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Abstract 

View-oriented group communication services are widely used 
for fault-tolerant distributed computing. For applications in- 
volving coherent data, it is importaut to know when a process 
has a primary view of the current group membership, usu- 
ally defined as a view containing a majority out of a static 
universe of processes. For high availability in a system where 
processes can join and leave routinely, some researchers have 
suggested def?.ning primary views dynamically, depending on 
having enough members in common with recent views. 

We present a new formal automaton specification, DVS, 
for the safety guarantees made by a practical group commu- 
nication service providing a dynamic notion of primary view. 
We demonstrate the value of DVS by showing both how it 
can be implemented and how it can be used in an applica- 
tion. First, we present a distributed algorithm based on a 
group membership algorithm of Lotem, Keidar and Dolev; 
our version integrates communication with the membership 
service, uses iuformation from the application processes say- 
ing when a view has been prepared for computation by the 
application, and uses a static view-oriented service internally. 
We prove that this algorithm implements DVS. Second, we 
present an application algorithm that is a variant of an al- 
gorithm of Amir, Dolev, Keidar, Melliar-Smith and Moser, 
modified to use DVS instead of a static service. We prove 
that it implements a (non-group-oriented) totally-ordered- 
broadcast service. 

1 Introduction 

View-oriented group communication services have become 
important as building blocks for fault-tolerant distributed 
systems. Such a service enables application processes located 
at different nodes of a fault-prone distributed network to op- 
erate collectively as a group, using the service to multicast 
messages to all members of the group. Each such service is 
based on a group membership service, which provides each 
group member with a vievr of the group; a view includes a 
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list of the processes that are members of the group. Messages 
sent by a process in one view are delivered only to processes 
in the membership of that view, and only wheu they have the 
same view. Within each view, the service offers guarantees 
about the order and reliability of message delivery. Examples 
of view-oriented group communication services are found in 
Isis [4], Transis [8], Totem [22], Newtop [ll], Relacs [2], and 
Horus [24]. 

For maximum usefulness, system building blocks should 
have simple and precise specifications of their guaranteed 
behavior. Producing good specifications for view-oriented 
group communication services is difficult, because these ser- 
vices can be complicated, and because different such services 
provide different guarantees. Examples of specifications for 
group membership services and view-oriented group commu- 
nication services appear in [3, 5, 6, 9, 14, 15, 21, 25, 261. 
In [12], we presented a specification, VS, for a view-oriented 
group communication service. This specification consists of 
a state machine expressing safety requirements, plus a timed 
trace property expressing conditional performance and fault- 
tolerance requirements. We used this specification as the ba- 
sis for proving the correctness of a complex totally-ordered- 
broadcast algorithm based on [17, 11. 

The vs service produces arbitrary views, with arbitrary 
membership sets. However, in many applications of VS, es- 
pecially those with strong data coherence requirements, the 
application processes perform significant computations only 
when they have a special type of view called a primary view. 

For example, a replicated database application might ouly 
perform a read or write operation within a primary view, 
in order to ensure that each read receives the result of the 
last preceding write, in some consistent order of the oper- 
ations. In this setting, a primary view is typically defined 
to be one whose membership comprises a majority of the 
universe of processes, or more generally, a quorum in a pre- 
defined quorum set in which all pairs of quorums intersect. 
The intersection property permits information flow from ally 
previous primary to a newly formed one. 

Pre-defined quorum sets can yield efficient implementa- 
tious in settings where the system configuration is relatively 
static. However, they work less well in settings where the 
configuration evolves over time, with processes joining and 
leaving the system. For such a setting, a dynamic notion 
of primary is needed, one that can change to conform with 
the system configuration. A dynamic notion of primary still 
needs to maintain some kind of intersection property, in or- 
der to permit enough information flow between successive 
primary views to achieve coherence. For example, each pri- 
mary view might have to contain at least a majority of the 
processes in the previous primary view. Several dynamic vot- 
ing schemes have been developed to defile primaries adap- 
tively [7, 10, 16, 18, 231. 

In particular, Lotem, Keidar, and Dolev [18] have de- 
scribed an implementation of a group membership service 
that yields only primary views, according to a dynamic no- 
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tion of primary. An interesting feature of their work is that 
it points out various subtleties of implementing such a mem- 
bership service in a distributed manner - subtleties involving 
different opinions by different processes about what is the 
previous primary view. These difficulties have led to errors 
in some of the past work on dynamic voting. The algorithm 
of [18] copes with these subtleties by maintaining informa- 
tion about a collection of primary views that “might be” the 
previous primary view. The service deals with group rnem- 
bership only, and not with communication. Lotem et al. 
prove that their protocol satisfies the following condition on 
system executions: any two (primary) views that occur in 
an execution are linked by a chain of views where for every 
consecutive pair of views in the chain, there is some process 
that “knows” it belongs to both views. 

In this paper, we present a new formal automaton spec- 
ification, INS, for the safety guarantees made by a practical 
dynamic view-oriented group communication service. This 
service is inspired by the implementation of Lotem et al., 
but integrates communication with the group membership 
service. 

We demonstrate the value of our DVS specification by 
showing both how it can be implemented and how it can 
be used in an application. First, we consider an implemen- 
tation that is a variant of the group membership algorithm 
of Lotem et al.; our variant integrates communication with 
the membership service, uses “registration” information from 
the application processes saying when a view has been pre- 
pared for computation by the application, and uses a static 
view-oriented service (a version of VS) internally. We prove 
that this algorithm implements DVS, in the sense of trace in- 
clusion. The proof uses a (single-valued) simulation relation 
and invariant assertions. The key to the proof is an invariant 
expressing a strong condition about nonempty intersections 
of views; the proof of this depends on relating a local check 
of majority intersection with known views to a global check 
of nonempty intersection with existing views. 

Second, we consider an application algorithm that is a 
variant of an algorithm in [17, 1, 121, modified to use DVS 
instead of a static view-oriented service. The modified al- 
gorithm uses the registration capability to tell the DVS ser- 
vice that information has been successfully exchanged at the 
beginning of a new view. We show that it implements a 
(non-group-oriented) totally-ordered-broadcast service. This 
proof also uses a simulation relation and invariant assertions. 

We have designed our DVS specification to express the 
guarantees that are useful in verifying correctness of appli- 
cations that use the service. Among previous work, two dif- 
ferent sorts of specifications for a primary group service are 
notable. Work by Ricciardi and others [26] is expressed in 
temporal logic on consistent cuts; the idea of their specifi- 
cation is that on any cut, there are no disjoint sets of pro- 
cesses such that each set is collectively aware of no men- 
bers outside that set. Lotem et al. [18] use a property of an 
execution, which was previously defined by Cristian [6] for 
majority groups and that links any two (primary) views by a 
chain of views where every consecutive pair of views includes 
a process that “knows” it belongs to both views. As far as 
we know, these previous specifications have not been used to 
verify any applications running above them. 

An important feature of our specification is our careful 
handling of the interface between the service and the applica- 
tion. When a new view starts, applications generally require 
some initial pre-processing to prepare for ordinary computa- 
tion. For example, applications involving coherent data need 
to collect knowledge of changes from previous views, before 

allowing further activity. Our specification does not assume 
that information flows from one view to another merely be- 
cause some process joins both. Instead, we treat the ex- 
change of information as application-specific: We ask each 
application process to indicate, with a REGISTER event, when 
it has received all the needed information from other mem- 
bers of the new view V. When all members have registered 
v, the application has gathered all information it needs from 
previous views, and the service no longer needs to ensure 
intersection in membership between views before u and any 
subsequent ones that are formed. In contrast, in a specifi- 
cation based on a chain of views with common membership 
of successive pairs, one must have the application-level state 
exchange piggybacked on messages within the group man- 
agement layer. 

Our specification also omits some features of existing dy- 
namic primary view management algorithms. For example, 
Isis [4] guarantees that processes that move together from 
one view to the next receive exactly the same messages in 
the first view. These properties are not needed to verify ap- 
plications such as the one giving a totally-ordered broadcast. 
Of course there may be other applications that do require 
these stronger properties. 

2 Mathematical foundations 

We write X for the empty sequence. If a is a sequence then ]a] 
denotes the length of a. If a is a sequence and 1 $ i 5 j 5 ]a] 
then a(i) denotes the ith element of a and u(z..j) denotes 
the subsequence u(i), u(i + l), . . . . u(j) of a. The head of a 
nonernpty sequence a is u(l). A sequence can be used as a 
queue: the append operation modifies the sequence by con- 
catenating it with a new element and the remove operation 
modifies the sequence by deleting its head. 

If a and b are sequences, a finite, then u+b denotes the 
concatenation of a and b. We sometimes abuse this notation 
by letting a or b be a single element. We say that sequence a 
is a prefi of sequence b, written a 5 b, provided that there 
exists c such that u+c = b. A collection A of sequences is 
consistent provided that a 5 b or b 5 a for all a, b E A. If 
A is a consistent collection of sequences, we define lub(A) to 
be the minimum sequence b such that a 2 b for all a E A. 

If S is a set, then sqof(S) denotes the set of all finite 
sequences of elements of S. If a E seqof(S) and f is a partial 
function from S to T whose domain includes the set of all 
elements of S appearing in a, then applytoall(f,u) denotes 
the sequence b such that length(b) = length(u) and, for i 5 
length(b), b(i) = f(u(i)). 

If S is a set, the notation SI refers to the set SU {I}. If 
R is a binary relation, then we define dam(R), the domain 
of R, to be the set (without repetitions), of first elements 
of the ordered pairs comprising relation R. If f is a partial 
function from S to T, and (s, t) E S x T, then f 63 (s, t) is 
defined to be the partial function that is identical to f except 
that f(s) = t. 

P denotes the universe of all processors,’ and M the uni- 
verse of all possible messages. E is a totally ordered set 
of identifiers used to distinguish views, with a distinguished 
least element go. A vieur u = (g, P) consists of a view identi- 
fier 9 E 0 and a nonempty membership set P & P; we write 
v.id and v.set to denote the view identifier and membership 
set components of V, respectively. lJ denotes the set of all 
views, and ~0 = (go, PO) is a distinguished initial vieur. 

We describe our services and algorithms using the I/O 
automaton model of Lynch and Tuttle [20] (without fairness). 

*We use “processor” and “process” interchangeably. 
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Signature: 
Input: VS-GPSND(17L)p, mtM,pEP output: VS-GPRCV(771)p,*, nz E M, p, q E P 
Internal: VS-CREATEVIEW( " E v VS-SAFE(17L)P,q, m E M, p, q t P, 

VS-ORDER(nL,Y,g), m E M, P E p, 9 E B VS-NEWVIEW(V)p, " E v.1, E ,u.Set 

state: 

created E Zy, init { uo} for each p E P, g E 8: 
for each p E P: pending[p, g] E seqof(M), init X 

current-viewid(p] E GA, init go if p E PO, I else nezt[p, g] E N”, init 1 
for each g E 8: nezt-safeb, g] E N”, init 1 

queue[g] E seqof(M x P), init X 

Transitions: 
internal VS-CREATEVIEW 

Pre: VW E created : u.id > w.id 
Eff: created := created U{,v) 

output VS-NEWVIEW(V)p 
Pre: v E created 

u.id > current-viewid[p] 
Eff: current-viemid[p] := u.id 

input VS-GPSND(vl)p 
Eff: if current-viewid[p] # I then 

append m to pending[p, current-viewi~p]] 

intC?rnal VS-ORDER(m, p, g) 
Pre: m is head of pending[p, g] 
Eff: remove head of pending[p, g] 

append (nz,p) to queue[g] 

output VS-GPRCV(lll)p,q, ci~oose g 
Pre: g = current-viewid[q] 

w4gl(=4?, 91) = (7% P) 
Eff: nezt[q,g] := nezt[q,g] +l 

output VS-SAFE(l?l)p,q, ChOOSe 9,P 
Pre: g = current-viewid[q] 

(9, I’) E created 
queue[g](nezt-safe[q, g]) = (nz, p) 
for all r E P: 

nezt[r, g] > next-safe[q, g] 
Eff: next-safe[q, g] := nezt-safe[q, g] +l 

Figure 1: vs (modified version) 

The model and its proof methods are described in Chapter 8 
of [19]. We use the term refinement to denote a single-valued 
simulation relation. 

3 The vs specification 

In this paper we use a modified version of the group commu- 
nication service, VS, defined in [12], and we refer the reader 
to the informal service description in that paper. The orig- 
inal vs service assumes that every processor in the universe 
P is a member of the initial view. In our setting the initial 
view is defined to be the distinguished initial view ~0, and 
we modify the specification of vs to reflect this fact. The 
modified specification is given in Figure 1. The fact that vs 
allows views to be created only in order of view identifier 
is unimportant: weakening this requirement to allow out-of- 
order view creation would not change the external behavior, 
because VS-NEWVIEW actions are constrained to occur in order 
anyway. 

Invariant 3.1 (VS) 

If v, v’ E created and v.ad = v’.ad, then v = v’. 

4 The DVS specification 

Cur DVS specification differs from the VS specification in the 
following ways: (1) DVS-REGISTER actions allow a client of the 
service to notify the service that it is ready to begin operating 
in a new view. This information is recorded in new variables, 
registered[g], g E E. (2) New variables, attempted[g], g E G, 
are introduced to remember which views have been reported 
to each process. (These are used in the proofs.) Also, new 
derived variables are introduced to remember which views 
have been attempted or registered at some member or all 
members. (3) The action DVS-CREATEVIEW only creates primary 
components, whereas the VS-CREATEVIEW is unconstrained (ex- 
cept for increasing ids). The specification is given in Figure 2. 
In this specification, M, C_ M denotes the set of messages 
that clients may use for communication. 

The most interesting part of the DVS specification is the 
b3IlSitiOIl definition for DVS-CREATEVIEW( u). The precondition 
specifies the properties that a view must satisfy in order to be 
considered primary. For example, the precondition says that 
v.set must intersect the membership set of all previously- 
created smaller-id views w for which there is no intervening 
totally registered view - that is, the set of all “possible pre- 
vious primary views”. Since (for convenience) we allow out 
of order view creation in DVS, we also include a symmetric 
condition for previously-created larger-id views. 

DVS informs its clients of view changes using DVS-NEWVIEW 

actions. Even though views can be created out of view id 
order, the notification to each client is consistent with that 
order. Not every client needs to see every view. DVS allows 
the client at each processor p to “register” the current view 
at p with an action DVS-REGISTEK~. With this action, the client 
at p informs the service that it has obtained whatever infor- 
mation the application needs to begin operating in the new 
view. For many applications, this will mean that p has re- 
ceived messages from every other member, reporting its state 
at the start of the new view. 

DVS allows a processor p to broadcast a message m using a 
DVS-GPSND(IIP)~ action, and delivers the message to a processor 
q UShg a DVS-GPRCV(ln)p.q aCtiOl1. DVS alSO uses a DVS-SAFE(~)Z)~,~ 

action to report to processor q that the earlier message m 
from p has been delivered to all members of the current view 
of q. DVS guarantees that messages sent by a processor p 
when the current view of p is 21 are delivered only within 
view u (i.e., only to processors in v.set whose current view is 
v). Moreover, each processor receives messages in the same 
order as any other processor and without gaps in the sequence 
of received messages; however, some processors may receive 
only a prefix of the sequence of messages received by other 
processors. 

Invariant 4.1 expresses the key intersection property guar- 
anteed by DVS; this is weaker than the intersection property 
required by static definitions of primary views, which says 
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Signature: 
Input: DVS-GPSND(77L)p, m E M,, p E P 

DVS-REGISTERp, p E P 
Internal: DVS-CREATEVIEW( V E v 

DVS-ORDER(m,p,g), 111 E M,, p E P, g E Li 

output: DVS-GPRCV(771)p,,,, 11% E M,, p,g E 7' 
DVS-SAFE(171)p,q, mEMc,p,gEP 
DVS-NEWVIEW(U)p,'" E v, p E ~V.Set 

state: 
for each p E P, g E G: 

created E 2”, init {IQ} 
for each y E P: 

current-viewuid[p] E GI, init go if p E PO, I else 
for each g E G: 

pending[p, g] E segof(M,), init X 
nezt[p,g] E N”, init 1 
nezt-safe[y, g] E N”, init 1 

Derived variables: 
gueue[gj E segof(M, x P), init X 
&empkd[g] E 2’P, init PO if g = go, {} else 
registered[g] E 2F, init PO if g = go, {} else 

dtt E 2", defined as {u E created 1 attempted[u.id] # {}} 
%tdtt E 2v, defined as {v E created 1 v.set C attevnpted[u.id]} 
‘Reg E 2v, defined as {,u E created 1 registered[u.id] # {}} 
m%g E 2V. defined as {,v E created ) v.set E registered[,u.id]} 

lhnsitions: 
internal DVS-CREATEVIEW 

Pm: VW E created : u.id # w.id 
VW E created : 

3a E %t72q : w.id < z.id < u.id 
or 3x E ‘iZt7Zeg : ,u.id < z.id < w.id 
or ,u.set n w.set # {} 

Eff: created := created u {,u} 

internal DVS-ORDER(na,p,g) 
Pre: m is head of pending[p, g] 
Eff: remove head of pending(p, g] 

append (m,p) to gueue[g] 

output DVS-NEWVIEW(.")p 
Pm v E created 

output DVS-GPRCV(17Z)p,q, ChOOSe g 
Pre: g = current-viewid[g] 

weue[gl(ne~th, 571) = (Y P) 
Eff: nezt[g,g] := nezt[q,g] +l 

u.id > current-viewid[p] 
Eff: current-viewid(p] := u.id 

output DVZ~-SAFE(~~L)~,~, ChOOSe g,P 

attempted[g] := attmpted[g] U {p} 
Pm: g = current-viewid[g] 

(g, P) E created 

inpUt DVS-REGISTERp 
Eff: if current-viewid[p] # I then 

registered[current-viewid~]] := 
registered[cunent-vie~~d[p]] U {p} 

gueue[g](nezt-safe(q, g]) = (m, p) 
for all r E P: 

md[r, g] > ne&safe[q, g] 
Eff: nezt-safe[g, g] := nezt-safe[g, g] +l 

input IIVS-GPSND(??~)~ 
Eff: if current-viewid[p] # I then 

append m to pending[y, current-viewid[p]] 

Figure 2: DVS 

that all primary components must intersect. This invariant 
is our version of the correctness requiremeut for dynamic 
view services that two consecutive primary views intersect. 

Invariant 4.1 (DVS) 
If v,w E created, v.id < w.id, and there is no x E TotReg 
such that v.id < x.id < w.id, then v.set fl w.set # {}. 

Invariant 4.2 says that if a view w is totally attempted, 
then 110 earlier view v can still be “active”. 

Invariant 4.2 (DVS) 
If v E created, w E Tot&, and v.id < w.id, theta there exists 
p E v.set with current-viewid[p] > v.id. 

5 An implementation of DVS 

We uow give au algorithm that implemeuts the DVS service, in 
the sense of inclusion of sets of traces. We build the algorithm 
on top of the vs service and we use ideas from [lS]. The 
overall system consists of au automaton VS-TO-DVS, for each 
p E P, and vs. 

5.1 The implementation 

The automaton VS-TO-DVS~ is given in Figure 3. VS-TO-DV+ 
uses special non-client messages, tagged either with “info” or 
‘registered”. Thus, we use M = M, U ({ “info”} x V x 2’) U 
{ “‘registered”}, where M, is the set of all client messages and 
M is the universe of all messages. The attempted, reg, and 
info-sent state variables are not needed for the algorithm, 
but only for the proofs. 

VS-TO-DVSp acts as a “filter”, receiving VS-NEWVIEW illpUtS 
from the underlying vs service and decidiug whether to ac- 
cept the proposed views as primary views. If VS-TO-DVS~ 
decides to accept some such view v, it “attempts” the view 
by performing a DVS-NEWVIEW output. For each v, we think 
of the DVS internal DVS-CREATEVIEW action as occurring at 
the time of the first DVS-NEWVIEW( v) event. 

According to the DVS specification, the algorithm is sup- 
posed to guarantee nonempty intersection of each newly- 
created primary view v with auy previously-created view w 
having uo intervening totally registered view - a global condi- 
tiou involving nonempty intersection. The VS-TO-DVS, pro- 
cessors, however, do uot have accurate knowledge of which 
primary views have been created by other processors, nor 
of which views are totally registered. Therefore, the pro- 
cessors employ a local check of majority intersection with 
kuown views, rather than a global check of nonempty inter- 
section with existing views. Specifically, each VS-TO-DVS~ 
keeps track of an “active” view act, which is the latest view 
that it knows to be totally registered, plus a set of “am- 
biguous” views amb, which are all the views that it knows 
have been attempted (i.e., have had a DVS-NEWVIEW action per- 
formed someplace), and whose ids are greater than act.id. 
We define use = {act} U amb. When VS-TO-DVS~ receives a 
VS-NEWVIEW inpUt, it Sell& out “info” lnessa@?s conttiiiilig 
its current act and amb values to all the other processors 
in the new view, using the vs service, and then waits to re- 
ceive corresponding “info” messages for view v from all the 
other processors in the view. After receiving this information 
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Input: DVS-GPSND(17%)p, 111 E M, Internal: 

DVS-REGISTEQ output: 
VS-NEWVIEW(V)p, U E v, &J E U.Sd 
VS-GPRCV(llI)q,p, 111 E M, P E 7’ 
VS-SAFE(77Z)g,p, meM,qEP 

state: 
COT E VL, init vo if p E PO, I else 
client-cur E VL, init uo if p E PC, I else 
act E V, init ‘uo 
a7nb E 2v, init {} 
attempted E 2V, init {uo} if p E PO, {} else 
for each g E G 

msgs-to-vs[g] E seqof(M), init X 
msgs-from-vs[g] E seqof(M, x P), init X 
safe-from-vs[g] E seqof(M, x P), init X 
wg[g] a bool, init true if p E Po and g = go, false else 
info-sent[g] E (V x 2v)~, init I 

Thansitions: 

input VS-NEWVIEW(U)P 
Effz CUT := v 

append ( “info”, act, anb) to 
mgs-to-vs[cur.id] 

info-sent[cur.id] := (act, amb) 

input VS-GPRCV((“info", v, V)),,, 
Eff: info-rcvd[q, cur.id] := (v, V) 

if u.id > a&id then act := v 
awzb := {w t amb U V ) w.id > act.id) 

input VS-SAFE((%+", 'U, V)),,, 
Eff: none 

OUtpUt DVS-NEWVIEW(.U)p 
Pre: v = cur 

v.id > client-cur.id 
vq E ,u.set, q # p : info-rcvd[q, u.id] # I 
VW E use : Iv.& n ~W.&l > Iw.setl/l 

Eff: wnb := mnbU {w} 
attwpted := attemptedu {u} 
Client-CUT := ‘V 

input DVS-REGISTERp 
Eff: if client-cur # I then 

reg(client-cur] := true 
append (“registered”) to msgs-to-vs[client-cur.id] 

input VS-GPRCV(( “registered”)),,p 
Eff: rcvd-rgst[cur.id, q] := true 

DVS-GARBAGE-COLLECT(v)pl V E v 
VS-GPSND(171)p, 11% E M 
DVS-NEWVIEW(U)p, u E v, p E u.set 
DVS-GPRCV(ll&)q,p, m E M,, q E 7' 
DVS-SAFE(17%)q,p, m E M,, q E 7’ 

for each g E G, q E P 
info-rcvd[q, g] E (V x 2y)~, init I 
rcvd-rgst[q, g] a bool, init false 

Derived variables 
use E 2V, defined as use = {act} U amb 

input VS.SAFE(( “registered”)),,, 
Eff: none 

internal DVS-GARBAGE-COLLECT(u)p 
Pre: t/q E u.set : rcvd-rgsq.0, q] = true 

u.id > act.id 
Eff: act := u 

anb := {w E otnb 1 w.id > act.id} 

input DVS-GPSND(m&, 
Eff: if client-cur.id, # I then 

append WP to tnsgs-to-vs[client-cur.id] 

output VS-GPSND(??l)p 
Pre: 111 is head of msgs-to-vs(cur.id] 
Eff: relnove head of msgs-to-vs[cur.id] 

input VS-GPRCV(T~%)~,~, where nz E M, 
Eff: append (tn, q) to msgs-from-vs[cur.idj 

output DVS-GPRCV(771),,, 
Pre: (nz, q) is head of nsgs-from-vs(claent-cur.id] 
Eff: remove head of msgs-from-vs[client-cur.id] 

input vs-s~FE(m)~,~, where m E M, 
Eff: append (m, q) to safe-from-vs[cur.id] 

output DVS-SAFE(1T5)P 
Pre: (m, q) is head of safe-frown-vs[client-c~~.~d] 
Eff: ren~ove head of safe-from-vs[ctient-cur.id] 

Figure 3: VS-TO-DVS, 

(and updating its own act and amb accordingly), VS-TO-DVS~ 
checks that v has a majority intersection with each view in 
use. If so, VS-TO-DVSp performs a DVS-NEWVIEW~ output. 

Then the clients cau use the communication system to ex- 
chauge state information as needed for processing in view u. 
When client at p has obtained enough information, it “regis- 
ters” the view by means of action DVS-REGISTER,, which causes 
processor p to send “‘registered” messages to the other mem- 
bers. When a processor receives “registered” messages for a 
view v from all members, it may perform garbage collection 
by discarding information about views with ids smaller than 
that of v. VS-TO-DVS uses vs to scud aud receive messages. 

We define the system DVS-IMPL to be the composition of 
all the VS-TO-DVS, automata and vs with all the external 
actions of vs hidden. We introduce four derived variables 
for DVS-IMPL analogous to those of DVS, indicating the at- 
tempted, totally attempted, registered, and totally registered 
views, respectively. They are: 
Att = {v E created 1 (Zip E v.set)v E attempted,}; 

%tAtt = {w E created 1 (Vp E v.set)v E attempted,}; 
‘Reg = {v E created 1 (3p E v.set)reg[v.i&l, = true}; aud 
75tReg = {v E created 1 (Vp E v.set)reg[v.id], = true}. 

5.2 Invariants 

This section coutains the main invariants of DVS-IMPL needed 
for the refinement proof in Section 5.3. 

Invariant 5.1 (DvS-IMPL) 
If v E attempted, and q E v.set then cur.id, 2: v.id. 

Invariant 5.2 (DVS-IMPL) 
1. act, E %tReg. 
2. If w E amb, then act.id, < w.id. 
3. If client-cur,, # I and w E {act,} U amb,, then w.id 5 
client-cur.id,. 
4. If info-sent[g], = (x,X) then x E ‘T&l&g. 
5. If info-sent[g], = (x,X) and w E X then x.id < w.id. 
6. If info-sent[g], = (x,X) and w E {x}UX then w.id < g. 
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Invariant 5.3 says that certain views appear in ‘info” mes- 
sages, unless they have been garbage-collected. 

Invariant 5.3 (DvS-IMPL) 

1. If info-sent[g], = (x,X) and w E attempted,, then either 
w E {x} U X OT w.id < x.id. 
2. If info-rcvd[q, glP = (x,X) and w E {x} U X, then either 
w E useP OT ,w.id < act.id,. 

Invariant 5.4 says that two attempted views having no inter- 
vening totally registered view, and having a common mem- 
ber, q, that has attempted the first view, must intersect in a 
majority of processors. This is because, under these circum- 
stances, information must flow from q to any process that 
attempts the second view. 

Invariant 5.4 (DvS-IMPL) 
Suppose that v E attempted,, q E v.set, w E attempted,, 
w.id < v.id, and there is no x E TotReg such that w.id < 
x.id < v.id. Then Iv.set f~ w.setl > Iw.setl/2. 

Proof: By induction on the length of an execution. 
Base: In the initial state, only ve is attempted, so the hy- 
potheses cannot be satisfied. Thus, the statement is vacu- 
ously true. 
Inductive step: Fix any step (s, R, s’), where s is reachable, 
and assume the invariaut is true in state s. We show that 
it is true in s’. So 6x v, w, p, and q, and assume that v E 
s’.attempted,, q E v.set, w E s’.attempted,, w.id < v.id, and 
there is no x E s’.%tReg such that w.id < x.id < v.id. Then 
also there is no x E s.%t% such that w.id < x.id < v.id. 
We consider four cases: 
1. v E s.attempted, and w E s.attempted,. Then the state- 

ment for s implies that jv.setnw.setl > Iw.setl/2, as needed. 
2. v $ s.attempted, and w 6 s.attempted,. This cannot 
happen because we cannot have both v and w becoming at- 
tempted in a single step. 
3. v 4 s.attempted, and w E s.attempted . Then x must 
be DVS-NEWVIEW(V)~. By the precondition of, we have that 
s.info-rcvd[q, v.id], = (x,X) for some x and X. It follows 
that s.info-sent[v.id], = (x,X). Then Invariant 5.3 implies 
that either w E {x} U X or w.id < x.id. If w.id < x.id, then 
we obtain a contradiction, because x E s.%tReg (by Invari- 
ant 5.2) and x.id < v.id (by Invariant 5.2). So w E {x} U X. 
Now by Invariant 5.3 we have that either w E s.usey or 
w.id < s.act.ir&. In the former case, by the precondition of 
7r, we have Jv.set fl w.setl > lw.setl/%. In the latter case, we 
obtain a contradiction, because s.act, E %t77eg (by Invariant 
5.2) and Invariant 5.2 implies that s.act.id, 5 s.client-cur, < 
s. cur, = v.id. 4. v E s.attempted, and w $ s.attempted,. 
Then x must be DVS-NEWVIEW(W)~. But this cannot happen: 
Since v E s.attempted, and q E v.set, Invariant 5.1 im- 
plies that s.cur.i$ 2 v.id. Since v.id > w.id, we have 
s.cur.idg > w.id. But the precondition of action r requires 
s.cur.id, = w.id, so 7r is not enabled in s. II 

Invariant 5.5 says that any attempted view v intersects the 
latest preceding totally registered view w in a majority of 
members of w. 

Invariant 5.5 (DvS-IMPL) 
Suppose that v E dtt, and w E TotReg, w.id < v.id, and 
there is no x E TotReg such that w.id < x.id < v.id. Then 
Iv.set fl w.setl > lw.setl/2. 
Proof: By induction on the length of an execution. 
Base: In the initial state, fix v and w satsifying the hypothe- 
ses. The first two assumptions imply that t.~ = w = VO. But 
then the third assumption w.id < v.id is false. Thus, the 
hypothesis of the statement is false, so the statement is vac- 
uously true. 

Inductive step: Fix any step (s, n, s’), where s is reachable, 
assume the invariant is true in state s, and show that it is 
true in s’. So fix v and w, and assume that v E s’.Att, w E 
s’.TotReg, w.id < v.id, and there is no x E s’.TotReg,w.id < 
x.id < v.id. We consider four cases: 
1. v E s.dtt and w E s.%tReg. Then the statement for s 
implies that Iv.set n w.setl > lw.setl/2, as needed. 
2. v $ s.dtt and w 4 s.%tReg. This cannot happen because 
we cannot have both v becoming attempted and w becoming 
totally registered in a single step. 
3. v 4 s.dtt and w E s.%tReg. Then R must be nvs- 
NEWVIEW(,U)~ for some p. The precondition of n implies that, 
for any view y E s.use,, Iv.set n y.setl > ly.setl/2. Hence to 
prove the claim it is enough to prove that w E s.useP. We 
proceed by contradiction assuming that w 4 s.usey. 
By Invariant 5.2, s.usey n s.%tReg # {}. Let m be the 
view in s.%t77eg n s.usey having the biggest identifier. We 
know that m # w because w $ s.use,,. It follows then that 
m.id # w.id. We claim that m.id < w.id. Suppose for the 
sake of contradiction that m.id > w.id. Since m E s.useP, In- 
variant 5.2 implies that m.id 5 s.client-cur, < S.CUT, = v.id. 
So w.id < m.id < v.id. Since m E s’.%tReg, this contradicts 
the hypothesis of the inductive step. Therefore, m.id < w.id. 
Let n be the view in s.%tKkg that has the smallest id strictly 
greater than that of m. Note that m.id < n.id 5 w.id < v.id. 
Since m E s.usey, the precondition of 7r implies that lv.set n 
m.setl > Im.setl/2. By the statement applied to state s, 
In.setnm.setl > Im.setl/2. Hence there exists a processor q E 
v.setn n.set. By the precondition of x, s.info-rcvd[q, v.id], = 
(x,X) for some x,X. Invariant 5.2 implies that x.id < v.id. 
Since n E s.%tReg, we have that n E s.attempted,. Then In- 
variant 5.3 (used with w = n) implies that either w E {x}UX 

or w.id < x.id. In either case, {x} U X contains a view 
y E s.%tReg (either w or x) such that n.id 5 y.id < v.id. 
Then Invariant 5.3 implies that either y E s.usey or y.id < 
s.act.id,. By Invariant 5.2, s.act, E s.%tF!eg and by defini- 
tion, s.act, E s.use,. So in either case, the hypothesis that 
m is the totally registered view with the largest id belonging 
to s.usep is contradicted. 
4. v E s.dtt axld w $ s.%t?&g. Then r must be DVS-REGISTERS 

for some p. Let m be the view in s.%tm with the largest 
id that is strictly less than w.id. By the statement for s, we 
know that Iw.set n m.setl > Im.setl/2 and Iv.set n m.setl > 
Im.setl/2. Hence there is a processor q E w.set n v.set. 
Since v E s.dtt, there exists a processor T such that v E 
s.attempted,; thus also v E s’.attempted,. Sillce w E s’.Totl@, 
we have that w E s’.attempted,. By assumption, there is no 
view x E s’.%tReg such that w.id < x.id < v.id. By In- 
variant 5.4 applied to state s’ (with p = r), we have that 
Iv.set n w.setl > lzu.setl/2, as needed. 0 

The final invariant, a corollary to Invariant 5.5, is instrumen- 
tal in the refinement proof. 

Invariant 5.6 (DvS-IMPL) 

If v, w E dtt, w.id < v.id, and there is no x E TotReg with 
w.id < x.id < v.id, then v.set n w.set # {}. 
Proof: Suppose that v and w are as given. We consider 
two cases. 
1. w E %tReg. Then since there is no x E %tRq with w.id < 
x.id < v.id, it follows that w is the view with the largest id 
in the set {y E %t77tg : y.id < v.id}. Then Invariant 5.5 
implies that Iv.set n w.setl > lw.set[/2, which implies that 
v.set n w.set # {}, as needed. 
2. w g’ %tF!eg. Then let Y = {y E ‘TotReg : y.id < w.id}. We 
claim that Y is nonempty: We know that vo E %tReg and 
that vs.id 5 w.id. If ve.id = w.id, then by Lemma 3.1, we 
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have w = VO. But then w E %tReg, a contradiction. So we 
must have ‘uo.id < w.id, which implies that vo E Y, so Y is 
nonempty. 
Now fix z to be the view in Y with the largest id. Since there 
is no x E %tReg with w.id < x.id < v.id, it follows that .z 
is also the view with the largest id in the set {y E %tReg : 
y.id < v.id}. Then Invariaut 5.5 implies that Iw.setflz.setl > 
Iz,setl/2 and Iv.set n z.setl > jz.setj/2. Together, these two 
facts imply that v.set n w.set # {}, as needed. Ill 

5.3 The refinement 

We prove that DVS-IMPL implements DVS by defining a func- 
tion F that maps states of DVS-IMPL to states of DVS and 
proving that this function is a refinement. 

DVS-IMPL uses vs to send client messages and messages 
generated by the implementation ( “info" and “Aegis tered” 
messages). The refinement discards the non-client messages. 
Thus, if q is a finite sequence of client and non-client mes- 
sages, we define purge(q) to be the queue obtained by deleting 
a11y “info” or “registered” messages from q, and purgesize 
to be the number of “info” and “registered” lnessages in q. 
Figure 4 defines the refinement FT. The fact that F is a re- 
finement is shown using two lemmas, 5.7 and 5.8, expressing 
the two conditions required by the definition of a refinement: 
Lemma 5.7 Ifs is an initial state of DVS-IMPL then J=(s) is 
an initial state of DVS. 

Lemma 5.8 Let s be a reachable state of DVS-IMPL, F(s) 
a reachable state of DVS, and (s,R,s') a step of DVS-IMPL. 

Then there is an execution fragment CY of DVS that goes from 
F(s) to .F(s’), such that trace(a) = trace(x). 

Proof: By case analysis based on the type of the action r. 
The only interesting case is where T = DVS-NEWVIEW( IJ),. Then 
trace((s,z,s)) = T. Def%ne t = F(s) and t’ = ;F(s’). We 
consider two cases: 
1. v E t.created. In this case, we set a! = (t,d, t’), where 
7r’ = DVS-NEWVIEW(u)p. The code shows that X’ brings DVS 

from state t to state t’. It remains to prove that 7r’ is 
enabled in state t, that is, that v E Lcreated and v.id > 
t.current-wiewidfp]. The first of these two conditions is true 
because of the defining condition for this case. The second 
condition follows from the precondition of n in DVS-IMPL: this 
precondition implies that v.id > s.client-cuur.id,, and by the 
definition of F we have t.current-viewid[p] = s.&ent-cur.id,. 
2. v g Lcreated. In this case we set CYI = (t, 7~‘~ t”, r”, t’), 
where K' = DVS-CREATEVIEW(U)~, 7~" = DVS-NEWVIEW(. and t” 
is the unique state that arises by running the effect of R’ from 
t. The code shows that LE brings DVS from state t to state 
t’. It remains to prove that X’ is enabled in t and that K” is 
enabled in t”. 

The precondition of n’ requires that (i) VW E t.created, v.id # 
w.id and (ii) VW E t.created, either 3x f s.7XReg satis- 
fying w.id < x.id < v.id or v.id < x.id < w.id, or else 
v.set 0 w.set # {}. To see requirement (if, suppose for the 
sake of contradiction that w E t.created and w.id = v.id. 
The precondition of x in DVS-IMPL implies that v = S.CUT~, 

which implies that v E s.crented. Since w E t.created, the 
dei?nition of T implies that w E s.attempted,, for some q. 
This implies that w E s.created. But then Invariaut 3.1 
implies that v = w. But this contradicts that fact that 
v $8 t.created and w E kcreated. To see requirement (ii), 
suppose that w E t.crented and there is no x E s.‘iG%eg sat- 
isfying w.id < x.id < v.id or v.id < x.id < w.id. Then 
w E s.attempted, for some q, by definition of 3. Part (i) 

implies that w # v, so also w E s’.attempted,. There- 
fore, w E s’.dtt. We also have v E s/.&t. Moreover, 

there is no x E s’.%t77eg satisfying w.id < x.id < v.id 
or v.id < x.id < w.id. Then Invariant 5.6 implies that 
v.set il w.set # {}, as needed to prove that 7r’ is enabled 
in t. 
We now prove that x ” is enabled in state t”. The pre- 
condition of X” requires that v E t”.created and v.id > 
t”.current-viewid[p]. The first condition is true because v 
is added to created by z’. The second condition follows from 
the precondition of K in DVS-IMPL: The precondition of x 
implies that v.id > s.cZient-cur.&. The definition of F im- 
plies that Lcurrent-viewid[p] = s.client-cur.id,. Moreover, 
t”.currenthiewid[p] = Lcurrent-wiewid[p]. It follows that 
v.id > t”.current-viewidb]. Thus 7r” is enabled in state t”. 
0 

Theorem 5.9 Every trace of DVS-IMPL is a trace of DVS. 

Proof: Lemmas 5.7 and 5.8 imply that F is a refinement, 
which implies the result. [I 

6 An application of DVS 

Now we show how to use DVS to implement the totally or- 
dered broadcast service TO, defined in [12]. This service ac- 
cepts messages from clients and delivers them to all clients 
according to the same total order. The implementation COIU 
sists of an automaton DVS-TO-TOG for each p E P, and the 
DVS SpeCifiCatiOIi. 

6.1 The implementation 

The implementation is very similar to the TO implementa- 
tion provided in [12]; we refer the reader to the informal al- 
gorithm description in that paper. Both algorithms rely on 
primary views to establish a total order of client messages. 
The main difference is that the algorithm in [12] uses a static 
notion of primary and the new one uses a dynamic notion. 
The algorithm of [12] is built upon a vs service that reports 
non-primary as well as primary views, and uses a simple lo- 
cal test to determine if the view is primary. That algorithm 
does some non-critical background work (gossiping informa- 
tion) in non-primary views. In contrast, the new algorithm 
is built upon our DVS service, which only reports primary 
views. Thus the new algorithm is simpler in that it does not 
perform the local tests and does not carry out any processing 
in non-primary views. On the other hand, in the new algo- 
rithm, the application programs must perform DVS-REGISTER 

actions to tell the DVS service when they have “established” 
new views. Although the new algorithm appears very similar 
to the old one, the fact that the DVS service provides weaker 
and more complicated guarantees than the vs service makes 
the new algorithm harder to prove correct. Another, minor 
difference between this algorithm and that of [12] is the new 
handling of initial views. In particular, a delay buffer is used 
for client messages, to accommodate messages that might 
arrive before a node has any view. 

The code for automaton DVS-TO-TOE appears in Figure 5. 
In this code, C = 6 x N” x P is the set of labels, with selec- 
tors Z.id, Z.seqno and Z.orzgzn. A is the set of messages that 
can be sent by the clients of the TO service. C = C x A is 
the set of possible associations between labels and client mes- 
sages. S = 2’ x seqof (C) x N” x E is the set of summaries, 
with selectors x.con, x.ord, x.next and x.high. 

If Y is a partial function from processor ids to summaries, 
then we define: 
knowncontent = UgEdo,n(Y~Y(q).cOn, 

maxprimary = max,,dorn(y){Y(q).high}, 
maxnextconfirm(Y) = maxqtdorrr(y) Y(q).next, 
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Let s be a state of DVS-IMPL. The state t = F(s) of DVS is the following. 

l t.created = U,e-ps.attempted, 

l for each p E p, t.current-uiewid[p] = s.client-cur.id, 

l for each g E G, t.registered[g] = {pls.reg[g],} 

l for each p E P, g E 6, t.pending[p, g] = purge(s.pending[p, g])+purge(s.msgs-to-vs[g],) 

l for each g E G, t.queue[g] = purge(s.wue[g]) 

l for each p E P, g E 0, 
t.nert[p, g] = s.nezt[p, g] - purgesize(s.queue[g](l..nezt[p, g] - 1)) - ]s.msgs,from-vs[g],l 

l for each p E P, g E G, 
tnext-safe[p, g] = s.nezt-safe[p, g] - purgesize(s.queue(g](l..nezt-safe[p, g] - 1)) - ]s.safe-from-us[g],] 

Figure 4: The refinement 9. 

reps(Y) = {q E dam(Y) : Y(q).high = maxprimary}, 
chosenrep = some element in reps(Y), 
shortorder = Y(chosenrep(Y)).ord, and 
fullorder = shortorder followed by the remaining ele- 
ments of dom(lozowncontent (Y)), in label order. 

The algorithm involves normal and recovery activity. Nor- 
mal activity occurs while a group view is not changing. Re- 
covery activity begins when a new primary view is presented 
by DVS, and continues while the members combine informa- 
tion from their previous history, to provide a consistent basis 
for ongoing normal activity. 

During normal activity, each client message received by 
TO-IMPL is given a system-wide unique label, which is re- 
membered in a relation content and communicated to other 
processes in the same view using DVS. When a message is re- 
ceived, the label is given an order, a tentative position in the 
system-wide total order the service is to provide. The consis- 
tent sequence of message delivery within each view keeps this 
tentative order consistent at members of a given view, but 
it need not always be consistent between nodes in different 
views. When all members of a view have given a label an 
order, the label and its order may become confirmed. This is 
deduced by the node from the occurrence of the safe indica- 
tion for the message that carried the label. The messages as- 
sociated with confirmed labels may be released to the clients 
in the given order. 

When a new primary view is reported by DVS, recovery 
activity occurs to integrate the knowledge of different mem- 
bers. First, each member of a new view sends a message, 
using DVS, that contains a summary of that node’s state, in- 
cluding the tentative order built in its previous view. Once a 
node has received all members’ state summaries, it processes 
the information in one atomic step, i.e., it establishes the new 
view. Once a node establishes a view, it informs DVS of that 
fact with a ovs-REGISTER action. Then recovery continues by 
collecting the DVS safe indications. Once the state exchange 
is safe, all labels used in the exchange are marked as safe 
and all associated messages are confirmed just as in normal 
processing. 

The system TO-IMPL is the composition of all the DVS- 
TO-TO, automata and DVS with all the external actions of 
DVS hidden. The allstate and allconfirm derived variables 
are defined for TO-IMPL just as in [12]. 

6.2 Correctness proof 

The correctness proof for TO-IMPL follows the outline of the 
one in [13]. The main difference is that the main invariant, 
which corresponds to Lemma 6.17 of [12], requires a different, 
more subtle proof. Invariant 6.1 says that any view that is 

known (anywhere in the system state) to be an established 
primary was in fact attempted by all its members. 

Invariant 6.1 (TO-IMPL) 

If x E allstate then there exists w E created such that x.high = 
w.id, and for all p E w.set, p E attempted[w.id]. 

Invariant 6.2 says that if a view w is established, then no 
earlier view u can still be active. 

Invariant 6.2 (TO-IMPL) 

If v E created, x E allstate and x.high > v.id then there exists 
p E v.set with current.id, > v.id. 

Proof: Fix v, x as given. Lemma 6.1 shows the existence 
of w E created such that x.high = w.id, and for all p E 
w.set, p E attempted[w.id]. Then Invariant 4.2 implies that 
there exists p E v.set with current-viewid[p] > v.id. But 
current-wiewid [p] = current.id,, which yields the result. 0 

Finally we provide the proof for the invariant corresponding 
to the invariant stated in Lemma 6.17 of [13]. 

Invariant 6.3 (TO-IMPL) 
Suppose that v E created, u E seqof(L), and for every p E 
v.set, the following is true: 
If current.id, > v.id then established[v.id], 
and u 5 buildorder [p, v.id]. 
Then for every x E allstate with x.high > v.id, u 5 x.ord. 

Proof: By induction on the length of the execution. We 
present the differences from the proof in [13]. 
Base: In the initial state, the ody created view is vo, and 
there is 110 x E allstate with x.high > go. So the statement is 
vacuously true. 
Inductive step: Fix any step (s, r, s’), where s is reachable, 
assume the invariant is true in state s, and show that it is true 
in s’. So fix v E s’.created and u, and assume that for every 
p E v.set, if s’.current.id, > v.id then s’.established[v.id], 
and u 5 s’. buildorder[p, v.id]. 

If v $2 s.created, then F must be CREATEVIEW( Then 
s’.established[v.id], = false for all p. Fix x E s’.allstate and 
suppose that x.high > v.id. Then Invariant 6.2 applied to s’ 
implies that there exists p E v.set with s’.current.id, > v.id; 
fix such a p. Then the hypothesis part of the invariant for s’ 
implies that s’.established[v.id], = true, a contradiction. It 
follows that v E s.created. 

As before, the interesting steps are GPRCV~ steps that pro- 
duce a new summary x by delivering the last state-exchange 
message of a view w to some processor p. Thus 2. high = 
w.id. Let x’ be the summary of q’ = chosenrep in s’.gotstate. 
We claim x’.high 2 v.id. 

To prove the claim, we let v’ denote the unique element 
with highest viewid among the elements of s’.created such 
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Signature: 
Input: BCAST(cI)p, a E A 

DVS-GPRCV(171)q,p. q E ‘p, 11Z E c U s 
DVS-SAFE(17))q,p, Q E p, 7lZ E c Us 
DVS-NEWVIEW(W)p, ” E v 

state: 

current E VL. itlit ‘~0 if p E PO, I else 
status E {normal, send, collect}, init nonno~ 
content E C, init {} 
neztseqno E N>‘, init 1 
buffer E seqoflt), hit A 
safe-labels E 2’, hit {} 
OT&T E seqoflL), hit X 
neztconfirn E N>‘, init 1 

Transitions: 
input BCAST((L)~ 

EfF appeud n to de& 

internal LABEL(a)p 
Pre: n is head of delay 

CuTTent # I 
Eff: let UP be (cuTTent.id, neztseqno, p) 

content := content u {(m, a)} 
append vn to buffer 
neztseqno := neztseqno + 1 
delete head of delay 

output DVS-GPSND( (1, a))p 
Pre: status = nomal 

2 is head of buffer 
(l,n) E content 

Eff: delete head of buffer 

input DVS-GPRCY( (1, G))*.~ 
Eff: content := content U {(I, a)} 

order := order+1 

inpUt DVS-SAFE((t, n))q,p 
Eff: safe-labels := safe-labels U (1) 

internal CONFIRMp 
Pre: oTdeT(neztconjiTm) E safe-labels 
Eff: n&confirm := neztconfirrn + 1 

output BRCV(a)q,p 
Pre: neztreport < neztconfinn 

(oTder(neztTepoTt), a) E content 
q = order( nextreport). origin 

Eff: neztreport :z neztreport + 1 

Output: DVS-REGISTERp 
DVS-GPSND(l?l)p, 77, E c Us 

BRCV(Qh.P? n E A, q E P 
htertld: CONFIRMp 

neztreport E N”, hit 1 
highptimary E P, init go 
gotstate, a partial function from P to S, init (} 
safe-ezch C P, init {} 
TegisteTed & G, init {go} if p E PO, {} else 
delay E seqofld), init X 
for each g E 9, 

estabiished[g], a boo], init false 

input DVS-NEWVIEW( t~)~ 
Eff: current := v 

neztseqno := 1 
buffer := X 
gotstate := {} 
safe-ezch := {} 
safe-labels := {} 
status := send 

output DVS-GPSND(Z)p 
Pre: status = send 

x = (content, order, neztconfinn, highprimary) 
Eff: status := collect 

input DVS-GPRCV(z)q,p 
Eff: content := content U z.con 

gotstate := gotstate @ (q, x) 
if (dom(gotstate) = CUTTent.&) A(status = collect) then 

nestconfiinn := mazneztconfinn(gotstale) 
order := fulk3TdeT(gotstate) 
highprimary := cuTTent.id 
status := nonnaal 
established[cuTTent.id] := tvue 

output DVS-REGISTERp 
Pre: current # I 

established[cuTTent] 
current $! registered 

Eff: registered := registered U {current} 

input DVS-SAFE(Z)~,~ 
EfF: safe-ezch := safe-ezch U {q} 

if safe-ezch = curTent.set then 
safe-labels := safe-labels U Tange(futtoTdeT(gotstate)) 

Figure 5: DVS-TO-~0~ 

that v’.id < w.id and s’.registered[v’.id] = v’.set. Let v” de- 
note either v’ or v, whichever has the higher viewid. Invari- 
aut 4.1 shows that w.set fl v”.set # {}, uo matter whether 
V ” is v or v’. Fix any element q” in w.set n v”.set. Re- 
call that the condition for establishing a view shows that 
domain(s’.gotstate,) = w.set, so by the code, either q” E 
domain(s.gotstate ) 
whose receipt is t ii 

or else q” is the sender of the message 
e step we are examining. III the former 

case, let x” be the sumnary s.gotstate(q”),; in the latter let 
2” be the summary whose receipt is the event. In either case 
we have x” E s.allstate[q”, w.id]. 

We uow show that s.established[v”.id]p. We consider 
two cases: 
1. v” = v’. Then q” E v’.set so by definition of v’, we obtain 
q” E s.registered[v’.id]; therefore, ~.established[v’.id]~~. 
2. v” = v. Because s.alZstate[q”, w.id] is non-empty, the 
analogue of part 4 of Lemma 6.6 from [13] implies that 
s.current.idp 2 w.id. We have that x.high > v.id by as- 
sumption, and x.high = w.id by the code; therefore, w.id > 
v.id. So also s.current.id,,, > v.id. Recall that we are in 

the case where the hypothesis of this lemma is true. There- 
fore, by this hypothesis (uses q” E vset), we obtain that 
s.established[v.id],,, 

By the aualogue of Lemma 6.13 from [13], (applied with 
q” replacing p) we obtain z”.high 2 v”.id. By the definition 
of q’ as a member that maximizes the high component in the 
summary recorded in s’.gotstate, we have z’.high 2 z”.high. 
Therefore x’.high 2 v”.id 1 v.id, completing our proof of 
the claim. The rest of the proof is as before. 0 

To complete the implementatiou proof, we define a func- 
tion from the reachable states of TO-IMPL to the states of TO 
and prove that it is a refinement. This fuuction is defined 
exactly as in [12], except that, for each p, the abstract pend- 
ing queue t.pending[p] is defined to include au additioual tail 
consisting of the contents of s.delay,. 

Theorem 6.4 Every trace OTTO-IMPL is a trace of TO. 
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7 Discussion 

This work deals entirely with safety properties; it remains 
to consider performance and fault-tolerance properties as 
well. It also remains to study other applications of our DVS 
specification, such as replicated data applications and load- 
balancing applications. 

Another interesting exploration direction considers varia- 
tions on the DVS specification, for example, one in which the 
state exchange at the beginning of a new view is supported 
by the dynamic view service. We are currently studying vari- 
ations on our specifications that are more specifically tuned 
to systems like Isis and Ensemble. In particular, we would 
like to understand the power of the Isis requirement that pro- 
cesses that move together from one view to the next receive 
exactly the same messages in the first view, especially for 
coherent-data applications. 

It would also be interesting to generalize the DVS ser- 
vice to dynamic sets of primaries rather than individual pri- 
maries, in order to allow tolerance of transient failures during 
a particular view. 
Acknowledgments: We thank Ken Birman, who urged us 
to consider the interesting issues of dynamic views. We also 
thank Idit Keidar and Robbert van Renesse for discussions 
about our DVS specification and our algorithm models and 
proofs. 
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Abstract 

In this paper we present a novel algorithm that implements a totally 
ordewd multicast primitive for a Totally Ordered Group Commu- 
nication Service (TO-GCS). TO-GCS is a powerful infrastructure 
for building distributed fault-tolerant applications, such as totally 
ordered broadcast, consistent object replication, distributed shared 
memory, Computer Supported Cooperative Work (CSCW) appli- 
cations and distributed monitoring and display applications. 

Our algorithm is adaptive, i.e., it is able to dynamically alter 
the message delivery order in response to changes in the transmis- 
sion rates of the pticipating processes. This compensates for dif- 
fexnces among paaicipant transmission rates and therefore mini- 
mizes fluctuations in message delivery latency. Our algorithm is 
thus useful for soft Eal-time environments where sharp fluctuations 
in message delivery latency are not acceptable. 

Our solution provides well-defined message ordering seman- 
tics. These semantics are preserved even in the face of site and 
communication link failures. 

1 Introduction 

A group communication service with a totally ordered multicast 
primitive, Totally OrderedGroup Communication Service (TO-GCS), 
is a powerful infrastructure for building distributed fault-tolerant 
applications. Some of these are totally ordered broadcast [l, 8, 
10, 14, 121, consistent object replication [I, 121, distributed shared 
memory [S], Computer Supported Cooperative Work (CSCW) appli- 
cations [ 181 and distributed monitoring and display applications [ 141. 
Due to its importance for distributed computing, TO-GCS has in- 
spired a great number of research projects in universities and re- 
search institutions world-wide. Isis [3], Horns [20], Totem [2, 161, 
Transis 171, Amoeba [ll], RMP [22], Delta-4 [17] are only some 
of the systems that support TO-GCS. 

‘Thisworkwas supported by ARPA grantnumber030-7310 

Permission to make digital or hard copies of all or part of this work for 
pcrscmal or cl- use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
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Copyright ACM 1998 O-89791-977-7/981 6...$5.00 

In this paper we present a novel total ordering algorithm for 
TO-GCS. Our algorithm is adaptive: It is able to dynamically alter 
the message delivery order in response to changes in the transmis- 
sion rates of the participating processes. This adaptation ability 
compensates for differences among paaicipant transmission rates 
and thus minimizes fluctuations in message delivery latency. Many 
soft real-time applications make certain assumptions about mes- 
sage delivery latency, and therefore, sharp fluctuations in message 
delivery latency can wreak havoc in these cases. Our algorithm is 
thus useful for such applications. 

Another important feature of our solution is that it provides 
well-defined message ordering semantics. These semantics are re- 
quired by existing TO-GCS based applications [l, 8, 121 and are 
preserved in spite of both site and communication link failures. 
They weE first formulated within the framework of the Extended 
Visual Synchrony model [15] andelaboratedin [8, 12,211. Further 
discussion of our algorithm’s features appears in Section 1.2. 

1.1 Problem Definition 

A group communication service (GCS) classically consists of two 
main pati: a membership service and a set of multicast services. 
The task of the membership service is to maintain a listing of the 
currently active and connected processes and to deliver this infor- 
mation to the application whenever the membership changes. The 
output of the membership service is called a view. The multicast 
services deliver messages to the current view members. 

The GCS multicast service suite typically consists of a set of 
primitives with different ordering/reliability guarantees. The most 
impoaant among these is the totally orderedmulticast service, which 
guarantees to deliver messages to the cunent view members in a 
consistent order. A GCS with a totally ordered multicast primi- 
tive is called a Totally Ordered Group Communication Service(TO- 
GCS). 

In this paper we concentrate on implementing an efficient to- 
tally ordered multicast service within the group communication 
framework. We assume that the underlying communication layer is 
represented by a basic view synchronous GCS that provides mem- 
bership and FIFO multicast services. The minimal requirements of 
the underlying GCS appear in Section 2. 

The principal correctness requirements imposed by our service 
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am listed below. They am motivated by existing TO-GCS based 
applications [I, 8, 121: 

A logical timestamp is attached to every message delivered 
by TO-GCS; 

The same timestamp is attached to a message at every pro- 
cess that delivers that message. This timestamp is unique 
system-wide and remains unique in face of network parti- 
tions; 

Every process delivers messages in the order of their times- 
tamps; 

The timestamp order complies with the global causal order 
on messages [13], 2, , defined to be the reflexive transitive 
closum of the following: 

1. m --+ m’ if them exists a process p such that m was 
sent at p before m’; 

2. m -A m’ if there exists a process p such that m’ was 
sent at p after m has been delivered at p. 

Note that the above requirements imply that (1) any two mes- 
sages am delivered in the same order at any process that delivers 
both of them, and (2) the message delivery order complies with the 
global causal order on messages. 

In addition, the service implementation should satisfy the fol- 
lowing liveness requirement: 

l If a process p receives from the underlying communication 
layer an infinite number of messages from every operational 
and connected process, then p will eventually deliver ev- 
ery message supplied to it by the underlying communication 
layer or crash. (We further elaborate on TO-GCS liveness 
requirements in Section 3.2). 

Note that the above problem is weaker in several ways than 
the well-known Atomic Broadcast (AR) problem found in the lit- 
eratum [lo]. In particular, we do not require that each message 
multicast by a correct process will eventually be delivered by all 
correct processes; nor do we requite that each message delivered 
by a correct process will be eventually delivered by all conect pro- 
cesses. 

Our service is similar to the pattitionable group communication 
service specified by the VS-machine of [S]. However, them am a 
few distinctions: 

l Unlike [8], our service delivers application messages labeled 
with timestamps. The use of timestamps is motivated by the 
fact that TO-GCS with timestamps is useful for various TO- 
CXS based applications, e.g., it is utilized by the Consistent 
Object Replication Layer described in [12]. 

l The VS-machine of [8] provides safe indications, whereas 
TO-GCS does not. However, semantics similar to those achi- 
eved with safe indications can easily be achieved at the appli- 
cation level using end-to-end acknowledgments. This tech- 
nique was demonstrated in [ 121. 

1.2 Protocol Features 

In this section we consider the main features of our total ordering 
protocol and discuss related work. 

1.2.1 Dynamic Adaptation 

Because a totally ordered multicast service is so useful, the effi- 
ciency of its implementation has become an important issue. A 
well-known technique for providing a totally ordered multicast de- 
lays delivery of a received message until the process has: (a) de- 
livered all received messages which precede the message in ques- 
tion within the total order, and (b) learnt that every message that 
could preceded it will never anive. This results in high latency in 
message delivery when not all the participant processes am uni- 
formly active. Total ordering protocols which am based upon this 
technique am called symmetric. Another approach implemented by 
sequencer [3, 4, 11, 221 or token [16] based protocols uses extra 
messages (ordering messages or token requests) and is therefore 
less efficient under high loads [ 191. 

The protocol presented in this paper is dynamically adaptive: 
Messages am assigned a wide range of priorities which am adjusted 
“on-the-fly” to reflect ongoing changes in process activities. Mes- 
sages am then delivered in order of priority. The protocol testing 
results (see Section 6) show that after a short adaptation period the 
average message delivery latency incurred by our protocol is close 
to that of the underlying communication layer. Furthermore, the 
variance of the post-adaptation message delivery latency exhibited 
by our protocol is extremely low. 

By contrast, under the same load patterns the latency incurred 
by traditional (non-adaptive) total ordering protocols is close to the 
transmission rate of the slowest process in the group. Moreover, 
these protocols exhibit sharp fluctuations in message delivery la- 
tency. This makes the message delivery latency incutred by such 
protocols much less predictable, causing problems for soft mal- 
time applications. Our protocol is thus a solution for these prob- 
lems. 

Some systems differentiate between only two process activity 
levels. For example, [9] addresses the adaptivity issues by classify- 
ing group members as active or passive according to whether they 
have any messages to send or not; the right to multicast messages 
is then evenly distributed among a.ll cutmntly active processes. In 
the Hybrid protocol of [ 191, assignment of active or passive process 
status is based upon the relation between the process’ transmission 
rate and the network delay: active processes run a symmetric pro- 
tocol, while passive processes run a token-based one. Processes 
dynamically switch between active and passive states. The obvi- 
ous limitation of the approach exemplified by these two protocols 
is that all the active (passive) processes am treated equally, while 
in practice it is mm that all of the active (passive) processes am 
uniformty active (passive). 

In the ToTo protocol of [S] messages are delayeduntil messages 
are received from a majority of group members. ToTo achieves 
good latency only when: (a) the currently active members of the 
group form a majority, and (b) the processes that make up this ma- 
jority broadcast their messages at approximately the same rates. 

238 



Application 

I 
I 

VS layer I 

ITO-GCS 
I 
I 

-----___---______-_--I 

Figure 1: The TO-GCS System Components and Interfaces 

1.2.2 Partionable Semantics 

Additional implementation challenges are raised by the fact that 
the service requirements stated in Section 1.1 should be satisfied 
in environments where multiple concurrent network components 
are allowed to coexist and where processes in each component are 
treated as non-faulty. With many existing group communication 
systems [3, 5, 11, 221 the following scenario is possible: Suppose 
that two processes disconnect from each other, while some com- 
mon non-delivered messages remain in their buffers. If these mes- 
sages’ order has not yet been negotiated, they may either be de- 
livered in an inconsistent order or be discarded. Either way, the 
service requirements are violated. 

Special care is needed to prevent such situations from occur- 
ring. Common practice [16] is to attach some ordering information 
to each newly multicast message. This information should be suf- 
ficient to allow each process to consistently order the message so 
that the need to communicate with other processes is eliminated. 

Things become more complicated if the message delivery flow 
is allowed to be dynamically adaptive. This is because message 
delivery order may be altered as a result of the adaptation deci- 
sion. We must therefore be careful to preserve the message de- 
livery semantics by guaranteeing the atomicity and uniformity of 
the adaptation decision. This is a main challenge of incorporating 
adaptation into a total ordering algorithm. 

The technique presented in this paper allows various external 
adaptation policies to be combined with the total ordering protocol. 
The resulting multicast service combines two valuable featums: 
suitable performance for soft real-time applications and sound par- 
titionable semantics. 

2 The Environment Model 

We assume an asynchronous distributed environment. Further, we 
assume that processes can fail and restart, and that the network can 
partition into several disjoint components which can m-merge later 
on. The environment is equipped with a view-synchronous group 
communication layer, called the vs (View-Synchronous) layer. This 
layer guarantees reliable FIFO delivery of messages that have been 
multicast within a group of connected and active processes. An- 
other VS layer objective is to provide failure detection: Possible 

changes in network connectivity and in failure status of the pro- 
cesses are relayed via special membership change reports, called 
views. The layer is called view synchronous because messages are 
guaranteed to be delivered in the view in which they were origi- 
nated. Our Adaptive Total Ordering Protocol (ATOP) is built on top 
of the vs layer. The layer structure of the Totally Ordered Group 
Communication Service (TO-GCS) is depicted in Figure 1. 

2.1 The vs layer Guarantees 

For the rest of this paper, we denote the following: P is a totally or- 
dered finite set of processes; M is a message alphabet; (I, <I, io), 
a totally ordered set of view identifiers with initial view identifier 
io; views = I x 2’, the set of pairs consisting of a view identi- 
fier together with a set of processes; If v E views, we write w.id 
and v.set to denote the view identifier and set components of v 
respectively. 

We define the current viav at a process p to be as follows: if 
the vs layer has delivered any views at p, then the current view at 
p is the last such view; otherwise, it is a pair consisting the distin- 
guished initial view identifier io and the process universe P. We 
say that a message m is sent (delivered) in a view 2, atp if m is sent 
(delivered) at p when the cmrent view at p is v. 

The vs layer is required to satisfy the following mquimments: 

View Identifier Identity: Views with different process sets have 
different identifiers. 

Initial View Identifier Uniqueness: The identifier of any view de- 
livered by the vs layer at any process differs from the initial 
view identifier io. 

Local View Identtier Monotony: Views am delivered in the view 
identifier order at each process. 

Self Inclusion: For any view w delivered by the vs layer at a pro- 
cessp, p E v.set. 

Message Integrity: For any message m delivered at a processp in 
a view v, there is a preceding send event at some process q. 
Moreover, m is sent in u at q. 

No duplication: Every message delivered by the vs layer at a pro- 
cess p is delivexed only once at p. 
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Reliable FIFO Delivery: For any two messages m, m’, processes 
p, 4, and a view v: If m is sent before m’ in v and q delivers 
m’, then q delivers m before m’. 

3 The TO-GCS Specification 

3.1 Correctness 

In addition to the message ordering propeaies outlined in Sec- 
tion 1.1, we require that TO-GCS satisfies the following: 

View Properties are similar to the first four guarantees provided 
by the vs layer (see Section 2.1); 

Basic Message Delivery Properties: 

For every message delivered by TO-GCS to the appli- 
cation them is a preceding send event. Furthermom, 
this send event occurs in a view whose identifier is not 
greater than that of the view in which the message is 
delivered; 

Each message is delivered in the same view at any pro- 
cess at which the message is delivered; 

The sender of a message is always a member of the 
view in which the message is delivered. 

3.2 Liveness 

We mquire of TO-GCS to satisfy the same liveness specifications 
as those guaranteed by the vs layer. Since the liveness specifica- 
tion of the vs layer is out of the scope of this paper (the interested 
reader may refer to [S, 21]), we only require that for every pro- 
cessp, ATOP at p preserves the liveness semantics provided by the 
underlying vs layer. More precisely, we require the following: 

1. Every application message sent through ATOP is eventually 
transferred to the underlying vs layer unless a crash occurs; 

2. If the vs layer delivers an infinite number of messages to 
ATOP from every member of the current view, then ATOP 
will eventually deliver every message that the vs layer has 
passed to it, or crash; 

3. If the vs 1ayerinformsATOP about anew view v, then ATOP 
will eventually deliver v or crash. Moreover, ATOP at p is 
bound (unless it crashes) to eventually deliver every message 
that the vs layer has transfened to it befom V. 

The first two properties together ensure that if all members of 
the current view keep sending messages, then ATOP at a prccessp 
preserves every liveness guarantee provided by the vs layer at net- 
work stability periods. For example: if, during the network stability 
periods, applications at all processes in the cunent stable compo- 
nent send infinite number of messages and the vs layer guarantees 
to deliver all messages sent through it (as required in [S]), then 
TO-GCS also guarantees to deliver every application message. 

Note that the requirement that every process in the current view 
should issue an infinite number of messages may seem unrealistic. 
We require it only for the sole purpose of simplifying the protocol 

presentation. In the actual implementation, this precondition can 
be enforced by ATOP itself: it can simply multicast special dummy 
messages when its application becomes “silent” (see discussion in 
Section 5). 

The thinl property ensures that if the vs layer provides addi- 
tional liveness guarantees at times of new view installations, then 
ATOP will preserve them. 

4 The Adaptive Total Ordering Protocol (ATOP) 

In this section we describe the Adaptive Total Ordering Protocol 
(ATOP) which implements TO-GCS using the vs layer. The adap- 
tive total ordering protocol at each process consists of two modules: 
the module implementing an adaptive total ordering mechanism 
(ATOM) and the module implementing an adaptation policy (AP). 
Such decoupling allows various external adaptation algorithms to 
be easily plugged into ATOP. The service stmctum is depicted in 
Figure 2. 

4.1 The AP Module 

The AP module is an implementation of an external adaptation pol- 
icy. It thus keeps track of messages and views deliven+d by the 
vs layer, in order to learn about the transmission rate distribution 
among the current view members. From time to time (depending 
on the adaptation policy implemented) AP at p delivers a distribu- 
tion, dist, to the ATOM module. A distribution is defined to be 
a pair consisting of: the distribution identijer, d&id, taken out 
of a totally ordered set of distribution identifiers (D, <D , do) with 
an initial distribution identifier do; and a vector, called the weighs 
vector and denoted dist.w, with an entry for each q E P such that 

c ~Fp dist.w[q] = 1 
‘Let v be the current view at a process p. We lequiw that the 

following be satisfied by every distribution dist delivered by AP at 
pinv: 

l for each q E v.set, dist.w[q] # 0, and for each q $ w.set, 
dist.w[qJ = 0; 

. Let dist’ be a distribution delivered by AP at q in v. If 
dist’.id = dist.id, then dist’.w = dist.w. This means that 
every distribution delivered at any process in the same view 
has a unique identifier, 

0 dist.id # do. 

4.2 Message Ordering Using Distributions 

The ATOM module controls the message ordering using two dis- 
tributions: the first one, called the sending disnibution, is used 
to tag each newly multicast message; and the second one, called 
the ordering distribution is used to order incoming messages. In 
Section 4.3 we describe in detail how these distributions am main- 
tained. 

In addition, ATOM at each process has a copy of a pm-defined 
pseudo-randomnumber generator G. This generator along with the 
current ordering distribution’s weights vector fix a deterministic se- 
quence of process identifiers. Messages tagged with a distribution 
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Figure 2: The ATOP Implementation 

dist are delivered when the current ordering distribution is equal to 
dist and ordered by the sequence generated by G and dist.w. 

This is illustrated by the following example: Let processes p, q 
and r be members of the current view. Assume that the sequence 
produced by G and the curtent ordering distribution’s weight vector 
starts with p, q, p, q, p, p, r, p, . . . . (Note that in this sequence,p 
apparently has a larger weight than r). 

According to this sequence the first slot in the total order for 
the curmnt view should be mserved for p’s message. p’s turn will 
be skipped only if the next pending p’s messages is tagged with a 
different distribution; or if there are no more undelivered messages 
sent by p and them is a new view delivered by the vs layer. Like- 
wise, the second slot in the total order should be reserved for q’s 
message, the third slot again for p’s message, and so on. Thus, for 
each slot, the protocol either waits for a message from the appro- 
priate process or guarantees that no such message can be delivered 
in this slot, in which case it is skipped. 

A detailed desctiption of the totally ordered delivery algotrithm 
is given in the next section. 

4.3 The ATOM Module 

The responsibilities of the ATOM module are as follows: 

l To associate application messages with distributions; 

l To guarantee that the delivery order of messages is deter- 
mined by the distributions associated with them; 

l To preserve the semantics provided by the underlying vs 
layer (see Section 2.1) in all aspects concerned with view 
delivery, the relative order of messages and views, and the 
reliable FIFO order within each view. This facilitates the 
achievement of the View and Basic Message Delivery prop- 
erties of TO-GCS (outlined in Section 3); 

l To extend the vs layer’s FIFO delivery order within each view 
to the total delivery order in that view, so that the ordering 
semantics of Section 1.1 am satisfied. 

ATOM associates distributions with messages by giving each 
newly multicast message a tag consisting of the maximal identifier 

among all distributions known to this instance of ATOM. The AP 
modules at participating processes must therefore make sum that 
the distribution with the maximal identifier corresponds to the most 
recent process transmission rate distribution. The adaptation policy 
described in Section 6 achieves this by allowing the AP module at 
only a single process (within the current view) to inject new distti- 
butions. This process is chosen deterministically from among the 
current view members. Other possible ways to implement the AP 
module am discussed in Section 7. 

Within each view, message delivery order is determined by the 
distribution with the minimal identifier among all distributions at- 
tached to this view’s yet-undelivered messages. This distribution is 
called the ordering distribution. 

ATOM guarantees that the next message to be delivered is tag- 
ged with the current ordering distribution identifier. Since the AP 
module guarantees that every distribution has a unique identifier 
within each view (see Section 4. l), this means that the delivery or- 
der of each message is determined by the same distribution at any 
process that delivers this message. 

Thus, within each view, every message is delivered in the same 
order at all processes that deliver this message (even at those pro- 
cesses that may become disconnected). Furthermore, since views 
are delivered in the same order at every process and each message 
is always delivered in the same view, ATOM guarantees the global 
total delivery order of messages. 

The message timestamp assigned by ATOM is thus a triple con- 
sisting of the identifier of the view in which the message is de- 
livered, the identifier of the cunent ordering distribution and the 
sequence number of the message within the current ordering dis- 
tribution. We can easily see that the timestamp assigned in such a 
way satisfies the TO-GCS ordering requirements (see Section 1.1): 

1. The timestamp is globally unique because: (1) the VS layer 
View Identifier Identity property guarantees that each view 
has aunique identifier, and (2) every distribution has a unique 
identifier within each view; 

2. Each message has the same timestamp at every process that 
delivers this message because: (1) each such process delivers 
the message in the same view; (2) within each view, the mes- 
sage is assigned the distribution identifier when it is initially 
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sent; and (3) within each view, messages which are stamped 
with the same distribution identifier, are delivered in the same 
order, 

3. Messages are delivered in the order of their timestamps be- 
cause: (1) the vs layer Local View Identifier Monotony prop- 
erty ensures that views are delivered in the order of their 
identifiers, and (2) the identifier of the current ordering dis- 
tribution increases monotonically within each view; 

4. Each message m’ sent by p after the delivery of another mes- 
sage m cannot be delivered before m at p. Therefore, when 
m’ is delive=d it is given a timestamp greater than that of 
m. Since ATOM preserves the vs layer’s FIFO delivery or- 
der, thus the timestamp order satisfies causality. 

Finally, to satisfy the TO-GCS liveness requirements, ATOM 
should not arbitrarily deliver any new views, nor should it arbitrar- 
ily change the current ordering distribution: instead, ATOM may 
deliver a new view only after it has validated that no more new 
messages belonging to the last view delivered to the application 
will ever arrive, and it may change the current ordering distribution 
only after it validates that no mom messages tagged with the current 
ordering distribution will ever be received in the current view. 

If this is not observed, then the following situation is liable to 
arise: suppose that a message m belonging to a view u were to ar- 
rive after a newer view had been delivered to the application. In 
this situation, correctness can only be preserved if we discard m. 
This, however, violates the liveness requimments. A similar situa- 
tion will occur if a message tagged with some distribution identi- 
fier arrives after the current ordering distribution has been reset to 
a newer value. 

We utilize the vs layer’s Message Integrity property in oiler 
to tell that no more messages will be delivered by the vs layer in 
some view. This property implies that after the vs layer delivers a 
view o, it will not deliver any message sent in any view delivered 
before v in the future. 

We make use of the VS layeis Message Integrity and Reliable 
FIFO delivery properties in order to verify that no more messages 
tagged with some distribution identifier d will be delivered in the 
current view. These properties imply that: if for each member of 
the current view the vs layer has delivered either (1) some message 
tagged with a distribution identifier gmaterthan d or (2) a new view, 
then the vs layer will never deliver any message stamped with d 
within the current view. 

A detailed description of the ATOM module algorithm is given 
below. 

Sending Messages 

The ATOM module at a process p learns about new distributions 
either directly from p’s AP or from messages sent by ATOMS at 
other processes. 

Let v be the current view at p. We define the sending disnibu- 
tion at p to be the distribution with the maximal identifier among 
distributions received at p in v, if any, otherwise it is a distribution 
dish,, called the default distribution for v, such that dist,.id = do 

and dist,.w[q] = l/(vl for each q E v.set, and dist,.w[q] = 0 
othenvise. 

The following attributes are attached by the ATOM module at a 
processp to each newly multicast application message: 

l sender: the p’s identifier, 

l dist-id: the identifier of the current sending distribution at p; 

. seqno: the sequence number of this message within the cur- 
rent sending distribution at p. 

The first message to be tagged with a distribution’s identifier 
will also bear the weights vector component of this distribution. 
(This is in addition to the above mentioned values.) 

Basic Message and View Delivery 

ATOM buffers messages and views delivered by the vs layer. Views 
are stored in the set PendingViews. Messages delivered by the 
vs layer in a view v are stored in the set PendingMsgs[v.id]. 

Views delivered by ATOM are taken from the PendingViews 
set. The next view chosen for delivery is the view with the min- 
imal identifier among the views currently in the PendingViews 
set. Delivered views are deleted from the PendingViews set. Ob- 
viously, since the vs layer guarantees to deliver views in the order 
of their identifiers, the same is true for ATOM as well. 

If v is the last view delivered by ATOM to the applica- 
tion, then the next message to be delivered is taken from the 
PendingMsgs[v.id] set. ATOM suspends delivery of new views 
as well as of messages sent in these views until both conditions 
shown in Figure 3 are true. 

1. PendingViews # 0; 

2. PendingMsgs[v.id] = 0; 
1 I 

Figure 3: The Conditions for the New View Delivery 

Since the vs layer guarantees that each message m is delivered 
in the same view at every process that delivers m, then there exists 
a view identifier i such that m E PendingMsgs[i] at any process 
that received m from the vs layer. Thus each ATOM module that 
delivers m to the application, delivers m in the same view. 

Message Delivery within a View 

Let Nzlm be an enumeration of process identifieers in P. Let w 
be a weights vector as defined in Section 4.1 and G, be a pseudo- 
random number generator which produces Num( r) with probabil- 
ity w[r] on each invocation. We denote a pseudo-random number 
obtained on the ith invocation of G, by G,(i), i 2 0. 

The ATOM module at each process p maintains the following 
data stmctutes: 

. ordDist holds the current ordering distribution. It is initial- 
ized to be the default distribution for (io, P); 
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l nezt[y] is the total number of messages sent by q which have 
been ordered by ordDist. Initially, nezt[q] is set to be 0 for 
eachq E P. 

Clearly, the sum of nezf[q] for each q E P holds the total 
number of messages that have been ordered by ordDist SO 

far. We define totcdOrdereddsf c,,, nezt[q]. 

l 7’S is a timestamp attached to every message delivered to the 
application. At any state of the protocol TS is defined to be 
a triple consisting of the current view identifier, ordDist.id 
and totalordered variables. The order on timestamps is 
lexicographic; 

l G is an instance of a pseudo-random number generator 
known by all Processes in P. Initially, G is set to be 

Gd-t(,o,pj.~ and is initialized to some pmdefined seed 
agreed upon by all processes in P. 

Let v be the view which was most recently delivered by ATOM 
to an application at a process p. if any, or (ia, P) otherwise. We 
linst considerhow ordDist is maintained. ordDist is initially set 
to be the default distribution for (ia, P). Whenever ATOM deliv- 
ers a new view to the application ordDist is set to be the default 
distribution for this view. Within each view ordDist is reassigned 
a new distribution when all the conditions depicted in Figure 4 am 
true. 

1. PendingMsgs[v.id] does not contain any message 
tagged with ordDist.id; 

2. There is some message m E PendingMsgs[v.id] 
such that m.dist-id > ordDist.id; 

3. For each q E v.set, there is a message m sent 
by q such that m.distid > ordDist.id, or 
PendingViews # 0. 

Figure 4: The Conditions for Changing the Ordering Distribution 

Whenever the value of ordDist changes (as a result of either 
a new view delivery or fulfillment of conditions in Figure 4) the 
following steps am performed: 

1. ordDist is assigned that distribution whose identifier is 
minimal from among the identifiers of all distributions at- 
tached to the messages currently in PendingMsgs[v.id]. 
Note that because the vs layer guarantees the reliable 
FIFO delivery within a view, there is always a message in 
PendingMsgs[v.id] which contains the new distribution’s 
weights vector, 

2. nezt[q] is set to 0 for each q E P; 

3. G is set to be Gordntst.w and is initialized to some seed 
agreed upon by all members of v. 

The ATOM module delivers a pair (m, TS) on the next m- 
vocation of its delivery procedure iff the conditions sketched in 
Figure 5 am satisfied. Note that these conditions imply that (1) 

the next message to be delivered (from among messages currently 
in PendingMsgs[v.id]) is determined according to the weights 
vector of the distribution in which this message was sent; and (2) 
the message delivery order is consistent with the order of message 
sending, i.e., the message delivery order preserves FIFO. 

1. m E PendingMsgs[v.id]; 

2. m is tagged by ordDist.id; 

3. m is sent by a process q such that 
G o,.d~,8t.W(totulDelivered) = Num(q); 

4. m.seqno = nezt[q]. 

Figure 5: The Conditions for the Delivery of (m, TS) 

Whenever a pair (m, TS) is delivered to the application the 
following steps am performed: 

1. m is removed from PendingMsgs[v.id]; 

2. nezt[m.sender] is incremented; 

If none of the conditions in Figures 3, 4 and 5 am satis- 
fied, ATOM blocks unless the conditions in Figure 6 am true. 
These conditions indicate that no mom new messages stamped 
with ordDist.id, which were sent by a process q such that 
G oPdo;,t.,(fotaZDelivered) = Num(q) in v, will ever be m- 
ceived from the vs layer. We can therefore try to deliver another 
message in PendingMsgs[v.id] labeled with ordDist.id (if such 
a message exists). 

1. PendingMsgs[v.id] does not contain any message 
m sent by a process q such that 
G ordD,,t.W(totulDeZivered) = Num(q); 

2. There is a message m’ E PendingMsgs[v.id] 
sent by q such that m’.distid > ordDist.id, or 
PendingViews # 0; 

3. There is another message in PendingMsgs[v.id] la- 
beled with ordDist.id. 

Figure 6: The Conditions for Skipping the Current Timestamp 

In this case, ATOM increments nezt[q], and thus skips a mes- 
sage that could have been sent by a process q and tagged by the cur- 
rent values of ordDist.id and nest[q]. This way other messages 
in PendingMsgs[w.id] which am stamped with ordDist.id and 
have not yet been delivered, get a chance to be delivered in one of 
the successive delivery attempts. 

Finally, if all the conditions in Figures 3, 4, 5 and 6 am false, 
ATOM blocks until the vs layer delivers either a new message or 
a new view, which would in turn cause one of the aforementioned 
conditions to become true. 

5 Remarks on the ATOP Performance Guarantees 

Them am two important issues that were intentionally left out of 
consideration in the ATOP protocol definition in the previous sec- 
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tion: They are J~OW control and failure detection. This simplifi- 
cation allowed us to better concentrate on subtleties of achieving 
adaptive total ordering in paaitionable environments. However, 
this inevitably weakened our performance claims. 

For example, since changing the ordering distribution requires 
a message tagged with a greater distribution identifier from each 
member of the current view (see Figure 4), a single process (or a 
group of processes) that has no application messages to send may 
substantially slow down switching to the new ordering distribution. 
In this case, an appropriate flow control mechanism will enforce 
each such “silent” process to issue a dummy message tagged with a 
new distribution identifier, thus speeding up the agreement. 

Unfortunately, in distributed asynchronous systems with fail- 
ures there are situations in which no flow control algorithm can 
help much. In particular, the performance of ATOP depends in 
great extent on how fast the underlying vs layer delivers messages 
and how fast faulty processes are removed from the view. For ex- 
ample, if the vs layer fails to guarantee timeliness of failure de- 
tection, the ATOP protocol may be subject for significant delays 
during network instability periods. 

The above problems can be addressed by combining the adapta- 
tion policy, failure detection and flow control mechanisms together 
within the same module. For example, the failure detector can use 
distributions produced by the AP module to guarantee that each 
process either transmits messages in the rate corresponding to its 
weight or is taken out of the current view. 

Thus, for example, an instance of the failure detector at a pro 
cess p will take care of situations in which p has no application 
messages to send by issuing special dummy messages in the rate 
corresponding to the current p’s weight. Subsequently, if an in- 
stance of the failure detector at q fails to hear messages from p, in 
the rate which roughly corresponds to the cumnt p’s weight it will 
suspect p and initiate the view change. Note, that since the adap- 
tation policy is based on application messages (and not on dummy 
ones), this mechanism would not affect the adaptation decision. 

6 The ATOP Implementation and Performance Results 

In order to evaluate the performance of ATOP, we implemented a 
simple adaptation policy. This is described in Section 6.1 below. 
The resulting protocol was implemented over the Causal Multicast 
Service (CMS) of the Transis GCS [7] which satisfies the vs layer 
correctness specifications presented in Section 2. 

6.1 An Adaptation Policy Implementation 

In the adaptation policy we implemented, only the AP module at 
a single process deterministically chosen among the current view 
members, called a book-keeper, has the right to inject new distribu- 
tions. The book-keepel’s algorithm is as follows. 

Let 2) be the current book-keep&s view. The book-keeper 
maintains a sliding window of messages delivered by the vs layer 
in o. The size of the window is N. Iv.setj, where N E ni” is 
the protocol’s parameter called the window size factor. Let N[r] 
denote the number of messages sent by a process r from among the 
messages currently in the sliding window. 

Let e be a small positive real number. The book-keeper main- 
tains a vector, weights, with an entry for every process in P such 
thatatanyinstant,weights[r] = (N[r]+e)/lv.setl(N+t) ifr E 
w.set, and0 otherwise. Thus, the weights vector approximates the 
distribution of the process transmission rates among the members 
of v.set. The parameter e is needed to avoid assignment of zero 
weights to the v.set membem Note that xrEv,set weights[r] = 
1 at all times. 

The distno variable counts distributions that have been output 
in the cunent view. Whenever anew distribution is output, dist-no 
is incremented and the content of the weights vector is saved in 
another vector called last-weights. If no distribution has yet been 
produced, last-weights[r] = l/lv.setl for each r E v.set, and 
0 otherwise. Periodically, the distributions stored in weights and 
last-weights am compared. If the difference between these dis- 
tributions exceeds a predefined threshold, a distribution dist such 
thatdist.id = distno and dist.w = weights is output. 

6.2 The Testing Environment 

We tested our protocol on 6 Per&m-l20 machines running the 
BSDIOS operating system and connected by a 10 MBit/second Eth- 
ernet LAN. Of these, two machines multicast at a rate of approxi- 
mately 10 messageslsec and 1 machine that multicast at a rate ap- 
proximately 20 messages/set. The remaining 3 machines multicast 
at substantially lower rate which varied from one experiment to an- 
other. The message size was 50 bytes. During the testing period 
all the machines were connected and active. The observed message 
loss was negligible. 

A potential weabess of this testing environment is that the 
transmission rates of participating machines was preset in advance 
and was static during each experiment. In the future we intend to 
analyze the performance of our protocol in more dynamic settings 
(see Section 7). 

6.2.1 Performance Results Analysis 

In our experiments we compared the performance of ATOP with 
a non-adaptive symmetric total ordering protocol, All-Ack [6], as 
well as with the Transis CMS. The Transis CMS guarantees only 
that the message delivery order satisfies the causal partial order on 
messages. Thus, in the Transis CMS, message order should not be 
agreed upon by all processes before delivery. Therefore, The Tran- 
sis CMS (in the absence of message loss) has an average message 
delivery latency close to that of the underlying network, as well as 
a low message delivery latency variance. We thus chose the results 
of the Transis CMS message delivery latency analysis as references 
for the best achievable by any total ordering protocol. 

In the first experiment series, we ran the All-Ack, ATOP and 
Transis CMS protocols while in each new experiment the trans- 

mission rate of each slow machine was smaller than it was in the 
previous experiment. We observed that (1) in each experiment the 
average message delivery latencies incurred by ATOP after adap- 
tation and Transis CMS were close to one another (the average la- 
tency of ATOP was slightly greater); and (2) the latency of the All- 
Ack protocol steadily increased from one experiment to another. 
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The conclusion is that the average latency of All-Ack, unlike that 
of ATOP, varies according to the transmission rate of the slowest 
process and therefore cannot be predicted in advance. 

In the second group of experiments we fixed the transmission 
rate of each of the slow processes to be approximately 1 message 
every 3 set, and measured the variance in the message delivery 
latency. To do this, we compared the delivering rate of messages 
sent by a particular process, with the sending rate of those same 
messages. We observed for each of the tested protocols, that while 
the average delivery rate for messages sent by each process is close 
to the transmission rate for that process, the message delivery rate 
variance of All-Ack (see Figure 7(b)) is much greater than that of 
ATOP (after the adaptation) (see Figure 7(a)). 

Figure S(b) illustrates that in the All-Ack protocol, the message 
delivery blocks until a message from the slowest process arrives. 
Then, all pending messages am delivered at once. By contrast the 
post-adaptation message delivery rate of ATOP (see Figure 8(a)) is 
almost constant and close to the sender’s transmission rate. 

7 Other Adaptation Policies 

The adaptation policy described in Section 6 is suited for LAN 
environments, where all connected processes see mom or less the 
same picture. The same is not true for wide area networks, where 
the variance in the message round trip time among different pro- 
cesses might be significant, and different processes do not neces- 
sarily observe the same distribution for process transmission rates. 
Here, it is not a good idea to give the book-keeping responsibilities 
to a deterministically chosen process. 

A better adaptation policy would instead dynamically mas- 
sign book-keeping responsibilities, while taking into account inter- 
process round trip delay times. The process with the minimal vari- 
ance of inter-process round trip delays would obviously be the best 
candidate for current book-keeper. 

Further challenges am presented by scenarios in which one or 
mom participating processes may occasionally pause and then te- 
sume communication before being taken out of the current view. 
Clearly, such perturbing processes can easily cause the adaptation 
policy of Section 6 to not stabilize. An adaptation policy that would 
result in better performance would thus identify such perturbing 
processes and assign them weights which would rapidly decrease 
the influence of their past transmission activity (e.g., one can use 
the exponential backoff technique). 

A completely different approach is to make the adaptation pol- 
icy application dependent. For example, the application can specify 
possible message transmission rate distribution patterns in advance. 
The adaptation policy can thus recognize these patterns earlier and 
correspondingly change the current ordering distribution. In par- 
ticular, this is useful in environments where message transmission 
rate distribution pattern depends on the time of day. 
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Abstract 

Most implementations of HTTP servers do not distinguish 
among requests to differeut pages. This has the implica- 
tiou that requests for popular pages have the tendency to 
overwhelm the requests for other pages. In addition, HTTP 
servers do not allow a site to specify policies for server re- 
source allocation. This paper presents a notion of wality 
of service that enables a site to customize how an HTTP 
server should respond to external requests by setting prior- 
ities among page requests and allocating server resources. 
It also describes a design and an implementation of a dis- 
tributed HTTP server, QoS Web Server, that enforces the 
quality of service constraints. The performance aualysis of 
the prototype server indicates that the server provides the 
desired quality of service with minimal overhead. 

1 Introduction 

With the advent of the WWW [13], there has been a fun- 
damental shift in the way information is exchanged among 
systems connected to the Internet. Three elements [26] of 
the WWW make this possible: a uniform naming mecha- 
nism (URL) for identifying resources, a protocol (HTTP) [2] 
for transferring information, aud the client-server based ar- 
chitecture [17]. A client such as a browser uses the URL 
of a resource to locate an HTTP server that provides the 
resource. It theu requests for services associated with the 
resource. The HTTP server performs the requested services 
(such as fetching a file or executing a program) and returns 
the results back to the client. 

The architecture of HTTP servers has been studied in 
great detail arid different variations of HTTP servers have 
beeu proposed. Much of the work has focussed on addressing 
the performance limiting behaviors [22] of HTTP servers. 
The research has, thus, focussed on developing techuiques 
(such as information caching [7, 20, 9, 231 and distribution, 
partitioning [16] of server load across clients and servers, and 
parallelization [15, 4, 14, 181 of HTTP servers over SMPs 
and workstations) for eliminating performance bottlenecks 
arising due to the lack of sufficieut CPU, disk, and network 
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bandwidths as well as inherent limitations in the implemen- 
tation techniques of HTTP servers. 

While this has led to a deeper understanding of how 
HTTP servers operate when there are sufficient resources 
for various requests, not much work has been done in cases 
when HTTP servers are overwhelmed by the sheer volume 
of requests. The behavior of HTTP servers is quite unpre- 
dictable in such cases: they either completely bog down with 
pending requests resulting in unacceptable response times or 
start to drop requests indiscriminately. In addition, requests 
for popular pages have the tendency to overwhelm the re- 
quests for other, possibly more important, pages. Addition 
of uew resources (such as new machines) may not solve the 
problem as requests for the popular page may continue to 
overwhelm other requests. Further, most implementations 
of HTTP servers treat all requests uniformly. A site, thus, 
cannot assigu priorities to differeut pages or control how its 
server resources should be used. For instance, a site may 
wish to state that a set of specific pages (such as its main 
page or product page) be always available irrespective of the 
demands for other pages or that only 20% of its resources 
be allocated to anonymous ftp requests. 

One possible mechanism for ensuring that requests for 
a collection of pages are guaranteed some server resources 
is to physically separate pages from each other by hosting 
them on separate servers. The problem with this approach is 
that it is difficult to map allocation of resources to various 
requests statically. First, such allocation may not be pre- 
cise. Second, it may lead to inefficient utilization of server 
resources. Third, the grauularity of such partitioning can 
be applied only to large groups of pages. 

What is needed is a uotion of quality of service (&OS) 
that characterizes the behavior of au HTTP server given a 
set of requests. This paper presents such a notion for HTTP 
servers and describes a design and an implementation of an 
HTTP server, QoS Web Server, that euforces the proposed 
quality of service model. Specifically, this paper addresses 
the following: 

l What is an appropriate quality of service model for 
HTTP servers? The quality of service model presented 
in this paper is aimed at enabling a site to customize 
how an HTTP server should respond to external re- 
quests. This includes setting priorities among page 
requests, allocating different kinds (absolute and rel- 
ative) server resources to different requests, and speci- 
fying constraints such as “always” which indicate that 
a specific page (or groups of pages) should always be 
available. 
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. Hovr can such HTTP servers be anaplemented? An im- 
plementation requires creation of a resource model for 
determining various resources that exist at any given 
moment. The paper describes an algorithm for schedul- 
ing various requests given a resource model such that 
the QoS constraints are satisfied. 

. What is the perfownance behavior of such servers? We 
are interested in characterizing the execution behavior 
and responsiveness of HTTP servers. The results from 
the prototype server indicate that the implementation 
provides the desired quality of service with little over- 
head. 

This paper is organized as follows: Section 2 presents a qual- 
ity of service model for HTTP servers. Section 3 describes 
an abstract model of an HTTP server that implements this 
QoS model. It also includes the description of a distributed 
HTTP server that we have implemented. Section 4 presents 
an analysis of the performance behavior of the server. Sec- 
tion 5 contains a comparison of our work with related work. 
Finally, Section 6 summarizes the results and discusses fu- 
ture work. 

2 A Quality of Service Model for HTTP Servers 

The notion of quality of service has been addressed in 
great detail in the network and multi-media community [24]. 
Within a client-server framework, we can think of quality of 
service as a quantification of level of services that a server 
can guarantee its clients. Examples of typical parameters 
that servers have used to guarantee services are transmis- 
sion delay, network transfer rate, image resolution, video 
frame rate, and audio or video sequence skew, among oth- 
ers. Clearly, the quality of service parameters depend on the 
kind of services that a server provides. In this section, we 
develop a model of quality of service for HTTP servers. 

In traditional quality of service models, the emphasis 
has been on developing notions of service guarantees that 
a server can provide to its clients. For HTTP servers, we 
develop two views of the quality of service: client-based and 
server-based. III the client-based view, the HTTP server 
guarantees specific services to its clients. Examples of such 
quality of service are a server’s guarantees on lower bounds 
on its throughput (for instance, number of bytes/second) 
or upper bounds on response times for specific requests. In 
the server-based view, the quality of service pertains to im- 
plementing a site’s view of how it should provide certain 
services. This includes setting priorities among various re- 
quests and limits on server resource usages by various re- 
quests. We develop the QoS model by fist constructing a 
model of client requests. 

We model web pages as objects and requests to access 
pages as method invocations 011 pages. For instance, an 
invocation <page>. read (~1, ~2, . . . p,) denotes a request to 
read <page>. pl, pz, . . . and p, denotes parameters of the 
request. An HTTP server, therefore, can be thought of as a 
runtime system that manages executions of various method 
invocations. Traditional HTTP servers do not distinguish 
among different method invocations. Each method invoca- 
tion is serviced in the order it is received (unless it is dropped 
due to resource contentions [S]). The QoS model here allows 
one to specify priority relationships among method invoca- 
tions. Further, a site may specify a set of resource usage 

constraints for controlling the amount of server resources 
allocated to requests. 

Note that the constraints over different requests can be 
classified into two types: server-centric and client-centric. 
Server-centric constraints depend on the attributes of servers 
only. Such constraints do not distinguish among differ- 
ent requests to the same page. Hence, priority is estab- 
lished among requests for different pages. Client-centric 
constraints depend on the attributes of clients as well. Here, 
requests for the same page are distinguished and may be pro- 
vided different quality of service. Our focus in this paper is 
on server-centric constraints only. 

As part of the QoS model, we have devised a notation, 
which we call WebQoSL. WebQoSL supports specifications 
of the following: 

Allocation of specific and relative amount of server re- 
sources to specific page requests 

Availability of groups of pages at all time 

Time-based and link-relation-based allocation of re- 
sources 

Scalable allocation of resources 

Specification of guarantees about byte transfer and 
page request rates 

Below, we provide a brief overview of the notation infor- 
mally. We emphasize that WebQoSL is still evolving as we 
are still experimenting with the notation by implementing 
different kinds of quality of service models. 

2.1 Specification of server resources 

WebQoSL allows one to model server resources explicitly: 

. 

. 

. 

2.2 

Percentage of server resources 

Notation: Let the term <page>. server-resource de- 
note percent of total server resources associated with 
requests to <page>. 

Requests/second 

Notation: Let the term <page>. nmrequests denote 
number of requests per second associated with <page>. 

Number of bytes/second 

Notation: Let the term <page>. num_bytes denote num- 
ber of kilobytes of <page> transmitted per second. 

Specification of QoS constraints 

A site specifies how its server resources should be allocated 
by defining a number of resource constraints of the form: 

<condition> => <QoSConstraint> 

The constraint specifies that if <condition> is true, 
the <QoSConstraint> must hold. Booleau expression 
<condition> can include specific attributes (such as time, 
size, owner, client, time of last access and time of last mod- 
ification) of pages in constraint specifications. 

QoS constraints for various requests can be defined as 
absolute, relative, scalable and time-bound. Absolute con- 
straint are used to specify specific resources that are allo- 
cated to various requests. Relative constraints, on the other 
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hand, allow one to assign various priorities among different 
requests. Scalable constraints allow QoS specifications to 
scale as new server resources (such as new machines) are 
added. Time-bound constraints allow one to specify con 
straints that have temporal characteristics (e.g., if page p 
is accessed at time t, page q should be available until time 
t + At.) Due to lack of space, we will only describe absolute 
QoS constraints here. 

The absolute constraints are specified by allocating a spe- 
cific amount of resources to various requests or putting a 
lower or upper bound on resources. For instance, the con- 
straint 

<page>.server-resource = r 

specifies that <page> be allocated r units of resources. The 
constraint 

<page>.server-resource < r 

specifies that <page> be allocated at most r units of re- 
sources. The constraint 

<page>.server-resource > r 

specifies that <page> be allocated at least r units of re- 
sources. Another way of specifying a lower bound on re- 
source allocations is to assert that a page should be available 
at all times. 

<page>.available = always 

The language also supports specification of allocation of de- 
fault, equal and other scalable allocation of server resources. 

Example 2.1. (&OS Specijication). The following con- 
straints 

<www.commerce.com/free>.server~resource < 0.1 
<www.commerce.com/paid/full>.server-resource > 0.5 

are used to divide the server resources at wuw. commerce. corn 
into two: free that can be given up to 10% of the server 
resources, and full that should be given at least 50% of the 
resources. 

The uext example specifies that a particular group of 
pages should always be available: 

<wwu.commerce.com/index>.available = always 

n 

3 QoS Web Server 

In this section, we describe an abstract model for the QoS 
Web Server. A distributed QoS Web Server is implemented 
in terms of a set of HTTP servers, each executing on a dif- 
ferent host. 

In figure 1, we show the architecture of a distributed QoS 
Web Server which is implemented in terms of five HTTP 
servers (s 1, . . . , 85) executing on different hosts. Each server 
responds to user’s requests by accessing files from either the 
local disk or remote disk through the network file system 
and transmitting them to the client. We assume that a client 
can send a request to any of the HTTP servers directly by 
using one of the routing mechanisms (such as the Domain 
Name Server’s redirection [g], ONE-IP mechanism [lo] and 
router-based redirection [ll]). 

QoS Web Serve 

Figure 1: Architecture of a QoS Web Server 

The primary goal of a QoS Web Server is to serve a 
file request only if servicing the requests does not violate 
the quality of service constraint that a site imposes. Each 
server, upon start, reads a file containing the quality of ser- 
vice specifications. It then constructs a priority model and 
a resource requirement model. The priority model defines a 
partial order among various requests to different pages and 
specifies the order in which requests should be handled. The 
resource requirements model, on the other hand, specifies 
the amount of resources that must be allocated to specific 
groups of requests. The servers then start to run and accept 
requests from clients. 

Unlike the traditional HTTP servers where servers do not 
discriminate between various requests, a QoS Web Server 
must ensure that QoS constraints are met when requests are 
accepted. This is achieved by constructing a global model of 
resource availability and a global queue of all outstanding re- 
quests. The global resource model predicts the total amount 
of resources available at the hosts. The global request queue 
contains the pending requests. The priority model, global 
resource model, and global request queue are used to de- 
termine (i) the requests that will be granted service at this 
moment and (ii) the location of the server where a request 
will be executed. 

We have implemented a version of a distributed HTTP 
server in which the global request queue and the resource 
model are centralized. Further, the algorithm for allocating 
resources is centralized as well. We describe the resource 
model and the HTTP server algorithm in Sections 3.1 and 
3.2. 

3.1 Resource model 

This section briefly describes how we construct a resource 
model of the underlying system. The resource model spec- 
ifies the capacity (in terms of bytes/second) of each HTTP 
server at a given moment. This provides an abstraction 
of resources (CPU, memory, network bandwidth) that the 
HTTP server can provide. 

The resource model is evaluated by requiring that 
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Figure 2: Architecture of the QoS Web Server 

each HTTP server periodically determine the number of 
bytes/second it can deliver. Note that a machine’s ability to 
serve a specific bandwidth depends on a number of factors: 
CPU speed, local CPU load factor, file server’s capacity, file 
server’s load factor, and local area network characteristics. 
III [19], an analytical model is created for evaluating the cost 
associated with accessing remote files, whereas in [25], the 
experimental technique used in the NFS benchmark (LAD- 
DIS) for evaluating the performance behavior of NSF servers 
is described. Both of these techniques can be extended to 
construct a resource model for the QoS Web Server. 

Currently, we are using a simple experimental technique 
for constructing the resource model. We measure the length 
of time to send a request and use it to extrapolate the 
amount of bytes the HTTP servers can handle. This is 
performed as follows: Each HTTP server keeps a table of 
various local load factors and its capacity to access its local 
and remote files. In addition, the servers keep track of the 
average number of concurrent HTTP requests being served. 
Every time a job finishes, the table is updated and revised 
by calculating the transmission time. The total bandwidth 
is then calculated (approximately) by utilizing the average 
number of concurrent HTTP requests made during the in- 
terval. The average of the total bandwidth calculated by the 
recent jobs is then used to determine the total bandwidth 
for the server at a given CPU load. 

3.2 An HTTP server 

In this section, we describe the implementation of the QoS 
Web Server. 

3.2.1 Architecture 

We have implemented the QoS Web Server by modifying 
the NCSA’s httpd web server. In figure 2, we show the ar- 
chitecture of the QoS Web Server. The QoS Web Server 
is implemented in terms of a set of components: a WWW 
server, a communications server and a centralized quality of 
service daemon (qosd). The WWW server is a modified ver- 
sion of the stand alone NCSA httpd WWW server [l]. It is 
used to handle individual HTTP requests. The modification 
in the NCSA server involves adding a check to ensure that a 
request is served only if the quality of service constraints are 
not violated. The modified server, therefore, sends a query 
to the qosd if the HTTP request should be handled. The 
qosd returns one of three values: handle the HTTP request, 

deny the HTTP request (because of QoS constraints), or 
redirect the HTTP request to a WWW server at a different 
host. 

The wmmunicntion server at a host performs two tasks: 
forwarding messages between the WWW Server at the host 
and the qosd, and implementing the resource model (Sec- 
tion 3.1). The communication server periodically transmits 
the WWW capacity to the qosd so that the qosd can update 
the global resource model. We have separated the commu- 
nication server from the WWW server in order to avoid the 
overhead of initiating a new connection to the qosd every 
time an HTTP request is made. Also, the separation allows 
us to add new functionalities to the NCSA server without 
requiring extensive modifications in the NCSA server source 
code. 

The quality of service daemon maintains global infor- 
mation for the distributed server and schedules HTTP 
requests. It maintains a quality of service model for various 
pages indicating priorities and resources associated with 
different requests, a global queue of outstanding HTTP 
requests, and a global resource model indicating the 
capacities of the WWW servers. We now describe how we 
use this set of information for implementing the qosd. 

3.2.2 Implementation of the QoS daemon 

The qosd first reads the QoS specification and constructs a 
QoS model. The QoS model defines categories or subsets 
of the document space and is used to associate an absolute 
or relative resource allocation with documents within the 
subset. 

The qosd models each WWW server as a pipe capable of 
supporting a dynamic byte stream. It determines the capac- 
ity of the pipe in terms of number of bytes transmitted per 
second. Each WWW server periodically sends its projected 
capacity over the next allocation time unit to the qosd. Each 
pipe is further subdivided into smaller units, called channels 
(figure 3). A channel forms a connection between a server 
and a single HTTP client. It is the unit of allocation and 
resource control in the QoS Web Server. 

--j- r.‘. . _,. :.:.:~~::.:::::~:::::::::::::::::::::::::::::::::::::::::::::::~~:::~:~~:~~::~::::~~~~ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,...,... .A.. . . . . 
$’ e. 

I 

..:.::::::::~:::~~~~::::::::::~.~::~:~::~:~~..:.:~:.:.:..~~ . . . . . . . . . . . ..!....... “” 1. .. . . . . . . ..A............ :.~.~.~.~.~.~.~.~.~.~.~:~~~:~:~:~~~:~. . 
a ac1 t y .~~~~~~~~:.~~~~:~~~.~:~~~~~~~ 

3 
_____..__._t....... < _______.________.__........................... 
~~~~.~~~.~~.~~.~~.~~~~.~~.:; ’ : :;;;;x; ~~,:;~~~~~~~~~.:.:.:.:~ ),, ‘:::::::::::..:::,~.:,~~.;,~.~,~.:,~.:.~..,.:,:.:,,.:.., ~~...A ‘..i.‘.~.~.~:.~.~:.’ C h alnels 

Figure 3: Pipes and channels 

The size of each channel (in terms of bandwidth) is de- 
pendent 011 how many times we subdivide a pipe. For exan- 
ple, if a server indicates that it can serve 20 MB/second, the 
pipe size is 20 MB/second. Further, this pipe can be sub- 
divided into 10 2 MB/second channels or 40 .5 MB/second 
channels. A channel with 2 Mb/second capacity is different 
from a channel with 0.5 MB/second capacity in that it can 
serve a request 4 times faster than the latter channel. The 
channel capacity has, thus, implications on response time. 
Our implementation allows a site administrator to specify 
the server response time for a given file of certain size’. 
The administrator can specify that a WWW page of size z 

‘The response tiine does not consider the latency and transmission 
costs across a wide area network. 
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should be served in time t. This cam be handled by defiuing 
the channel size to be x/t. 

The scheduling of HTTP requests is achieved by keep- 
iug track of two sets of requests: requests waitiug to be 
serviced aud currently being serviced. We first schedule all 
jobs in categories which should always be served. We theu 
determiue the uumber of reinaiuing chaunels that can be 
allocated to requests with bounds 011 resource usage. 

For each such category, we deteriniue the uumber of 
channels available. We subtract from the number of avail- 
able channels for this category the uumber of chaimels cur- 
rently in use by requests in this category. This tells us how 
many channels we can allocate for new jobs in this category. 
We start jobs if we cau start them on the server at which 
they arrived. After applyiug the algorithm, some categories 
may not have used all of their slots because the server at 
which the request arrived does uot have any open channels. 
At this time the qosd redirects the request to a server with 
a free channel. 

We assign all requests in the bouuded quality of service 
category a lifetime. When a request surpasses a set age, QoS 
Web Server send a message to the HTTP client denying 
their HTTP request. Such a denial allows the QoS Web 
Server to put a limit OII the implicit resources it allocates to 
various requests. For instauce, each request occupies a space 
on request queue, holds a socket connection, and may even 
have a process assigned to it. By dropping connections, the 
server indicates that the request is uot goiug to be assigned 
auy resources in the near future as it is still trying to serve 
more important jobs. 

4 Performance analysis 

III this section, we present an evaluatiou of the QoS Web 
Server. The objectives of the evaluation are to address the 
following: 

l How does the QoS Web Server perform for different 
kinds of resource constraints? 

l What is the overhead of addiug the notion of quality 
of service to HTTP servers? 

4.1 Performance analysis environment 

Our test environment consists of ten Sun workstations, con- 

sisting of a combination of Spare 2, Spare 5, Spare 10, and 
Spare 20 workstations. These workstations are connected 
on a local area network. 

For the purpose of comparing results, we created a beuch- 
mark program baaed on ptester, a HTTP retrieval bench- 
mark program included in the phttpd package [12]. The 
benchmark program takes as input a trace of requests and 
times, and uses the trace to send requests to the QoS Web 
Server. We generate traces that reflect specific or random 
mixes of various requests for different pages. All of our ex- 
periments, thus, were conducted on synthetic page requests. 

The benchmark program is also responsible for calculat- 
iug response times and storing the results for each request as 
to whether the request was accepted, was denied or failed. 
It allows reply of a trace of requests so that we cau com- 
pare the behavior of the QoS Web Server under different 
configurations. The benchmark program is multi-threaded 
and distributed across multiple processes. This distribution 

is utilized in order to avoid limits due to the uumber of opeu 
sockets per process. 

The tests were conducted on a local area network. As 
a result, the measurements obtained by these experiineuts 
provide a look at how to optimize the sending of pages Goin 
the Web Server’s standpoint. They do uot address issues 
related to the bandwidth of the network between the server 
and the clients. 

4.2 Resource usage constraints 

In this section, we present the set of experiments that char- 
acterize the behavior of the QoS Web Server with respect to 
different resource usage constraints. Specifically, our con- 
ceru here is addressiug the following issue: Does the QoS 
Web Server implemeut specified coustraints on resource al- 
location to various requests? The experiments show that 
achieving the desired service specification depeuds on sev- 
eral facts: 

l Our scheduling algorithm tries to satisfy resource COII- 

straiuts and, at the same time, utilize server resources 
effectively. Hence, if the QoS Web Server in not in 
contention, allocatiou of resources to various requests 
reflect the mix of the input requests. However, when 
the QoS Web Server is in contention, resources are al- 
located according to the constraints. 

l In a giveu request mix, the QoS Web Server allocates a 
categories eutire portion of resources ouly if there are 
enough requests in that category. For instance, the &OS 
Web Server can allocate 60% of its resources to requests 
for page A only if the requests are greater than 60% of 
the total QoS Web Server bandwidth. 

l Chauuel size and request queue lifetime both affect how 
precisely the QoS Web Server can allocate various re- 
sources. Increasing chauuel size and lengthening the 
request queue lifetime increase accuracy but decrease 
response time. 

In the resource usage constraint experiments, we specify 
fixed perceutages for jobs in a given category. We theu ran- 
domly requests jobs from the different categories. Also, we 
utilize two to five categories of pages. We carried out the 
the various experiments by changing the following param- 
eters: page size, resource usage constraints, queue lifetime 
and channel size. 

4.2.1 Percentage requests handled 

This experiment measures the number of pages served in 
each of the five categories over a ten second interval. We 
then calculate the percentage of pages served from each of 
the five categories. 

In the first set of experiments, the beuchrnark program 
scuds 18 requests per second for 16K files and 8 requests 
per second for 128K files. The life time for each request on 

the request queue was set to be l/2 second. Figure 4(a) 
displays the results for files of size 16K; figure 4(b) displays 
the results for files of size 128K. 

The graph shows the experiment time aud plots the per- 
centage of the server responses for the five different cate- 
gories. The legend shows the resource constraints for various 
pages. As we can see, the server euforces the constraints 011 

amount of resources that can be allocated to various pages. 

251 



Figure 4: Percentages of requests served for pages with different resource usage constraints 

Note that there are some fluctuations in the percentage 
of pages served. The fluctuations arise primarily due to the 
randomness in the number of various category requests that 
arrive at the server. 

4.2.2 Guaranteed service 

In this experiment, we determine if the QoS Web Server 
can enforce resource constraints that specify that a set of 
pages should always be available. We request pages in five 
categories (A, B, C, D and E). We specify the constraint 
that A should always be available and that B, C, D and 
E receive 30%, 30%, 20% and 20% of the remaining server 
resources respectively. 

We ran two sets of experiments: one for 16K pages and 
another for 128K pages. The results of the two experiments 
show that the QoS Web Server accepts 100% of A requests. 
In table 1, we show the percentages and numbers of requests 
accepted by the server for the two experiments. 

Table 1: Performance behavior of server with always con- 
straint 

Note that the server accepts all requests for the guar- 
anteed category. It denies about 750 requests in the 16K 
experiment and 500 requests in the 128K experiment for 
the remaining categories. 

4.2.3 Different file sizes 

We ran another set of experiments in order to analyze the 
behavior of the server when clients request files of different 
sizes. In this experiments, requests for files of sizes 16K, 
32K, and 64K are respectively allocated lo%, 35%, and 55% 
of server resources. 

The results of the percentages of requests handled in each 
of these categories are shown in figure 5(a). Instead, if we 
scale the results to measure the number of bytes served in 
each of these categories, the results appear as shown in fig- 
ure 5(b). 

Note that the percentage of bytes seems to match the 
QoS specification best. This matches our resource model 
that considers the resources of the server to be the band- 
width. Although, this fits better we also note that the 
larger file receives a disproportionate amount of the server 
resources. This is due to the diminishing effect of the con- 
stant overhead of making a connection to the server. 

4.2.4 Flash crowds 

In this experiment, we observe the behavior of the server 
when there is a drastic change in the number of requests for 
a specific page. This experiment aims to simulate the situ- 
ation when there is high demand for a temporarily popular 
page. All file sizes are 15K and we create five categories 
each of which has a resource usage constraint of 20%. In 
this experiment, an equal number of requests arrive at the 
server at first. However, after 50 seconds, a large number 
of requests for page A arrives for the next 20 seconds. In 
figure 6(a), we show the request pattern for various requests. 

In figure 6(b), we show the percentages of requests ac- 
cepted by the server. Note that the percentages of requests 
served for A do not change. 

4.2.5 Contention and non-contention behavior 

As we stated earlier, the scheduling algorithm in the QoS 
Web Server operates in two modes: if there is no contention, 
the server tries to optimally utilize resources by serving all 
requests. However, if there is contention, it enforces the 
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(b) Percentage of bytes served 

Figure 5: Behavior of server for requests of different sizes 

(a) Request pattern 

Figure 6: Behavior of server with flash crowds 
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Figure 7: Behavior of server with differing number of con- 
current requests 

resource constraints. This set of experiments shows how the 
behavior of the server changes when contention arises in the 
server. 

In this experiment, clients request two files, denoted A 
and B. The size of each file is 128K. The incoming requests 
are a mix of 65% page A and 35% page B. The QoS specifi- 
cation assigns equal resources to both A and B. The request 
lifetime for each file is 1 second. In figure 7, we show the 
behavior of the server. 

In figure 7(a), we show the percentages of requests of A 
and B accepted. Note that contention begins to occur at 
about 8 requests/second. At about 12 requests/second, the 
server is in full contention. Note that as long as there is 
no contention, the percentages of server’s acceptances of A 
and B match those of the requests. However, as we reach 
contention, the percentages of server’s acceptances start to 
match those of the resource specifications. 

In figure 7(b), we show the number of requests denied 
to meet the resource constraints. As long as we are not 
under contention, no requests are dropped. However, when 

in contention the server begins to deny requests in a manner 
that attempts to satisfy the resource constraints. 

4.3 Performance comparisons 

In this set of experiments, we compare the performance be- 
havior of the QoS Web Server with respect to the NCSA 
HTTP server which we modified. We have compared two 
characteristics of the servers: throughput and average re- 
sponse time. In the experiments here, the tester program 
requests 8 files every second. The size of the files is 128K. 

In figure 8, we show the throughput of the two servers. 
For the NCSA server, it is about 0.78 M bytes/second. The 
throughput for the QoS Web Server ranges from 0.42 M 
bytes/second to about 0.7 M bytes/second. The graph il- 
lustrates two points: First, the throughput of the QoS Web 
Server is only marginally less than that of the NCSA server. 
Hence, the overhead of adding the notion of quality of ser- 
vice to an HTTP server does not cause the performance 
of the HTTP server to degrade significantly. Second, in- 
creasing the life time of requests 0x1 the request queue in- 
creases the throughput of the QoS Web Server up to some 
point. When the request life time is low, QoS Web Server 
rejects many requests which would have been granted re- 
sources. However, by rejecting these requests, the QoS Web 
Server wastes all resources (such as queue space, socket over- 
head, process creation and deletion overhead) it devoted to 
the requests. However, as the requests stay on the queue 
longer and longer, the probability that they will be served 
increases more, thereby leading to better utilization of server 
resources. 

“““~A”nC ” 
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Figure 8: Comparison of throughput of NCSA and QoS Web 
servers 

In figure 9, we show the average response times for the 
two servers. The lifetime for requests on the request queue 
is about 4 seconds. The graph highlights the fact that the 
average response time for the QoS Web Server remains fairly 
constant, whereas the response time for NCSA server is in- 
creasing. This is because the QoS Web Server drops all 
requests that it cannot serve after they stayed in the queue, 
whereas the NCSA server continues to accept requests even 
if it cannot handle them promptly. 
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Figure 9: Comparison of average response times of NCSA 
and QoS Web servers 

5 Related Work 

There are two bodies of research with which our work over- 
laps: research on HTTP servers and research on quality of 
service in distributed systems. The focus in the first is on 
the design of HTTP servers, whereas the focus in the sec- 
ond is on developing various quality of service models and 
scheduling algorithms for supporting specific quality of ser- 
vice guarantees. 

5.1 HTTP servers 

As we described earlier, the primary goal of an HTTP server 
is to service requests for web pages. Much of the HTTP 
server work has focussed 0x1 developing variations of HTTP 
server architectures that reduce the CPU, network, and disk 
bottleneck. We will focus only on the distributed HTTP 
server work [15, 14, 41 because of the similarity in the issues 
addressed by these approaches and our approach. The fo- 
cus in the distributed server research has been on using the 
resources of distributed hosts to increase the throughput of 
HTTP servers. Most of the research here has been aimed 
at addressing the notion of load balancing and scalability: 
given a request, how should the server schedule this request 
so that resources on the distributed hosts are optimally uti- 
lized. Our work, on the other hand, addresses additional 
issues in the design of HTTP servers: 

l Should the server accept a request? 

l If so, how much resources should be allocated to the 
request? 

There has been some work that looks at the notion of quality 
of service for HTTP servers. [3] proposes a notion of quality 
of service by associating priorities with requests from differ- 
ent sites. The HTTP server schedules requests according to 
priorities, thereby ensuring that preferred sites (with higher 
priority) are allocated resources before other sites. Our work 
differs in many ways: first, the focus in [3] is on proposing 
techniques for structuring single host HTTP servers in order 
to improve the response times of high priority requests. Our 
work primarily involves distributed HTTP servers. Second, 
our notion of quality of service is more general in that we 

not only allow a site to specify priorities but also allow it to 
specify resource usage constraints 0x1 a group of requests. In 
[5], a notion of quality of service is proposed with respect to 
the content. However, there is not support for awry notion of 
quality of service with respect to resource usage, throughput 
or response time. 

5.2 Quality of service in Distributed Systems 

The notion of quality of service [21] has been studied in 
great detail within the context of networking [21] and multi- 
media [24]. The focus of work here has been on developing 
varying level of services (including low-level notions such 
as number of bytes/second to high-level notions such as 
jitter-free play of images etc.) and on developing algorithms 
for scheduling CPU, memory and networking resources such 
that the quality of service guarantees are met. In 1271 mecha- 
nislns for specifying service guarantees with method invoca- 
tions of CORBA objects is presented. Our work is similar to 
these works in that we also associate quality of service with 
resources in order to schedule resources. However, our work 
differs from them in the nature of resources (web pages), 
in terms of constraints on usage of resource and how they 
should be scheduled. 

6 Summary 

We have presented the design and implementation of a dis- 
tributed HTTP server that implements a quality of service 
model. In this model, a site can determine how requests for 
various pages should be served. This includes setting priori- 
ties among the requests as well es associating constraints on 
resource usages. Resource usage constraints provide a useful 
tool for providing services on the WWW. They support the 
ability to guarantee documents and set desired performance 
characteristics by denying requests rather than serving all 
requests at the same time. 

We have also analyzed the performance characteristics 
of the QoS Web Server. The analysis shows that the server 
enforces user specifiable constraints on resource usages. Fur- 
ther, the performance behavior of the server is comparable 
to that of the standard NCSA HTTP server. 

Our future work involves formalizing WebQoSL, refining 
the resource model, and implementing a distributed version 
of the qosd. 
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