(i,r) < f). This still differs from
synchronous systems in that the union is not over
all rounds. This changes if a traditional failure de-
tector is used, as the next item shows.

System N is an asynchronous message-passing
system with traditional failure detector S [6].

In this asynchronous system all but one (a-priori
unknown) process may fail. The system is aug-
mented with a failure detector that eventually an-
nounces any “real” crash, and never announces,
as faulty, one process that never fails. Other pro-
cesses may or may not be announced as faulty.

The RRFD system that will naturally correspond
to S is the one that satisfies:

(3 Pj) (Pj $ ur>o Up,&5 W?-))~

(Processes use the failure detector S to advance
from one round to the next. Thus, O(i,r) is the
value that allows pi to complete round r.) This
specification needn’t include the fact that every
faulty process must be announced by S eventu-
ally. This comes “for free” when using an RRFD
system. If a process really crashes and is not an-
nounced, the system will block, and thus vacu-
ously implement the asynchronous system with S.

We next notice that an equivalent predicate is:

which corresponds item 1 (with f = n - 1). Thus
we have reduced the existence of a wait-free algo-
rithm for S to the existence of algorithm for con-
sensus in item 1, just by predicate manipulation.

3 RRFD’s and k-Set Agreement

RRFD’s can be studied in relation to classical problems
in distributed computing. This section focuses on the
problem of k-set agreement [24]. This problem requires
each of a collection of n > k processes to choose a
value that is the initial value of one of the processes; at
most k different values can be chosen. Note that, for
k = 1, this is the traditional consensus problem.

The following fault-detector

is the one we propose to capture k-set agreement. The-
orem 3.1 shows that this RRFD system can implement
k-set agreement. Theorem 3.3 shows that any system
that can implement k-set agreement (and shared mem-
ory) can implement this RRFD.

Before proving this, consider the nature of this fault
detector. In each round, the number of processes de-
tected by some process but not by all is less than k.
Thus, this imposes a bound on the “uncertainty” exhib-
ited by the fault detector. For k = 1, this means that the
fault detectors at different processes cannot disagree.
The results of this section clearly quantify the intuition
that, the weaker the problem to be solved (i.e., the larger
k is), the weaker the system can be (as measured by its
RRFD).

Theorem 3.1 The problem of k-set agreement can be
solved with a detector supporting the following:

Proof Using this detector, k-set agreement can be
solved in one round. A process pi emits its value and
chooses the value of the process in S - D(i, 1) with
the lowest process identifier. If ~1,712 are two chosen
values corresponding to pi < p2 then it implies that pl
is in the union of the faulty sets (some process chose
pa) but not in the intersection (some process chose pl).
Since the size of the union minus the intersection is less
then k, it implies that at most k distinct values can be
chosen.

An immediate corollary of Theorem 3.1 is the fol-
lowing result of Chaudhuri [24]. It follows since
(k - 1)-resilient shared-memory implements (k -
1)-resilient Atomic-Snapshot, and the corresponding
RRFD predicate of item 5 implies the predicate of The-
orem 3.1.

Corollary 3.2 k-set agreement can be solved in an
asynchronous shared-memory system with at most k - 1
failures.

Section 5 shows how a partially synchronous system
defined by Dolev, Dwork, and Stockmeyer [15] can be
used to implement the failure detector of Theorem 3.1
with k = 1, thus giving a solution to consensus.

The following theorem shows that a system that can
solve k-set agreement can implement the RRFD above.

Theorem 3.3 Suppose that a system allows a solution
to the problem of k-set agreement and also that the sys-
tem can implement SWMR shared-memory. Then the
system supports a detector with the following property:

Proof To emit a value at round T a process appends
it value (together with sequence-number r) to its cell.
To compute the values D(i,r), the processes run a k-
set agreement algorithm, each using its identifier as in-
put. Suppose that a process pi receives j as its output
in round T. It then writes j to its cell and reads the rest
of the cells. It reads the set Q of process identifiers (as
well as I for the processes that have yet to write). The

147

process then uses S - Q as its value of D(i, r). Obvi-
ously, it can read emitted values for Q at round r, since
these process already participated in the round.

Notice that two sets D(i,r) and D(j,r) can differ
only on processors IDS that were chosen through the
k-set agreement algorithm (all other processes are in
both sets). Thus, the difference in the union minus the
intersection is bounded by k. But since all of them
will exclude the chosen identifier that was written first
to a SWMR variable, if follows that the difference is
bounded by k - 1.

0

4 Relating Synchronous and Asynchronous Sys-
tems

This section shows how RRFD’s can be used to relate
synchronous and asynchronous systems. Specifically, it
shows that an Atomic-Snapshot asynchronous system
with at most k crash-failures can implement the first
[f/kJ rounds of synchronous system with f omission
or crash faults. This can be used to prove the result of
Chaudhuri et al. [131 that there is no [f/k] -round algo-
rithm for k-set agreement for the latter (synchronous)
system. The existence of such an algorithm combined
with the results of this section would imply the exis-
tence of an asynchronous algorithm for k-set agreement
that tolerates k failures, which is known to be impossi-
ble [9, 11, 121. (For the special case of k = 1, this
means that the impossibility result of Fischer, Lynch,
and Paterson [lo] implies the lower bound of Fischer
and Lynch [141.)

The result is given in two sections. Section 4.1
proves the result for send-omission failures in the syn-
chronous systems. The proof is by simple reduction in
the context of RRFD systems. Section 4.2 strengthens
the results to systems with crash failures.

The simple reduction of the omission-fault lower
bound to the asynchronous impossibility result was not
observed earlier since researchers tend to think of syn-
chronous and asynchronous systems as living in differ-
ent domains. Once observed, it suggests that the reduc-
tion can be extended to crash faults via the omission-
crash transformers suggested in [161. Thus the value of
the RRFD framework is in its ability to suggest connec-
tions, previously overlooked. Once such a connection
is made, the technical details do not require high level
of ingenuity.

4.1 Send-Omission Failures

An RRFD systems a system A implements B if by
combining some rounds of A to simulate a round of B
we can simulate the messages emitted at the round and
implement a predicate that implies B’s RRFD predi-
cate.

Theorem 4.1 Consider integers f and k such that f 2
k > 0. Asynchronous RRFD Atomic-Snapshot shared-
memory system (item 5’) with at most k failures, can
implement the first [f /kJ rounds of an RRFD mes-
sage passing system with at most f omission failures
(item 1).

Proof Consider an RRFD asynchronous Atomic-
Snapshot shared-memory system with at most k fail-
ures. Consider an execution of this system for [f /kJ
rounds. We will map a fault in the RRFD asynchronous
system to a fault in the synchronous one.

Item 5 implies that this system supports a detector
with the following property:

(v’r > 0) (Iu,,dW-)I I k).

Thus, the RRFD has the following property:

This matches the property of the RRFD for a syn-
chronous system with at most f omission-failures over
[f/k] rounds. 0

Corollary 4.2 Any solution to k-set agreement in a
synchronous system with at most f omission failures
requires at least Lf /kj + 1 rounds in the worst case.

Since this section is more of an exposition, we leave
the proof of the Corollary to the next subsection where
the result is extended to the more benign crash faults.

4.2 Crash Faults

This subsection adds some simple machinery needed
to extend the results of the previous subsection from
omission failures to crash failures. The techniques are
similar to those developed by Neiger and Toueg [161 to
convert synchronous algorithms tolerant of crash fail-
ures into ones tolerant of omission failures. Since we
failed to find a ready-made off-the-shelf transformation
that we can borrow from [16], and in order to make

148

the paper self-contained, we will represent and utilize a
simplified adopt-commit protocol that is introduced in
P71.

The machinery we add is an adopt-commit protocol.
Process pi inputs to the protocol a value ‘ui it proposes.
The output of pi in the protocol is to commit or adopt
some input value Y. The relation between the output of
processes should satisfy:

1. If vj = v, for all j = 1,. . . , n, then all processes
commit to v.

2. If any process commits to v then all processes
commit or adopt v.

The following protocol solves the adopt-commit
problem in a wait-free manner (i.e. f = n - l-resilient
) in the SWMR shared memory system. The protocol
for pi follows. We have two arrays Cl,l, . . . , Cn,l and
Cl,27 * * * , Cn,2 of SWMR registers initialized to I:

begin
write vi to CQ
V := lJj,l,..., n read Cj,l
ifV - {I} = {v}

then 6’~ := “commit v”
else CQ := “adopt vi”

v := Uj=l,...,n read Cj,2
if V - {I} = {“commit v”}

then return commit v
else if “commit v” E V

then return adopt v
else return adopt vi

end

The correctness of the protocol follows from the fact
that if pi writes “commit u” in the second round, then
no other process will write “commit b”, b # a, since the
value pi proposes to commit to in round 2 has to be the
same as the value written first in round 1. In round 2,
if a processor commits to v it must be that “commit v”
was the value written first, and thus all processors will
either commit or adopt v.

Theorem 4.3 Theorem 4.1 holds when the RRFD for
omission faults is replaced by the RRFD for crash
faults.

Proof We show first how to implement a round of the
synchronous system B using three rounds of the asyn-
chronous one A.

To simulate round T of system B, inductively, pi has
computed a simulated value VQ to write for simulated
round r. It has also a set of processes Fi that it pro-
poses to have crashed, which is empty at the beginning
of round 1. Round r of system B will be simulated by
3 rounds of system A.

In the first round of A, pi writes v+ for round r. It
then reads in a snapshot until the number of values it
misses is less or equal to k. Let k$ be set of processes
whose values pi missed. Process pi sets F! := Fi U

Mi. In round 2 and 3 processors run n adopt-commit
protocols in parallel, one for each process pj E S. If pj
in Fi, the input of pi in the adopt-commit protocol for
pj is “pj-faulty”, else “pj-alive” (if it uses “pj-alive”,
then it includes the value it received from pj).

At the end of the adopt-commit protocol for pj, if pi
either commits or adopts “pj-faulty”, then it adds pj to
Fi. If pi commits to “pj-faulty,” it returns .L for the
value from pj in simulated round r. Otherwise, it must
have read, in the adopt-commit protocol, another pro-
cess that proposed “pj-alive”. This proposal includes
pj’s value for the round, and this value is used by pi as
pj ‘S value for round r.

The correctness of the simulation follows. A process
pj will appear to fail in a round r only if some process
commits it as faulty. Since all processes consequently
will adopt or commit “pj-faulty” at round T, pj will be-
long to all Fi ‘s at the beginning of round T + 1. They
will all propose to fail it at round r + 1 and thus all will
commit to its faultiness at round T + 1 and subsequent
rounds.

Since each simulated round introduces at most k
new processes to lJi Fi, by the end of simulated round
[f/k], at most f processes failed in the simulated syn-
chronous system.

cl

The corollary to this theorem is the result of Chaud-
huri et al. [13].

Corollary 4.4 Corollary 4.2 holds with crash-faults
RRFD replacing the send-omission RRFD.

Proof Use the simulation of Theorem 4.3 to simulate
an algorithm. A process pi that ends with a view after
simulating round [f /k j in which it is committed to pi
(itself) faulty, does not end up with a simulated view
that allows it to chose a value. But if pi did not pro-
pose itself faulty at the beginning of round [f/k], even
though it ended up committed to its failure, the process

149

is still compatible with an alive process, since no pro-
cess failed it in previous rounds. Thus we have only
at most k(1flk-j - 1) processes that have not chosen a
value. But since n > f, we have n-k([f/k] -1) > k.

Suppose k-set agreement is solvable in A in [f/k]
rounds, then after the simulation, processes whose
output is “I crashed” can adopt a value from a process
with a real output value, since the system is k resilient
and at least k + 1 processes have real outputs. The
result is k-set agreement in an asynchronous system
that is k-resilient, in contradiction to [9, 11, 121. 0

5 Semi-Synchronous Systems

Dolev, Dwork, and Stockmeyer [15] considered sys-
tems that varied five different parameters and explored
their ability to solve consensus. This section focuses on
one of their models, specifically one with the following
properties:

There are no bounds on the relative speeds of pro-
cesses (i.e., the processes are asynchronous).

Processes fail by crashing.

Processes perform a sequence of steps. Each step
consists of receiving all messages that have been
buffered by the communication subsystem since
the last step and then broadcasting a message. In
this particular model, such a step is atomic.

The communication system supports broadcast: if
process q receives message m from p, then all cor-
rect processes do so.

Every message sent is delivered before any pro-
cess can take A steps.

They showed that consensus is possible in this sys-
tem by giving an algorithm that runs in 2nA steps.
They left as an open problem whether or not there was
an O(A)-time algorithm.

This section proves that this system admits a solu-
tion that runs in 2A steps. It is done by showing that
this system supports the RRFD given in Theorem 3.1
with k = 1 (thus allowing a consensus algorithm) and
2A steps per round. This RRFD is identified by the
following property:

(v’r > O)@‘P~,P~ E S)(D(G-) = 0(&r)). (5)

Since the proof of Theorem 3.1 gives a one-round algo-
rithm, there is an algorithm that runs in 2A steps.

The following describes how the RRFD given in
equation 5 can be implemented in 2A steps. A pro-
cess’s execution occurs in blocks of 24 steps. If a
process receives a round-r message before sending its
own, then it sends no further messages (acting as if it
has omitted to broadcast), although it continues to re-
ceive message from the others. Otherwise, it broadcasts
its round-r message, tagging it with the round number.
Notice that, in a sense, we use the first receive-send in a
round as an atomic read-modify-write. If the “receive”
returns no round-r messages, then a round-r message is
broadcast, otherwise it is not. At the end of a round r,
process pi takes D(i, r) to be the set of processes from
which it does not receive round-r messages.

Theorem 5.1 The RRFD described for the semi-
synchronous system supports equation 5.

Proof For any process p,,, let T,, denote the time
that P,, executes its first receive/send for round T.
Let pi be the first process to execute a receive/send
at round r and let pj be any process that broadcasts
a round r message. We will show, that any process
pk will receive a message from pj in round r. By
definition, TJ 2 Ti, and Tk 2 Ti. Since pj did not
receive pi’s message of round T before pj started
round T, we conclude Tj 5 Ti + A(k), where A(k)
denotes the time of any consecutive A steps by pk.
Thus, Tj 2 Tk + A(k). Since receive/send is atomic
we conclude that pk by the end of round r at time
Tk + 2A(k) would have received the message send at
Tj. In particular, it will receive the message sent by
pJ. Thus the semi-synchronous RRFD system satisfies
equation 5. 0

6 Related Work

Unification of synchrony and asynchrony in limited do-
main has in the past been proposed by Awerbuch with
his celebrated synchronizer [18]. Awerbuch was able
to show that if no faults are expected synchrony and
asynchrony are the same. The two systems implement
each other. A decade later, in 1993, Chaudhuri, Her-
lihy, Lynch and Tuttle [131 showed that, with a combi-
nation of techniques most of which resemble the topo-
logical arguments that established impossibility of set-
consensus in the asynchronous domain, one can estab-
lish a lower bound in the synchronous case.

150

Recently, [4] introduced the idea of taking a
model and defining its iterated version, forcing
communication-closedness. This gave rise to the ideas
in this paper. The similarity between the iterated ver-
sion of the asynchronous model and the synchronous
one suggested the possibility of deriving a lower bound
in the synchronous case by reduction from impossibil-
ity result in the asynchronous case.

Herlihy, Rajsbaum, and Tuttle, in a paper in this
proceedings [191, were influenced in another direction.
They considered, in the words of [4], the model of it-
erated message passing. They characterized the struc-
ture of one-shot message-passing as a pseudo-sphere, a
simple structure whose iteration is the structure itself.
Using explicit topological arguments they were able to
derive the synchronous lower bound, and extend it be-
yond our work to the semi-synchronous model in [20].
However, their results apply solely to message passing-
systems.

7 Conclusions and Future Work

This paper presented a framework, RRFD, that uni-
fies the most seemingly unrelated notions in distributed
computing-synchrony and asynchrony. It has estab-
lished the case for the framework by showing that it
is a bridge that draws attention to the similarities be-
tween the models, and how results in one model may
be transferred to the other. Moreover, these models
are not only of theoretical interest. We advocate us-
ing them. We propose them as a setting to develop real
algorithms. As with programming languages, restric-
tions imposed on the programmer in the form of adher-
ing to communication- closed-layers may be a blessing.
It forces the programmer to a line of design that will re-
sult, we hope, in simple structured algorithms [21].

Future immediate work, which we hope to add to
the full version of the paper, is the extension of the re-
duction to the semi-synchronous model in [20]. Essen-
tially, our contention is that, by favoring reduction to di-
rect topological arguments, there are very few instances
of problems that one needs explicit topology. The use
of explicit topology is analogous to proving a problem
NP-complete by a direct reduction to Turing-Machine
computation as done with Satisfiability, rather then by
reduction to a similar problem. In fact, there may ex-
ist a small family of impossibility results, so that any
impossibility or lower bound result in the distributed
domain may be derived from them by reduction.

Finally, it will be interesting to show that in a pre-

cise sense RRFD generalizes the earlier notion of fault-
detector [5,6,7,8], and re-derive the associated results.
Such an investigation will be an instance of the general
investigation as to what kind of systems can be imple-
mented given a restricted language in which an RRFD
predicate may be stated.

Acknowledgments

Gil Neiger has been my RRFD through many rounds of
conceiving and writing the paper. I would also like to
thank DEC-SRC for providing me an office away from
my office.

References

HI

PI

[31

[41

[51

WI

[71

T. E. Elrad and N. Francez. Decomposition of
distributed programs into communication-closed
layers. Science of Computer Programming, Vol.
2(3). 1982.

Gabriel Bracha. Asynchronous Byzantine agree-
ment protocols. Information and Computation,
75(2): 130-143, November 1987.

Brian Coan. A compiler that increases the fault-
tolerance of asynchronous protocols. IEEE Trans-
actions on Computers, Vol. 37, No.12, pages
1541-1553. IEEE press, Dec. 1988.

Elizabeth Borowsky and Eli Gafni. A Simple
Algorithmically Reason Characterization of Wait-
Free Computations. Proceedings of the 16th ACM
Symposium on Principles of Distributed Comput-
ing, pages 189-198. ACM press, Aug. 1997.

Tushar Deepak Chandra, Vassos Hadzilacos, and
Sam Toueg. The weakest failure detector for solv-
ing consensus. Journal of the ACM, 43(4):685-
722, July 1996.

Tushar Deepak Chandra and Sam Toueg. Unre-
liable failure detectors for asynchronous systems.
Journal of the ACM, 43(2):225-267, March 1996.

Wai-Kau Lo and Vassos Hadzilacos. Using fail-
ure detectors to solve consensus in asynchronous
shared-memory systems. In Gerard Tel and Paul
Vitanyi, editors, Proceedings of the Eighth In-
ternational Workshop on Distributed Algorithms,
number 857 in Lecture Notes on Computer Sci-
ence, pages 280-295. Springer-Verlag, September
1994.

1.51

@I

[91

r101

[Ill

[121

[I31

[I41

[I51

[161

[I71

Gil Neiger. Failure detectors and the wait-free hi-
erarchy. In Proceedings of the Fourteenth ACM
Symposium on Principles of Distributed Comput-
ing, pages 100-109. ACM Press, August 1995.

Elizabeth Borowsky and Eli Gafni. General-
ized FLP impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the
Twenty-Fifth ACM Symposium on Theory of Com-
puting, pages 9 l-100. ACM Press, May 1993.

Michael J. Fischer, Nancy A. Lynch, and
Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the
ACM, 32(2):374-382, April 1985.

Maurice Herlihy and Nir Shavit. The asyn-
chronous computability theorem for t-resilient
tasks. In Proceedings of the Twenty-Fifth ACM
Symposium on Theory of Computing, pages 11 I-
120. ACM Press, May 1993.

Michael Saks and Fotios Zaharoglou. Wait-free
k-set agreement is impossible: The topology of
public knowledge. In Proceedings of the Twenty-
Fifth ACM Symposium on Theory of Computing,
pages 101-l 10. ACM Press, May 1993.

Soma Chaudhuri, Maurice Herlihy, Nancy Lynch,
and Mark R. Tuttle. A tight lower bound for k-set
agreement. In Proceedings of the Thirty-Fourth
Symposium on Foundations of Computer Science,
pages 206-215. IEEE Computer Society Press,
November 1993.

Michael J. Fischer and Nancy A. Lynch. A lower
bound for the time to assure interactive consis-
tency. Information Processing Letters, 14: 183-
186, 1982.

Danny Dolev, Cynthia Dwork, and Larry Stock-
meyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM,
34(1):77-97, January 1987.

Gil Neiger and Sam Toueg. Automatically In-
creasing the Fault-Tolerance of Distributed Algo-
rithms. Journal of Algorithms, Vol. 11, No. 3,
pages 374-419, Sep. 1990.

Jiong Yang, Gil Neiger, and Eli Gafni. Struc-
tured Derivations of Consensus Algorithms for

WI

[I91

PO1

WI

WI

~31

1241

Failure Detectors. In Proceedings of the Sev-
enteenth ACM Symposium on Principles of Dis-
tributed Computing (this volume). ACM Press,
1998. To appear.

Baruch Awerbuch. Complexity of Network Syn-
chronization. Journal of the ACM, Vol. 32, No.4,
pages 804-82, Oct. 1985.

Maurice Herlihy, Sergio Rajsbaum, and Mark R.
Tuttle. Unifying synchronous and asynchronous
message-passing models. In Proceedings of
the Seventeenth ACM Symposium on Principles
of Distributed Computing (this volume). ACM
Press, 1998. To appear.

Hagit Attiya, Cynthia Dwork, Nancy Lynch, and
Larry Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty.
Journal of the ACM 41(1): 122- 152, Jan 1994.

Ching-Tsun Chou and Eli Gafni. Understand-
ing and verifying distributed algorithms using
Stratified decomposition. In Proceedings of the
Seventh ACM Symposium on Principles of Dis-
tributed Computing, pages 44-65. ACM Press,
August 1988.

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli
Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM,
40(4):873-890, September 1993.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev.
Sharing memory robustly in message-passing sys-
tems. Journal of the ACM, 42(l): 124-142, Jan-
uary 1995.

Soma Chaudhuri. Agreement is harder than con-
sensus: Set consensus problems in totally asyn-
chronous systems. Information and Computation,
103(l): 132-158, July 1993.

152

