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Abstract. This work considers the problem of performing 1 Introduction
tasks in a distributed system pfault-prone processors. This
problem, calledbo-ALL herein, was introduced by Dwork, Achieving efficient distributed solutions for specific problems
Halpern and Waarts. The solutions presented here are for théepends on our ability to effectively exploit parallelism in a
model of computation that abstracts a synchronous messaggystem consisting of multiple processors. This is often chal-
passing distributed system with processor stop-failures anéenging because the set of processors available to a computa-
restarts. We present two new algorithms based on a new agion may dynamically change. Such changes may occur due
gressive coordination paradigm by which multiple coordina-to processor failures or processors becoming unavailable dur-
tors may be active as the result of failures. The first algo-ing periods when they are required to perform other unrelated
rithm is tolerant off < p stop-failures and does not allow tasks, or due to repaired or idle processors joining the com-
restarts. Its available processor steps (work) complexity igoutation already in progress. A basic problem that can read-
S = O((t+ plogp/ loglog p) -log f) and its message com- ily benefit from adaptively parallel solutions is the problem
plexity is M = O(t + plogp/loglogp + fp). Unlike prior of performing a number of similar, independent and idempo-
solutions, our algorithm uses redundant broadcasts when efient tasks. By the similarity of tasks we mean that the task
countering failures and, fgr= ¢ and largef, itachieves better ~ executions consume equal or comparable resources. By the
work complexity. This algorithm is used as the basis for an-independence of the tasks we mean that the completion of
other algorithm that tolerates stop-failurasd restarts This ~ any task does not affect any other task. By the idempotence
new algorithm is the first solution for theo-ALL problem that ~ of the tasks we mean that each task can be executed multiple
efficiently deals with processor restarts. Its available procestimes or concurrently without negatively impacting the final
sor stepsiss = O((t +plogp+ f) -min{log p,log f}),and  result. Examples of such problems are checking all the points
its message complexity &/ = O(t + plogp + fp), where  in a large solution space, trying to generate a witness or re-
f is the total number of failures. fute its existence, or simply performing a number of similar
independent calculations.
Here we consider the abstract problem of performing
Keywords: Fault-tolerance — Distributed systems — Load bal- tasks in a synchronous message passing distributed environ-
ancing — Processor restarts — Work ment consisting op processors, which are subject to failures
and restarts. Failures are crash failures, i.e., a faulty processor
stops and does not perform any further actions. Restarted pro-
cessors resume computation in a predefined initial state, i.e.,
no stable storage is assumed. We refer to such a problem as
theDO-ALL problem.
Algorithmic solutions for thepo-ALL problem in the
A preliminary version of this work appeared as [2]. This work was message-passing models of computation can be evaluated ac-
supported by the following contracts: ARPA N00014-92-J-4033 andcording to their computational effectiveness that measures the
F19628-95-C-0118, NSF 922124-CCR, ONR-AFOSR F49620-94-number of computation steps taken in performing the tasks,
1-01997, KBN 8 T11C 036 14, and DFG-Graduiertenkolleg “Par- and according to their communication efficiency that mea-
allele Rechnernetzwgrke in der.Produk.tionstechnik" ME 872/4-1,Sures the amount of Communication needed to perform the
DFG-SFB 376 "Massive Paralledit Algorithmen, Entwurfsmetho-  ta5ks. Dwork, Halpern and Waarts [6], the first to consider the
den, Anwendungen’i. Thle.r.esearc.h of the first anq the thlrd a.u}hor%O_ALL problem, use work measure defined as the number of
was partly done while visiting Heinz Nixdorf Institut, Universtt tasks executed, counting multiplicities, to assess the compu-
GH Paderborn. tational efficiency. This work measure accounts only for steps
* The research of the third author was supported in part by the NSEaken by processors while executing the tasks ofttheaLL
CAREERAward CCR 9984778 and by the NSF Grant CCR 9988304 problem; processor steps taken for coordination or waiting
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S: available processor steps M: message complexity
No [5] O+ (f+1)p) O((f +1)p)
restarts [7] O+ (f+1p) O(fp° + min{f + 1,log p}p)
(f<p) AN O((t + plogp/ loglog p) log f) O(t + plogp/loglogp + fp)
Restars AR O((t+plogp + f) - min{log p, log f}) O(t+ plogp + fp)
(f <p+tr)

Fig. 1. Efficiency of the solutions in [5, 7] and algorithms AN and AR (the solutions in [6] consider a different notion of work complexity and

focus on evaluation of effort)

for messages are not counted. Another measure of work, thReview of prior work

available processor stepdefined by Kanellakis and Shvarts-

man [10], takes into account all steps taken by the processors,

that is, both steps taken in executing thtasks and any other Algorithms solving thepo-aLL problem have been provided
steps, including idling, taken by the available processors. Thuby Dwork, Halpern and Waarts [6], by De Prisco, Mayer and
the available processor steps measure [10] is more conserving [5], and by Galil, Mayer and Yung [7]. These determin-

tive than the work measure of [6]. L&Y (¢, p) be the work

istic algorithms are formulated for failure models that allow

complexity andS (¢, p) be the available processor steps com- processor failures but disallow processor restarts. The point-
plexity of somepo-ALL algorithm in some failure model. It to-point messaging between non-faulty processors is assumed

is always the case th&V(¢,p) = O(S(¢,p)), sinceS(t,p)
counts the idle/wait steps, which are not includedfitit, p).

The equalityiV (¢, p) = S(t,p) can be achieved, for example,

to be reliable. In a synchronous system with these assumptions
processor failures are detectable, for example using a timeout,
and such processors are modeled usindgitestop processor

by algorithms that perform at least one task during any fixedabstraction of Schlichting and Schneider [15].
time period. In our work we use the available processor steps Dwork, Halpern and Waarts [6] developed the first algo-

measure.

rithms for thepo-ALL problem. One algorithm presented in [6]

Communication efficiency is gauged using the messagéprotocol B) has effortO(t + p,/p), with work contributing
complexity that accounts for the number of messages sent duthe costO(¢ + p) towards the effort, and message complexity
ing the computation, or, when the messages substantially vargontributing the cos(p,/p). The running time of the algo-
in size, using the bit complexity that accounts for the num-rithm is O(t + p). The algorithm uses the synchrony of the
ber of bits sent. When processors communicate using broadgystem to detect failures by means of time-outs. In this algo-
casts (multicasts), it is possible to measure the communicatiorithm thet tasks are divided into chunks and each of these is
complexity either in terms of the total number of broadcastdivided into subchunks. Processors checkpoint their progress
messages, or in terms of the number of messages destindy multicasting the completion information to subsets of pro-
to all recipients targetted by the broadcasts. In this work wecessors after performing a subchunk, and broadcasting to all
use the more conservative communication complexity meaprocessors after completing chunks of work. Another algo-
sure by taking into account all messages created as the resuithm in [6] (protocolC) has effortO(t + plogp). It has op-
of a broadcast. For example, we count a single broadcast to timal work of O(¢ + p), message complexity @ (plogp),

processors as messages.
Dwork et al. also use theffort complexity, defined as the

and timeO(p?(t + p)2!*?). Thus the reduction in message
complexity is traded-off for a significant increase in time. Yet

sum of the work and message complexities. This approaclnother algorithm of [6] (protocdD) obtains work optimal-

makes sense for algorithms for which the work and the mesity and is designed for maximum speed-up, which is achieved
sage complexities are similar. However, this makes it diffi-with a more aggressive checkpointing strategy, thus trading-
cult to compare relative efficiency of algorithms that exhibit off time for messages. The message complexity is quadratic
varying trade-offs between the work and the communicationin p for the fault-free case, and in the presence of a failure

efficiencies. De Prisco, Mayer and Yung [5] evaluate ALL

pattern off < p failures, the message complexity degrades to

algorithms using a “lexicographic” criterion: first evaluate an O(f p?).

algorithm according to its available processor steps and then De Prisco, Mayer and Yung [5] present an algorithm which
according to its message complexity. This approach assumd®as the available processor steépg + (f + 1)p) and mes-
that optimization of the computational steps is more importanisage complexity)((f + 1)p). The available processor steps
than that of the message complexity. In this paper we consideand communication efficiency approach requires keeping all

the available processor steps, denotedbbgind the message
complexity, denoted by/, as twoindependenmeasures of
efficiency of algorithms.

Itis not difficult to formulate trivial solutions too-ALL in
which each processor performs each ofttkesks. Such solu-
tions haveS = Q2(t(p+r)), wherer is the number of restarts,

the processors busy doing tasks, simultaneously controlling
the amount of communication. Their algorithm operates as
follows. At each step all the processors have an overestimate
of the set of all the available processors. One processor is de-
signed to be the coordinator and is responsible for the progress
of the computation. It allocates the outstanding tasks accord-

and they do not require any communication. Solutions thaing to some allocation rule and waits for notifications of the
achieve better efficiency i trade messages for computation tasks which have been performed. The coordinator changes

steps.

over time. To avoid a quadratic upper bound $osubstantial
processor slacknesg « t) is assumed.
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Another efficient algorithm was developed by Galil, Mayer Summary of contributions
and Yung [7]. Working in the context of Byzantine agreement

with stop-failures (for which they establish a message-optimaly|| previous algorithms do not consider the possibility that
solution), they improved the message complexity of [5] 04 tauity processor is repaired and reintegrated into the sys-
O(fp°+min{f+1,logp}p), forany positive:, while achiev-  tem |n this paper we present the first algorithm that solves the
ing the available processor steps complexitPéf+(f+1)p).  po-aLL problem allowing processor restarts. We introduce a
In[5] alower bound of2(t+(f +1)p) for algorithms that ey algorithmic technique based on an aggressive coordina-
use the stage-checkpointing strategy is proved, this bound bgjon paradigm that permits multiple concurrent coordinators.
ing quadratic irp for f comparable witlp. However there are  Thjs approach is suggested by the earlier observation that algo-
algorithmic strategies that have the potential of circumvent-jthms with only one coordinator cannot deal efficiently with
ing the quadratic bound. Consider the following scenariosyestarts. The number of coordinators is managed adaptively.
In the first one we have = o(p), f > p/2, and the algo-  \yhen failures of coordinators disrupt the progress of the com-
rithm assigns all tasks to every Processor. THea O(pt) = pytation, the number of coordinators is increased; when the
o(t + (f + 1)p), becausefp = O(p°). This naVe algorithm  f551yres subside, a single coordinator is appointd.route
has a quadrati¢ for p = (’)_(_t). In the second example as- g the solution for restartable processors we introduce a new
sume that the three quantitipst and f are of comparable  51gorithm for thepo-aLL problem without restarts. This al-
magnitude. Consider the algorithm in which all the Proces-gorithm, that we call “algorithm AN" (Algorithm No-restart),
sors are coordinators, execution of tasks is interleaved with iolerant off < p stop-failures. It has available processor
communication, and the outstanding tasks are evenly allogiens complexity.s — O((t + plog p/ log log p) log f) and
cated among the live processors based on their identifiergnessage complexity/ — O(t + plogp/loglogp + fp).
The tasks allocation is done after each round of exchangaqorithm AN is the basis for our second algorithm, called
ing messages about which processors are still available a”‘l\lgorithm AR" (Algorithm with Restarts), which tolerates
which tasks have been successfully performed. One can shows fajlures and restarts. Its available processor steps com-
that S = O(plogp/loglogp). This bound iso(t + (f + plexity is S = O((t + plogp + f) - min{log p, log f}), and
1)p) for f > p/2 andt = P Unfortunately th_e number jig message complexity i = O(t + plog p+ fp), wheref
of messages exchanged is more than quadratic, and can heihe number of failures. The results are summarized in Fig. 1.
2(p* log p/ loglog p). These examples suggest a possibility ~ oyr algorithm AN is more efficient in terms ofthan the
of performance better thasi = O(t + (f + 1)p), however  4gqrithms in [5] and [7] wherf, p andt are comparable; the
the simple algorithms discussed above have either the availgorithm also has efficient message complexity. Algorithms
able processor steps_qyadrat@;rmrthe number of messages AN and algorithm AR come within g # (andlog p) factor of
more than quadratic inin the case whep, t andf are of the ne respective lower bounds [10] proved in the context of the
same order. One interesting result of our paper is showing thaéhared-memory model of computation for any algorithms that

an algorithm can be developed which has both the availablgg|ance loads of surviving processors in each constant-time
processor steps which is always subquadratic, and the numbgfep_

of messages which is quadratic only fbrcomparable tg, Our algorithms assume that the communication is reliable.
evenwithrestarts. _ _ If aprocessor sends amessage to another operational processor
Previous deterministic algorithms are designed so that and when the message arrives at the destination the processoris
each step there is at most one coordinator; if the current cogtj|| operational, then the message is received. Moreover, if an
ordinator fails then the next available processor takes ovelgperational processor sends amulticast message and then fails,
according to a time-out strategy. Having a single coordinatokpen either the message is sent to all destinations or to none at
helps to bound the number of messages, but a drawback gfjj sych multicast is received by all operational processors.
such approach is that any protocol with at most one activepyior solutions do not make this assumption, although they do
coordinator is bound to hav@ = (2( + (f + 1)p). Namely, pot solve the problem of processor restarts. The availability
consider the following behavior of the adversary: while there issf rgjiaple multicast simplifies solutions for non-restartable
more than one operational processor, the adversary stops eagh,cessors, but dealing with processor restarts remains a chal-
coordinator immediately after it becomes one and before ifenge even when such broadcastis available. There are several
sends any messages. This creates pauseglofsteps, giving  yeasons for considering solutions with such reliable multicast.
the 2((f +1)p) part, wheref is the number of stop-failures pjrst of all, in a distributed setting where processors cooper-
(f < p). Eventually there remains only one processor whichgie closely, it becomes increasingly important to assume the
has to perform all the tasks, because it has never received ayijity to perform efficient and reliable broadcast or multicast.
messages, this gives the remainifig) part. A lower-bound  Thjs assumption might not hold for extant WANSs, but broad-
argument for stage-checkpointing strategies is formally prexgst L ANs (e.g., Ethernet and bypass rings) have the property
sented in [5]. Moreover, when processor restarts are allowedyat if the sender is transmitting a multicast message, then
any algorithm that relies on a single coordinator for informa- the message is sent to all destination. Of course this does not
tion gathering might not terminate, because the adversary cag,arantee that such multicast will be received, however when
always Kill the current coordinatqr, keeping alive all the other 5 processor is unable to receive or process a message, e.g., due
processors so that no progress is made. to unavailable buffer space or failure of the network interface
hardware at the destination, this can be interpreted as a failure

! The expressionldg £ stands forl when f < 2 andlog, f
otherwise; all logarithms are to the base 2.
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of the receiver. From the standpoint of the sender, the availabilwithin a small multiplicative factor of these bounds. For the
ity of hardware-assisted broadcast makes the communicatioalgorithm AN this factor idog f, and for the algortihm AR
cost of sending a broadcast message comparable to the cortinis factor ismin{log p, log f}.
munication cost of sending a single point-to-point message. A randomized solution for th@o-ALL problem is pre-
However, since multiple receivers may have to process theented by Chlebus and Kowalski [3]. Their work is for the
broadcast message, we are using a conservative cost measunedel of faults in which an adversary chooses at neogt
that assumes that the communication cost of a multicast is prgarocessors prior to the start of the computation, for a fixed
portional to the number of recipients. Secondly, by separatingonstant0 < ¢ < 1, and then may fail any of these pro-
the concerns between the reliability of processors and the urcessors at any time, while the remaining processors will stay
derlying communication medium, we are able to formulateoperational. The randomized algorithm has both the expected
solutions at a higher level of modularity so that one can takeavailable processor steps and message complexiyof p-
advantage of efficient reliable broadcast algorithms (cf. [8])(1 + log™ p — log™(p/t))), wherelog™ is the number of times
without altering the overall algorithmic approach. Lastly, our thelog function has to be applied to its argument to yield the
approach presents a new venue for optimizinig ALL solu-  result that is no larger thain This is in contrast with the lower
tions and for beating thé&(¢ + (f + 1)p) lower bound of  bound2(t+p-logt/loglogt) onthe available processor steps
stage-checkpointing algorithms [5]. required in the worst case by any deterministic algorithm in
We conjecture that with minor modifications, our algo- this setting.
rithms remain correct and efficient even if worker-to-coordi-
nator multicasts are not reliable. However coordinators stillThe structure of the rest of the paper is as follows. Section 2
need to use reliable broadcast. contains definitions and gives a high-level view of the algo-
For the fail-stop/restart models we assume that a procegithms. Section 3 includes the presentation of algorithm AN
sor loses its state upon a failure and that its state is reset twith a proof of its correctness and an analysis. Section 4 gives
some known initial state upon a restart. Our algorithms canalgorithm AR with a proof of its correctness and an analysis.
not take direct advantage of such a possibility, and it would beSection 5 concludes with remarks and future work.
interesting to explore the benefits of having stable storage.
We believe thatitis importantto consider processor restarts
in general-purpose distributed computation. For example, im2 Model and algorithmic preliminaries
portant communication services such as group communication . o . .
systems [4] are in part motivated by the need to re-integratdn Sect. 2.1 we describe the distributed setting considered and
processors that have either previously failed or were unable t#) Sect. 2.2 we introduce the main ideas underlying our algo-
communicate. In this work we make new contributions to thefithms.
study of complexity of doing work in the presence of failures

and restarts. .
2.1 Model of computation

Distributed settingWe consider a distributed system consist-
ing of a sefP of p processors. We assume that thef3et fixed
and is known to all processors 1. Processors have unique

TheDo-ALL problem for the shared-memory model of compu-; e ;
tation was inﬁroduced and studied by Kane)lllakis and Shva?rtsl_dentlﬂers (PIDs) and the set of PIDs is totally ordered. Proces-

man [10,11] (the problemis calledr1TE-ALL in that context). issogs ﬁgm gqnué]:lga;igxlvrgeas:;?rig?ﬁ;'tnt%e-rhfoilggslglrjtgg;z;tgrme
Parallel computation using the iterated-ALL paradigmis the y P

. obally synchronized. Processor activities are structured in
subject of several subsequent papers, most notably the WO'%rms ofstepsthat have some fixed known constant duration.

of Kedem, Palem and Spirakis [12], Martel, Park and Subra- . !
monian [14] and Kedem, Palem, Rabin and Raghunathan [13 neach step aprocessor can either receive messages or perform
' ! some local computation or send messages to other processors.

Kanellakis, Michailidis and Shvartsman [9] developed a tech-
nigue for controlling redundant concurrent access to sharedflessaging assumptiond/e assume that the underlying net-
memory in algorithms with processor stop-failures. This iswork is fully connected, that is, any processor can send mes-
done with the help of a structure they cpibcessor priority  sages to any other processor, and that messages are not lost in
tree In this work we use a similar structure in the qualitatively transit or corrupted. Messages sent within one step are deliv-
different message-passing setting. Furthermore, we are able gred before the end of the next step. Thus we also assume that
use our structure with restartable processors. there is a known upper bound on message delivery time. We
Kanellakis and Shvartsman [11] give matching lower andassume that reliable multicast [8] is available. With reliable
upper bounds on solving theo-ALL problem for algorithms multicast a processagrcan send a message to any Bet P
that are able to choose the best possible assignment of prof processors and all the processor®ithat are alive during
cessors to tasks, for example using an oracle. These lower arilde entire following step receive the message sent iyote
upper bounds were developed for the shared-memory modehat in any step a processor may receive ufftbmessages
of computation, however the bounds apply, verbatim, to the(thus we assume that the time needed to process a received
message-passing model (when the oracle is omniscient). Fanessage is small compared to the duration of the step). We
the model with stop-failures, this boundisplog p/ log log p are not concerned with the size of messages; however, using
and for the model with restarts, this bounéHsp log p. Acom- bit-string set encoding, each message sent by our algorithms
ponent of the upper bound on work of our algorithms comescontainsO(max{t, p}) bits, wheret is the number of tasks.

Other related work
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TasksWe define a&askto be a computation that can be per- failure patterns that ark-restricted, fork > 0, and that in-
formed by any processor in one time step and its executiorlude processor restarts. The famii$R of fail-stop/restart
is independent of the execution of any of the other tasks. Thesjlure models includes autlgk&zR for non-negativek. Also
andlor sancurrently has the same effed a5 executing the tadg! (1 falstoplrestart failure models, imposes no re-

. ; i . . .. _strictions on the failure patterns. With these definitions, we
once. Tasks are uniquely identified by their task identifiers (k) (k) (k1) (k)
(TIDs) and the set of TIDs is totally ordered. We denote byhave that, for eack, 7. C Fpgp, Fps = < Fpg, and
T the set oft tasks and we assume thatis known to all the f}k;Rl) - ]—"}2 - This is because in each case any failure
processors. pattern in the subset model is also a failure pattern for the re-

: : . spective superset model, yet the superset models may allow
Models of failureWe are using théail-stopprocessor model failure patterns not permitted by the respective subsets.

[15]. This means that the processors fail by stopping and that Given a failure pattern, we denote bythe number of

in our synchronous setting processor failures can be detecte-fgiIures and by- the number of restarts. For the famfBwe
using atimeout. We consider both the case when no restarts a@ X

allowed and the case when processors restart after a failure jave thf’itf Is bounded from above byandr = 0’- while f_or
processor may stop at any moment during the computation Ale famﬂyFSRwe havethat < f < r+p. We define ths[ze
failed processor does not receive any messages and doe§ n fta failure pattern” to be the number Of— processor failures
perform any computation. Messages delivered to a faulty pro<’ and we denote it byF|. Our complexity results depend
X on |F|, and since it is always the case tha f, the main

cessor are lost. If restarts are allowed, a processor can .reStae@ymptoti ¢ results will not involve.
at any point after a failure. We assume that during a single
step a faulty processor can restart at most once (e.g., a procephe po-ALL problem and termination conditions. First we
sor can restart in response to a clock tick). Upon a restart th@efine the problem.
state of the restarted processor is reset to its initial state, but
the processor is aware of the restart. Since an arbitrary tim®efinition 2.2. Given a failure model, for any st of tasks
may elapse between the failure of a processor to its restart, thend the seP of processors, theo-ALL problem is to perform
knowledge of the restarted processor may be arbitrarily out ofll tasks in7".
date. Thus we assume a weak model where the processors do
not have stable storage that survives a failure. Stable storage Whatwe mean by performing all tasks is that a terminating
could help, for example, for processors to make individualalgorithm that solves theo-aLL problem must execute all
computational progress when an adversary may completelyasks and at least one processor is aware of this fact. In the
prevent processors from communicating with each other.  context of the model that hasrestricted failure patterns this

It is obvious that if any pattern of failures is allowed, that means that if an algorithm exists for thisthen the algorithm
is, if no restrictions are imposed on the adversary that causesiay terminate in step when each processor that was active
failures, then computational progress can not be guaranteeend did not fail in steps—k, ..., 7—1, 7 knows that all tasks
For example, if all the processors fail then no progress is poshave been performed.
sible. Even if processors restart, progress can be prevented. As we have noted earlier, the-ALL problem is not nec-
For example, consider the scenario in which a subset of thessarily solvable in each failure model. Let us first look at the

processors is alive initially, these processors perform someyj|-stop models. |n7'}(:0§ no solution is possible: indeed if all
computation, and then they all crash while the processors "ﬂ)rocessors fail before executing all the taskTinthen the

the remaining set restart without any possibility of communi-{5sks can never be completed. Clearly we would like to solve
cation between the two sets. Since there is no stable storagg,e problem as long as at least one processor is alive, that

:gltiso:f:]an be repeated forever without any progress in compui-s’ as long ag’ < p. By the definition of]-'g; we have that

We will consider two families of failure models, one that the failure patterns allowed bﬁ%_are exactly those failure
allows failures but no restarts, and another that allows restartfatterns withf < p. There is a trivial solution that works for
The failure models impose some restriction on the failure pat-}‘}lgz each processors performs all the tasKi his solution,
tern that the adversary can cause. The following definition ishowever is not efficient. We provide an efficient algorithm that

used to qualify certain allowable failure patterns. solves theoo-ALL problem forF (. The algorithms in [5-7]

1) g 1) ; (k)
Definition 2.1. Letk be a positive integer. A failure pattern /S0 Work forfp.g. S'”C?st IS a superset QFF% for any
is said to be %-restricted” if during any consecutive steps k£ > 1, the solution foﬂ-"}g is also a solution foﬂ-"}s). (Itcan

i,i+1,...,i+ k — 1there is at least one processor that is pe shown thar (') = 7*) foranyk > 1, thus no algorithmic
alive during all steps, i+ 1,...,i + &k — 1. advantage can be achieved by increaging
W define the fai dels. Lat™) be the fail Next we look at the fail-stop/restart failure models. Since
e now define the failure models. L&t be the fail- ) (0) . - (0)
. : s a subset o , no solution is possible f .
ure model defined as the set of all failure patterns that areq:FS : u Frsn u : ) 'SP , ible faF s
k-restricted, fork > 0, and have no processor restarts. TheltiS nothard to see that no solutionis possible alsa#pE .

. o . . (k) Indeed al-restricted failure pattern requires that at least one
family FS of fail-stop failure Orr;odels includes alfy for processor be alive during any step. However with a stop-

non-negativek. Notice that?—‘fvs imposes no restrictions on  fajlure/restart model this is not sufficient to guarantee progress.
the failure patterns, thatis, all processors can fail in this modelas we have remarked before, even if there is always one pro-
Similarly we define the failure modé’F}@R as the set of all  cessor alive progress can be prevented (the scenario in which
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half of the processors fail while the other half of the proces-Coordinators and worker#\ processor can be@ordinator
sors restart is an example). Hence the best we can hope for &f a given phase. All processors (including coordinators) are

to find a solution forF (2} .. We notice that in &-restricted ~ Workersin a given phase. Coordinators are responsible for
execution, fork > 2, it is guaranteed that processors’ life- recording progress, while workers perform tasks and report
times have some overlap and the biggek the bigger is the  on that to the co_ordlnators. In the first ph_ase one processor
overlap. Fork = 2 such overlap can be as small as a singleacts as the coordinator. There may be multiple coordinators in
step. Hence in order to not lose information about the ongoingubsequent phases. The number of processors that assume the
computation (such loss, in the absence of stable storage, préoordinator role is determined by theartingale principleif
vents progress), it is necessary that processors exchange st&@ne of the expected coordinators survive through the entire
information during each step. Thus a solution that works forPhase, then the number of coordinators for the next phase is
a smallk tends to have large message complexity. We pro-doubled. Whenever at Ieas_t one coordinator survives a given
vide an efficient algorithm that solves the-aLL problem for ~ Phase, the number of coordinators for the next phase is reduced

}'ffsﬁg%. The constar26 depends on our implementation of the o Ol?e.t least ; dinator duri
algorithm. With a modest effort the constant can be reduced at least one processor acts as a coordinator during a
to 17, as we explain later. Note also that there tpualitative phase and it completes the phase without failing, we say that

L (1) (2) e the phase isttended the phase isinattendedtherwise.
distinction betweerf .5, and F¢ . processors’ lifetimes

may not overlap in the former while they must overlap in the Local viewsProcessors assume the role of coordinator based

latter. The difference betweeR(") , andF (%71 whenk > 2  on their local knowledge. During the computation each pro-

is quantitative in the latter the overlap of processors'lifetimes C€SSOrw maintains a listL., = (g1, gz, ..., q) of supposed
is one step longer than in the former. live processors. We call such listecal view The processors

in L,, are partitioned intdayers consisting of consecutive
Performance measure3o evaluate the performance of our g pjists ofL,,: L, = (A%, A, ..., A7)2. The number of pro-
: AN :

algorithms we usavailable processor ste@hdcommunica-  -assors in layeni+!, fori = 0,1,...,j — 1, is the double of
tion complexityThe available processor steps isthg nur_nberofthe number of processors in laydf. Layer A’ may contain
steps taken by all the processors and the communication conjsgg processors. Whetf = (¢;) the local view can be vi-
plexity is the number of point-to-point_messages sent. Moregalized as a binary tree rooted at procegspwhere nodes
formally let 7 be the set of allowed failure patterns, that is, are placed from left to right with respect to the linear order
thg failure model considered. For a computation subject to jiven byL,,. Thus, in a tree-like local view, layet consists
failure patternF’, F' € F, denote byp;(F) the number of of processoy; , layerA* consists o2’ consecutive processors
Ilvg processors executing stépnd .bymi(F) the r)umber of starting at process@s: and ending at processes:+1_+, with
point-to-point messages sent during stefor a given prob-  he exception of the very last layer that may contain a smaller
lem, if the computation solves the problem by stem the  ,ymper of processors. Processors in a local view do not nec-
presence of the failure patteffy then the available processor gssarily appear in the order of processor identifiers (restarted

steps complexity is: processors are appended at the end of the local view).
Example.Suppose that we have a systempot= 31 pro-
Sp.f = » }na;i - Zpi(F) ) cessors. Assume that for a phasall processors are in the
DR P local view of a workerw. in order of processor identifier,
N o and that the view is a tree-like view (e.g., at the beginning
and the communication complexify is: of the computation, for = 0). If in phase? processors

1,5,7,18,20,21,22,23,24,31 fail (hence phase is unat-

. . tended) and in phadet 1, processorg, 9, 15, 25, 26, 27, 28,
My = Feg,l%gf ;mZ(F) ‘ 29, 30 fail (phasel + 1 is attended by process8), then the
=T view of processow for phasel + 2 is the one in Fig. 2. If

(Recall that in our definitions: (a) all steps of the opera-in phasel + 2 processos fails and processors, 22, 29, 31
tional processors are counted, including any idle/waiting time festart (phasé + 2 is unattended) and in phage+ 3 pro-

and (b) a single multicast counts for as many messages as ¢€ssorst, 6 fail and processors, 2,9 restart (phasé + 3 is
has recipients.) unattended) then the view of processofor phasel + 4 is

the one in Fig. 3.

2.2 Overview of algorithmic techniques

_________________________________________

Both algorithms proceed inlaop which is repeated until all | 4 6 .
the tasks are executed. A single iteration of the loop is called 10 12 13 14 \
aphase A phase consists of three consecutdtagesEach '~ "1 " 717 ~"18 19 20 |
In each stage processors use the first step to receive messagdis 2.A local view for phase + 2.

sent in the previous stage, the second step to perform local

computation, and the third step to send messages. We refer to
these three step as thexeivesubstage, theomputesubstage 2 For sequenced = (ey,...,e,) andK = (di,...,dn) We
and thesendsubstage. define(L, K) to be the sequende:, ..., en,d1,...,dm).
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16 17 19 20 5 23 29 "3L. 3.1 AlgorithmAN

__________________________________________

The algorithm follows the algorithm structure described in the
previous section. The computation starts with phase nuthber
and proceeds in a loop until all tasks are known to have been

executed. The detailed description of a phase is given in Fig. 4.
The local view is used to implement the martingale prin-

: - ; Y
Sl'?le ozl?p[t))o";;lnglj cocl)rc_jmatofrs askfollovtvtsh L[;Ev“’._ .<A ’ ¢ Local view update ruldn phase 0 the local view ,, of any
, - A7) be the local view of workew at the beginning o processomw is a tree-like view containing all the processors

phasef. Processow expects processors in layaf to coor- in P ordered by their PIDs. Leky,, = (A%, A1, ..., A7) be

. - ; 0
dinate phasé, if no processor in Iayeﬂ_ completes phﬁ!se the local view of processan for phasel. We distinguish two
¢, then processap expects processors in laydt to coordi- possible cases

nate phasé+ 1; in general processar expects processors in
layer A® to coordinate phaseé+- if processors in all previous  Case 1Phase is unattended. Then the local view of processor
layersA¥, ¢ < k < ¢ + 14, did not complete phase+ k. The w for phasel + 11is Lyy 1., = (AL, ..., A7),

local view is updated at the end of each phase (the update rule . )
depends on the algorithm). Case 2.Phase/ is attended. Then processar receives

summary messages from some coordinator/Af. Proces-

Phase structure and task allocatidrhe structure of aphase of sory computes its sel,, as described in stage 3 (we will see
the algorithms is as follows. Each processckeeps its local  that all processors compute the sameZgt The local view
information about the set of tasks already performed, denoteqLHl_w of w for phase + 1 is a tree-like local view containing
D,,, and the set of live processors, denofégd as known by  the processors i, ordered by their PIDs.
processomw. The setD,, is always an underestimate of the
set of tasks actually done arfd), is always an overestimate Figure 6 in Sect. 4 provides a graphical description of
of the set of processors that are “available" from the start oft phase of algorithm AN (ignore the messages and steps of
the phase (here any processors that restarted during the pha&started processors).
are not considered available, since they might not have up In this section we show that algorithm AN solves the-
to date information about the computation). We denote byarr problem for the failure modeﬂ-‘}ls). Given an execution
U, the set ofunaccountedasks, i.e., the tasks whose done of the algorithm we say that the executiorgisodif it is an
status is unknown ta. The setd/,, and D,, are related by  execution allowed byF{). Hence we have to prove that the
Uy = T\ Dy, whereT is the set of all the tasks. Given a 3jgorithm solves the problem for any good execution.
phasel we usery,., U, and Dy, to denote the values of Given an execution of the algorithm, we enumerate the
the corresponding sets at the beginning of ptiase phases. We denote the attended phases of the execution by

Computation starts with phaseand any processarhas |, . etc. We denote by, the sequence of unattended
all processors irLo,, and hasDy,, empty. At the beginning  phases between the attended phasemnda, . 1. We refer to
of phasef each worker (that is, each processarperforms 7. a5 theit" (unattended) period; an unattended period can
one task according to its local viei,,, and its knowledge e empty. Hence the computation proceeds as follows: unat-
of the set/; ., of unaccounted tasks, using the followiegd  {ended periodr,, attended phase;, unattended period,
balancing rule Worker w executes the task whose rank is attended phases,, and so on. We will show that after a finite
(i mod [Uy,|)™ in the setl,,, of unaccounted tasks, where nymber of attended phases the algorithm terminates. If the al-
iis the rank of processap in the local viewL,..,. Then the  gqrithm correctly solves the problem, it must be the case that
worker reports the execution of the task to all the processorghere are no tasks left unaccounted after a certain phase
that, according to the worker’s local view, are supposed to be  Next we show that at the beginning of each phase every
coordinators of phase For simplicity we assume that a pro- jive processor has consistent knowledge of the ongoing com-
cessor sends a message to itself when it is both worker angtation. Then we prove safety (accurate processor and task

g:oordinator. Any proces;@rthat, according to its local view, accounting) and progress (task execution) properties, which
is supposed to be coordinator, gathers reports from the work,-—mp|y the correctness of the algorithm.

ers, updates its information abagt . andU, . and broadcasts
this new information causing the local views to be reorganized; emma 3.1. In any execution of algorithrAN, for any two

We will see that at the beginning of any phasall live pro-  rocessorsy, v alive at the beginning of phagewe have that
cessors have the same local viéwand the same séf, of Liw = Ly, and thatlU, , = Uy,

unaccounted tasks and that accounted tasks have been actu-
ally executed. Restarted processors are reintegrated in the Igyoof. By induction on the number of phases. For the base
cal views and are available for computation in the subsequentsse we need to prove that the lemma s true for the first phase.
phase. A new phase startdif is not empty. Initially we have thatg ., = Lo, = (P)andU,, = U, =T.
Hence the base case is true.

. ) Assume that the lemma is true for pha&s&Ve need to prove

3 Algorithm AN for the fail-stop model that it is true for phasé + 1. Letw andv be two processors
) _ ~alive atthe beginning of phage-1. Since there are no restarts,

In this section we present, prove correct and analyze algonthrprocessom, andv are alive also at the beginning of phase
AN which solves the>o-ALL for the failure modeJ}'}g. By the inductive hypothesis we have that,, = L,, and

Fig. 3.A local view for phasée + 4.
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Phase/ of algorithm AN:

STAGE 1. RECEIVE: The receive substage is not used.
CowmPUTE: In the compute substage, any processgrerforms a specific taskaccording to the load balancing rule.
SEND: In the send substage procesaosends aeport (z) to any coordinator, that is, to any processor in the first layer
of the local viewLy,,,.

STAGE 2. RECEIVE: In the receive substage the coordinators gatiyeort messages. For any coordinatgltet 2!, . . ., z¥< be the
set of TIDs received.
CoMPUTE: In the compute substagesetsD. < D. U Uf;l{zi}, andP. to the set of processors from whielreceived
report messages.
SEND: In the send substage, coordinatanulticasts the messagemmary(D., P.) to processors itr..

STAGE 3. RECEIVE: During the receive substageimmary messages are received by live processors. For any processet
(DL, PL),...,(DEv, Pkv) be the sets received summary messagés.
CoMPUTE: In the compute substage setsD,, < D%, andP,, « P., for an arbitraryi € {1,...,k,} and updates its
local view L., as described below.
SEND: The send substage is not used.

Fig. 4. Detailed descrpition of a phase of Algorithm AN.

Ur.w = Usn. We now distinguish two possible cases: phéise Lemma 3.2. In any execution of algorith#N, if a processor
is unattended and phaéés attended. w is alive during the first two stages of phasien processor
w belongs taP;.

Proof. Letw be a processor alive at the beginning of phase
Processoiv (whether it is a coordinator or not) is taken out
of the setP, only if a coordinator does not receiveeport

: . message fronw in phase/ — 1. If w is a coordinator and all
Case 1Phas¢ is unattended. Then th_ere are no coord_matorsCoordinators are dead, thenwould be removed by the local
and nosummary messages are received tyandv during

phasef. Thus the setd/, and U, are not modified during view update rule. This is possible onlyuffails during phase

phasel. Moreover processors andv use the same rule to fU dééslr?gtegi;smagxzsét_hf beginning of phaﬁeprocessﬂor
update the local view (case 1 of the local view update rule). '
HenceLyi1,w = Lo+1,0 aNdUpt1,0 = Upg1 0 Lemma 3.3. In any good execution of algorithAN, if a task

z does not belong t&/, then it has been executed in one of the

phased,2,...,¢ — 1.

3.2 Correctness of algorithiN

Case 2Phas€ is attended. Sincé, , = L, all the work-
ers sendeport messages to some coordinatofs..., cy.
Since we have reliable multicast, theport message of  Proof. Task z is taken out of the sel/, by a coordinatok:

each worker reaches all the coordinators if the worker is alivewhenc receives aeport (z) message in a phase prior#o

or no one if it failed. Thusummary messages sent by the However a worker sends such a message only after executing
coordinators are all the same. Letmmary (D, P) be one  taskz. Taskz is taken out of the séf; by a workerw whenw

such a message. Since the phase is attended and broadcasidgeives aummary (D., P.) message from some coordinator
reliable both processotsandv receive thesummary (D, P)  c¢in phase prior td, andz € D,.Again this means thatmust

message from at least one coordinator. Hence in stage 3 ®fave been reported as done:to =]
phas¢, workersw andv setDy 4 ,, = Dy+1 , = D and con- . .
sequently we hav& 1, = Ust1,,. They also sePyy ,, = Lemma 3.4. In any good execution of algorith&N, for any

P11, = P and use the same rule (case 2 of the local viewphasel we have thati;1 < u,.
update rule) to update the local view. Hetige 1 o, = L¢41,0-

0 Proof. By the code of the algorithm, no task is addedio

O

Because of Lemma 3.1, we can defifie = L., for | emma 3.5. In any good execution of algorith#AN, for any
any live processow as the view at the beginning of phae  attended phaséwe have thatig, 1 < .
P, = Py, as the set of live processoi®, = D, ,, as the set
of done tasks andl, = U, ,, as the set of unaccounted tasks Proof. Since phasé is attended, there is at least one coordi-
at the beginning of phage natorc alive in phas¢. By Lemma 3.2 processarbelongs

We denote by, the cardinality of the set of live processors to P, and thus it executes one task. Hence at least one task is
computed for phasgi.e.,p, = ||, and byu, the cardinality ~ executed and consequently at least one task is taken ot of
of the set of unaccounted tasks for phasee.,u, = |U,|. We By Lemma 3.4, no task is added & during phasé. O
havep, = p anduo = 1. Lemma 3.6. In a good execution of algorithé&N, any unat-

3 As we will see in Sect. 3.2, these messages are in fact identicaitended period consists of at mdsg f phases.
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Proof. Consider the unattended periogdand let/ be its first ~ Case 2All attended phases in whigh,, > u,,. We letd(p)
phase. Firstwe claim that the first layer of viéwconsistsofa  stand forlog p/ log log p. We consider the following two sub-
single processor. This is so because (a) eithe and/ = 0, cases.

in which casd. is the initial local view, or (b} > 0 andr; is
preceded by attended phasein which casd., is constructed

by the local update rule to have a single processor in its firs ; :
layer. By Lemma 3.2 any processor alive at the beginnin ast phase for which., > 0, it follows that subcase 2.1 occurs

of phase belongs toP; and thus tol,. By the local view < (108d( ) ) times. The quantity (log,,, p) is O(d(p)) be-
update rule for unattended phases, we have that eventually iRusel(p)“”) = 6(p). No more tharp processors complete
processors "EZ are Supposed to be coordinators. S|ﬁee D, such phases therefore the pﬁftl of S Spent in this case is
at least one processor is alive and thus eventually there is an

attended phase. THeg f upper bound follows from the the S =0 (p logp > )

martingale principle governing the sizes of consecutive layers loglog p

ofview. The number of processors accommodated in the layers

of the view doubles for each successive layer. Hence, denotingubcase 2.2All attended phases; after which gy =
by f; the number of failures in;, we have that the number of Ug, /d( ). Consider a particular phasg. Since in this case
phases inr; is at mostiog f;. Obviously f; < f. O  pa, > ua,, by the load balancing rule at IeaLsLJ but no

Subcase 2.1All attended phases; after whichu,, , <
a:/d(p). Sinceuy, , < tqa, < pa, < pand phasey; is the

more than( <] processors are assigned to each ofithe

unaccounted tasks. Sinag, ,, tasks remain unaccounted af-

Theorem 3.7. In a good execution of algorithiiN, the al-  ter phasey;, the number of processors that failed during this

Finally we show the correctness of algorithm AN.

gorithm terminates with all tasks performed. phase is at least

Proof. By Lemma 3.2 no live processor leaves the computa-,, V’az J s Yoi | Pay
tion and sincef < p the computation ends only whép is e, | T d(p) 2ug,
empty. By Lemma 3.3, when the computation ends, all tasks _ Doy

are performed. It remains to prove that the algorithm actually ~ 2d(p)
terminates. By Lemma 3.6 for evetyt log f phases there is
at least one attended phase. Hence, by Lemmata 3.4 and 3
the number of unaccounted tasks decreases by at least one
everyl + log f phases. Thus, the algorithm terminates after  ~ Pa; _ (1- 1 )
at mostO(t log f) phases. o P 2d(p) = Pou 2d(p)

I;:_’Ience the number of processors that proceed to phase
ﬁqno more than

Since the algorithm terminates after a finite number ofL8t @i, @i, ..., i, be the attended phases in this subcase.

attended phases with all tasks performed, we te such that ~ Since the number of processor in phasg is at mostp, the
U = ¢, and consequently,,,, =0 number of processors alive in phasg for j > 0 is at most
Qr41 ’ Qr 41 .

p(1— Qd(p) ). Therefore the pai$, » of S, spent in this case
is bounded as follows:

3.3 Analysis of algorithmAN

We now analyze the performance of algorithm AN in terms of

the available processor steffsand the number of messages - p
M. =7 _ /1 _ 1y
To assess$ we consider separately all the attended phases (1 2d(P>)
and all the unattended phases of the executionS|, die the =p-2d(p)
part of S spent during all the attended phases ande the = O(p-d(p)) .
part of S spent during all the unattended phases. Hence we
haveS = S, + S,. Summing up the contributions of all the cases considered we

The following lemma uses the construction by Martel, as it is98t5a:

presented in Lemma 3.3.4 in [10]. log p
Se=851+851+82=0 <t—|—p> .

Lemma 3.8. In any good execution of algorithANwe have loglogp

So = O(t + plogp/ loglog p). d

Proof. We consider all the attended phasesas, ...,a, by ~ Lemma 3.9. Inany good execution of algorithAN we have
subdividing them into two cases. Su = O(Sq log f).

Case 1All attended phases; such thap,,, < u,,. Theload  Proof. The number of processors alive in a phase of the unat-
balancing rule assures that at most one processor is assignaghded periodr; is at mostp,,, that is the number of pro-

to a task. Hence the available processor steps used in this casessors alive in the attended phase immediately precegling
can be charged to the number of tasks executed which is &fo cover the case wher, is not empty, we letys = 0 and
mostt + f < t+ p. HenceS; = O(t + p). Pay = |P| = p. By Lemma 3.6 the number of phases in period
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m; is at mosflog f. Hence the part of,, spent in periodr; is
at mostp,, log f. We have

Su <Y (pa,log f)

=0

= Ing'ZpOéi
i=1
< (p+ Sau)log f=0(S,log f) .

O

Theorem 3.10. In any good execution of algorith®hN we
haveS = O(log f(t + plogp/ loglog p)).

Proof. The total available processor stepss given byS =
Sa + Sy. The theorem follows from Lemmata 3.8 and 39.

Remark.Alower bound of2(¢t+plog p/ log log p) [10] (The-

B.S. Chlebus et al.

Proof. First we notice that in any phase the number of mes-
sages sent i®(cp) wherec is the number of coordinators for
that phase. Hence to estimditg, we simple count all the sup-
posed coordinators in the phases included;im o;, where
m;—1 IS nonempty.

Leti be such thatr;_; is not empty. Since the number of
processors doubles in each consecutive layer of the local view
according to the martingale principle, we have that the total
number of supposed coordinators in all the phases of;
is2f;—1+1=0(f;—1), wheref;_; is the number of failures
duringm;_1. Hence the total number of supposed coordinators,
in all of the phases contributing &/,,, is >°._, O(fi—1) =
O(f)-

Hence the total number of messages counted iris O( fp).
O

Theorem 3.13. In any good execution of algorith&N the
number of messages sentis = O(t + plogp/loglogp +

Ip)-

orem 4.2.4) is known for any algorithm that performs tasks byproof. The total number of messages sentds= M, + M,,.

balanCing loads of SUrViVing processors in each time step. Al-The theorem follows from Lemmata 3.11 and 3.12. O
though that lower bound was derived for the shared-memory

model of computation, the result does not use any arguments
involving shared-memory. The work of algorithm AN comes 4 Algorithm AR for the fail-stop/restart model

within a factor oflog f (and thus alsdog p) relative to that

lower bound. This suggests that improving the work result is|n this section we present, prove correct and analyze algorithm
difficult and that better solutions may have to involve a trade-aAR which solves theo-arLL for the failure modelr %)

off between the work and message complexitiesKramer.

We now assess the message complexity. First rememb

that the computation proceeds as follows; aq, 71, as, ...,

m,—1,c-. In order to count the total number of message
we distinguish between the attended phases preceded by
nonempty unattended period and the attended phases whid

are not preceded by unattended periods. Formally, wiflet
be the number of messages sentrin;«;, for all thosei’s
such thatr; _; is nonempty and we let/, be the number of
messages sent im;_;«;, for all thosei’s such thatr;_; is
empty (clearly in these cases we haye;«a; = «;). Next we
estimateM, and M,, and thus the message complexity of
algorithm AN.

Lemma 3.11. In any execution of algorithrAN we have
M, = O(t + plogp/loglogp).

Proof. First notice that in a phasewhere there is a unique
coordinator the number of messages seBpjs By the defi-

FSR*

&1 AlgorithmAR

SAIgorithm AR s similar to algorithm AN; the difference is that

tlaere are added messages to handle the restarts of processors.
ﬁ]Fig. 5 we provide the detailed description for each stage of a
phase. The parts that are new or that are different in algorithm
AR as compared to algorithm AN aitalicized.

Aftertherestart, processgbroadcastsestart  (¢) mes-
sages in each step until it receives a response. Processors re-
ceiving such messages, ignore them if these messages are
not received in the receive substage of stage 2 of a phase.
Thus we can imagine that a restarted procegdmoadcasts
arestart (q) in the send substage of stage 1 of a phase
(however we will count all theestart  messages in the
message complexity). This message is then received by all the
live and restarted processors of that phase, and, as we will see
shortly, processay is re-integrated in the view for phaée- 1.
Processog needs to be informed about the status of the ongo-

nition of M,,, messages counted M, are messages sent in a ing computation. Hence processors that have this information
phasey, such thatr; ; is empty. This means that the phase S€nd thenfo  (Uy, L;) messages to processpwith the set

previous tay; is a;_; which, by definition, is attended. Hence

U, of unaccounted tasks and the local viéw

by the local view update rule of attended phases we have that

«; has a unique coordinator. Thus phasegives a contri-
bution of at most2p,, messages td/,. It is possible that
some of the attended phases do not contribut&/to how-
ever counting all the attended phases as contributiny to
we have that\, < >"7_, 2p,, = 25,. The lemma follows
from Lemma 3.8. O

Lemma 3.12. Inany good execution of algorith&N we have
M, = O(fp).

Loal view update ruleln phase 0 the local view,,, of
any processow contains all the processors # ordered by
their PIDs, and the first layer is a singleton set. Let, =
(A% AL, ..., A7) be the local view of processar for phase/.
We distinguish two possible cases.

Case 1Phasée is unattended. LeR’ be the set of restarted
processors which seréstart  messages. LeR’ be the

set of processors @&’ that are not already in the local view
L, .. Let (R') be the processors iR’ ordered according to
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Phasel of algorithm AR:

STAGE 1. RECEIVE: The receive substage is not used.
ComPUTE: In the compute substage any processgrerforms a specific taskaccording to the load balancing rule.
SEND: In the send substage sends aeport (z) to any coordinator, that is, to any processor in the first layet of .
Any restarted processarbroadcasts theestart  (¢q) message informing all live processors of its restart.

STAGE 2. RECEIVE: In the receive substage the coordinators gatyort messageand all processors gatheestart  messages.
Let R be the set of processors that sentestart ~ messageFor any coordinator, let z}, ..., z%¢ be the set of TIDs
received inreport messages.

CoMPUTE: In the compute substagesetsD. <+ D. U Uf;l{zi} andP. to the set of processors from whietreceived
report messages.

SEND: In the send substage, coordinatanulticasts the messagemmary(D., FP.) to the processors i, and R. Any
processor inP. sends the messagdo (U, L,) to processors irR.

STAGE 3. RECEIVE: In the receive substage processorshrreceiveinfo (U, L;) messages and processorsin and R receive
summary (D., P.) messages.
CoMPUTE: Inthe compute substage, a restarted procegsetsL, , < L, andU, , < U,.Let(DL, PL), ..., (DE» PFw)
be the sets received summary messages by processor Processotw setsD,, < D, andP, « P, for an arbitrary
i €1,..., k, and updates its local view, ., as described below.
SEND: The send substage is not used.

Fig. 5. Descrpition of details of one phase of Algorithm AR (the code that differs from Algorithm AN is givéalios).

i Step 1 T Step 2 T Step 3 T

1 } summary ' |

I | B, | |

! ! receive update | l
Coordinator ! ! report DP N ! |
| I I | I ’ I | I I |

\ w w Pl w I N w \

! Perform - ; ' receive update ;

Worker | onetask | ' summary D,PL !
knows | report ' receive | |
LPUD ! | restart | |
| ! ! | ! 4 ! ! |

[ | | Pal | | [ . | | [
S | receive update } r_e(f:elve update }
S I 1 Into D.PL !

Restarted @+ , restart R | 1 |
i ‘ | restart i ‘ ‘ i summary i

[ [ |

| | ‘ | |

Fig. 6.A phase of algorithm AR (for algorithm AN ignore the bottom line, which represents restarted processors, and all the messages referrinc
to it).

their PIDs. The local view for the next phaselig,; , = If there are no restarts, algorithm AR behaves as algorithm
(AL ..., A7) @ (R'). The operator places processors @t AN. Figure 6 provides a graphical description of both algo-
in the order(R’), into the last layer!” till this layer contains  rithms.

exactly the double of the processors of layr! and pos-

sibly adds a new layed’+! to accommodate the remaining

processors ofR’). That is, newly restarted processors which 4.2 Correctness of algorith’R

are not yet in the view, are appended at the end of the old

view. Notice that restarted processors, which receie In this section we show that algorithm AN solves the-ALL

messages, know the old viel. problem for the failure modeF \>c),. Given an execution of the
algorithm we say that the executiorgigodif it is an execution
allowed byfggz%. Hence we have to prove that the algorithm
Case 2 Phase/ is attended. LefR’ be the set of restarted solves the problem for any good execution.
processors. Since the phase is attersledmary messages A restarted processor has no information about the ongo-
are received by all the live processors (including the restarteithg computation, and thus cannot actively participate in the
ones). Any processar updatesP,, as described in stage 3. computation, until it gets a chance to communicate with other
Processot knows the seR’. The local viewL, 4 ,, for the processors. Moreover, if a processors completes two consec-
next phase is structured according to the martingale principlaitive phases it is able to acquire information about the com-
and contains all the processorsip U R’ ordered according  putation in the first of the two phases and to transfer it to other
to their PIDs. processors in the second of the two phases. We will show that
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having, at any point during any execution, a processor that i€ase 1Phas¢ is not attended. Then reummary messages
operational for 26 consecutive steps is sufficient for our al-are received byv and v and in stage 3 of phaséthey do
gorithm. This allows for the largest number of steps, 8, thatnot modify their setd/, ,, andU,,. The local view of both
may be “wasted" because this is just short of the 9 steps thgirocessors is modified in the same way (case 1 of the local view
constitute a phase, plus two complete phases, i.e., 18 steps, agdate). Hence we have tHat, ., = Usy1,0 andLet1 . =
described above. This intuition is made formal in the proofSL 1 ,.

in this section.

. L Case 2.Phasef is attended. Then there is at least one co-
Formally we use the following definitions.

ordinator completing the phase. Let, ..., ¢, be the coor-
Definition 4.1. A live processor is said to be “fully active” dinators for phasé. Since we have reliable multicast, the
at a particular timet during phase/, if it stays alive from the ~ reéport ~ message of each worker reaches all coordinators
start of phase — 1 through timer. that are alive. Thus theummary messages sent by coordi-
nators are all equal. Lesummary (D, P) one such a mes-
Definition 4.2. A live processor is said to be a “witness” for sage. Since we have reliable multicast, both processors
phase if it stays alive for the duration of phasés- 1 and/. andv receivesummary (D, P) messages from the coordi-

) nators. Hence in stage 3 of pha&erocessorsy andv set
We remark that the difference between a processor fUIIyD[+1 w = Dyy1, = D and thus we hav&,,1 o, = Upy1..

active in phasé and a witness of phadés that the witnessis  processorss andv also setP, ., = Pri1., = P and use
guaranteed, by definition, to survive the entire phiasehile  the same rule (case 2 of the local view update rule) to update

the fully active processor may fail before the end of phase  the Iocal view. Hence we have 1 ., = Ly 1., O
Hence a fully active processor cannot guarantee transfer of _ _ .
state information while the witness can. Because of the previous lemma we can define the view

Ly = Ly, the set of available processafs = F; ., the
Lemma 4.1. In a good execution, there is a witness for any set of done task®, = D,, and the set of unaccounted
phase. tasksU, = Uy, all of them referred to the beginning of
) i ) phasel, wherew is any fully active processor. Notice that
Proof. A good execution has 26-restricted failure pattern. regiarted (non-fully-active) processors may have inconsistent
Thus for any step, there is at least one processor that Staysknowledge of these quantities.

alive for the next6 steps. Notice that of these step may Remember that we denote pythe cardinality of the set
be spent waiting for the beginning of the next phase (if theys |iye processors for phase i.e.,p, = |P|, and byu, the

processor has just restarted in stgpgHowever the remaining cardinality of the set of unaccounted tasks for phgsee.,
18 steps are enough to guarantee that the processor stays allM? = |U,.
for the next two phases, since each phase consistsips. In the following lemmata we prove safety (no live proces-

. sor or undone task is forgotten) and progress (tasks execution)

The witness of phaséis always a processor fully active in properties, which imply the correctness of the algorithm.

phasel. Next we show that at the beginning of each phase| emma 4.3. In any execution of algorithrAR, a processor
every fully active processor has consistent knowledge of theyly active at the beginning of phagéelongs taP;.
ongoing computation.

Proof. If processomw is fully active at the beginning of phase
Lemma 4.2. In a good execution of algorithiAR, for any ¢ — 1, then by the inductive hypothesis it belongsig._;.
two processorsy, v fully active at the beginning of phage  Processow is taken out of the s&¥, only if a coordinator does
we have that, ., = Ly, and thatUy ,, = U, not receive aeport message fronw in phase/ — 1. Since
rocessomw survives phasé — 1 then it sends theeport
essage in phage- 1. Hence it belongs t@;.
processorw is not fully active at the beginning of phase
¢ —1, thenitrestarted in phage- 1. Thus at the end of phase
£ — 1 processotv is re-integrated in the local views of phase
¢£. Hence it belongs t@. a

Proof. By induction on the number of phases. For the bas
case we need to prove that the lemmais true for the first phase:
Initially we have that’, ,, = Lo, = (P)andU,, =U, = T.
Hence the base case is true.

Assume that the lemma is true for phds&Ve need to prove
that it is true for phasé + 1. Letw andv be two processors
fully active at the beginning of phaget 1. Lemma 4.4. In any execution of algorithmR, if a taskz
First we claim that at the beginning of stage 3 of phgsge  does not belong td/, then it has been executed in phases
haveL, , = L, andU; ., = U, ,.Indeed, ifw andv are fully 1,2,...,0—1.

active also at the beginning of pha&éhen the claim follows .

by the inductive hypothesis. If processor(resp.v) has just Proof. The proof is the same as the proof of Lemma 3.3.
restarted and is not yet fully active in phaséhen it sends a
restart message in stage 1 of phds8y Lemma4.1, there
is a witness for phasé Hence processar (resp.v) receives
ainfo message from the witness and thus at the beginnindProof. Consider phasé If there are no restarts, then, by the

of stage 3 of phaséit hasU, ., = U, (resp.U,, = U,) and code, no task is added to the set of undone tasks. If there are
L¢w = Ly (resp.Ly, = Ly). restarts, arestarted procesgdrasly ,, = 7. By Lemma4.1,

We now distinguish two cases: phasis attended and phase there is a processorwhich is a withess for phageThen pro-

£ is unattended. cessom receives thénfo (U, L,) message from processor

Lemma 4.5. In a good execution of algorithrAR, for any
phasel we have thatiy; 1 < uy.
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v and hence set§,,, = U,. Hence also when processors 4.3 Analysis of algorithrAR
restart no task is added to the set of undone tasks. O
We next analyze the performance of algorithm AR in terms
Lemma 4.6. In any good execution of algorithAR, forany ~ Of the available processor stefsused and the numbev/
attended phaséwe have thati;,; < uy. of messages sent. To asséssve partition it into.S, spent
during the attended phases a)dspent during the unattended
Proof. Since phasé is attended, there is at least one coordi- Phases: S6' = S, + 5. In the following lemmata we assess
natore alive in phase. A coordinator must be a fully active the @vailable processor steps of algorithmAR.
processor (a restarted processor needs to complete a phase in Récall that good execut|or216§ are those executions whose
order to known the current view and become coordinator). Byfailure pattern is allowed b 1(751)3- We also recall thaty,,
Lemma 4.3 processetbelongs taP; and thus it executes one a2, ..., & denote the attended phases,denote the unat-
task. Hence at least one task is executed and consequently t@nded period in between phasgsanda; ;; and thatp, and

least one task is taken out 8. By Lemma 4.5, no task is u¢ denote, respectively, the size of the ggtof fully active
added tdJ, during phasé€. 0O processors for phageand the size of the séf, of undone

tasks for phasé.

As for algorithm AN, given a particular execution, we de- L€émma 4.9.In a good execution of algorithsAR we have
note bya,, as, ..., o, the attended phases andtythe unat- 5o = O(t +plogp + f).

tended period in between phasgsando;.. Proof. By Theorem 4.8 the algorithm terminates.

, , We first account for all those steps spent by a processor after a
Lemma 4.7. In a good execution of algorith®R any unat-  regtarts and before the processor either fails again or becomes
tended period consists of at mostn{log p,log f} phases.  fy|ly active, that is, it is included in the sé¥ for a phase,

and thus is counted for ipy. The number of such steps spent

Proof. Consider the unattended periot). As argued in  for each restart is bounded by a constant. Hence the available
Lemma 3.6 the views at the beginning of is a tree-like  processor steps spentd@¥r), which isO(f).
view. Next we account for all the remaining part 8§ by distin-
By Lemma4.3 and by the local view update rule for unattendedyuishing two possible cases:
phases, any processor fully active at the beginning of a phase
¢ of w; belongs taP, and thus td.,. By the local view update ~ ~@Se 1All attended phases;, such thap,, < u,,.Theload

rule for unattended phases, we have that eventually there isBflancing rule assures that at most one processor is assigned
phase’ such that all fully active processors are supposed to pd0 atask. Hence the available processor steps used in this case

coordinators of phasé (that is, the first layer of,» contains ~ @n be charged to the number of tasks executed, which is at
all the processors fully active at the beginning of phége ~ MOStt + f.

By Lemma 4.1, phas€ has a witness. The witness is a fully Case 2All attended phases such that > u,,. We arrange
active processor and by definition it survives the entire phasee tasks that were executed and accounted for during such
Hence, phas€ is attended. phases in the order by the phase in which they are performed

The upper bounds on the number of phases follow from thgfor tasks executed in the same phase the order does not mat-
tree-like structure of the views. With the same argument useger). Let (b, b,, ..., b,,) be such a list. Notice that < p

in Lemma 3.6 we have that the number of phasesidf; at be(_:a_uselo“C < Doy < p, and once the inequa"wak <p
mostlog f. Thelog p bound follows from the fact that by dou-  starts to hold, it remains true in phasesfor i > k. We then
bling the number of expected coordinators for each unattendefartition these tasks into disjoint adjacent segméits
phase, after at mo$bg p phases all processors are expected

to be coordinators and thus at least one of them (the witness) ) D

; Zi=1bpy: —<m-k+1<=
survives the phase. ] i Eeirr =™ i (-
Theorem 4.8. In a good execution of algorith/R the algo- By the load balancing rule, at most
rithm terminates and all the units of work are performed. .

p .
< =3+1

Proof. By Lemma 4.3 fully active processors are always part m—k+1

of the computation, so the computation never ends if there ar

fully active processors and, IS no; empty. By ITemma 4.1 rprocessor is assigned for the last time to tiskthere are at
any phase has a witness which is a fully active processo leastm — k + 1 unaccounted tasks. The size &f can be
The local knowledge about the outstanding tasks is sound, bgstimated as follows: '

Lemma 4.4. For every+ log p phases there is at least one at-
tended phase, by Lemma4.7. Hence, by Lemmata 4.5 and 4.67;| < Q — - p
the number of unaccounted tasks decreases by at least one in ioitl

Brocessors are assigned to each task,inbecause when a

everyl +log p phases. Thus after at ma3(t log p) phases all < (L 1

: <pl--—-
the tasks have been performed. During the next attended phase i i+1
this information is disseminated and the algorithm terminates. ~~ p
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Hence the available processor steps used is less than Proof. We first account for messages sent by restarted pro-
1 cessors and responses to those messages. For each restart the
D ) !
Z — i+ 1) <p Z - number ofrestart  messages sent is bounded by a con-
1<i<m i(i+1) 1<i<p " stant and onénfo and onesummary message are sent to a
= O(plogp) . restarted processor before it becomes fully agtive. Hence the
total number of messages sent due to restaédgig = O(f).
Combining all the cases we obtatl) = O(t + plogp + f). The remaining messages can be estimated as detailed in
0 Lemma 3.11. In a phagewhere there is a unique coordinator

. : the number of messages senkjig. By the definition ofM,,,
genlmg 4;.10. Ina gQO(T exeﬁutlon of algorithR we have messages counted M, are messages sent in a phassuch
u=0(8a + f) - min{logp, log }). thatm; 1 is empty. This means that the phase previous;to
Proof. Consider the unattended period At the beginningof 1S @;—1 which, by definition, is attended. Hence by the local
this period there arg; available processors. By Lemma 4.7, View update rule of attended phases we have thatas a
for each of these processors we need to accounifoflogp, ~ Unique coordinator. Thus phase gives a contribution of at
log f} steps spent in period Summing up over all attended MOSt2p,, messages td/,. HenceM, < }_;_; 2pa, = 25,.
phases, we have that the part%f for these processorsis ~ 1he lemma follows from Lemma 4.9. O

) T ) Lemma 4.13. In any good execution of algorithhiR we
min{logp,log f} - Y pa, = Sa - min{logp, log f}. haveM, = O(fp).
=1
Each encountered restart can contribute additionally at modgro0f- We first account for messages sent by restarted pro-

min{log p,log f} processor steps because if the processof€SSors apd responses to those messages. The argument is the
stays alive past phase;., its contribution is already ac- Same as in Lemma 4.12. The total number of messages sent

counted for. Since the number of restarts < f,thebound ~because of restarts (/). » _

follows. 0 Next we estimate the remaining messages as done in
Lemma 3.12. First we notice that in any phase the number

Theorem 4.11.In a good execution of algorithPAR the  of messages sentd¥(cp) wherec is the number of coordina-

available processor steps i§ = O((t + plogp + f) tors for that phase. Hence to estimatg we simple count all

-min{log p, log f}). the supposed coordinators in the phases included_ina;,

] ] ) wherer;_; IS nonempty.

Proof. The available processor stegsof algorithm AR is | at; pe such that,_ is notempty. Because of the structure of

given by S = S, + S.,. The theorem follows from Lem- e ocal view, we have that the total number of supposed co-

mata 4.10 and 4.9. O ordinators in all the phases ®f _1cv; is2f;_1+1 = O(fi_1)

where f; _ is the number of failures during; _;. Hence the

total number of supposed coordinators, in all of the phases

ontributing toM,,, isY"._, O(fi—1) = O(f).

husM, is O(fp). O

Remark.A lower bound of2(¢+p log p) [1] is known for any
algorithm that performs tasks by balancing loads of surviving
processors in each time step. Although that lower bound wa
derived for the shared-memory model of computation, the re-
sult does not use any arguments involving shared-memo
The work of algorithm AR includes a contribution that come
within a factor of min{logp,log f} relative to that lower
bound. As we have similarly remarked for algorithm AN, this Proof. The total number of messages sentis= M, + M,,.

suggests that improving the work result is difficult and that The theorem follows from Lemmata 4.12 and 4.13. O
better solutions may have to involve a trade-off between the

work and message complexitigs.

NYrheorem 4.14. In agood execution of algorithAR the num-
S ber of messages sentlig = O(t+plogp + fp).

5 Discussion

We now assess the message complexity. The analysis is
similar to the one done for algorithm AN. The difference is We have considered theo-ALL problem which consists of
that we need to account also for messages sent by restart@érformingt tasks on a distributed system pffault-prone
processors. However the approach used to analyze the messagychronous processors. We presented the first algorithm for
complexity of algorithm AN works also for algorithm AR. the model with processor failures and restarts. Previous algo-

We distinguish between the attended phases preceded Bithms do not allow processor restarts. Prior algorithmic ap-
a nonempty unattended period and the attended phases natoaches relied on the single coordinator paradigm in which
preceded by unattended periods. Wellgt be the number of  the coordinator is elected for the time during which the pro-
messages sent im;_;«;, for all thosei's such thatr;_; is gress of the computation depends on it. However this approach
nonempty and we led/, be the number of messages sent in is not effective in the general model with processor restarts:
mi—10, for all thosei’s such thatr;_, is empty (clearly in  an omniscient adversary can always stop the single coordina-
these cases we hawe_;o; = «;). Next we estimaté/, and  tor while keeping alive all other processors thus preventing
M, and thus the message complexitly of algorithm AR. any global progress. In this paper we have used a novel multi-

) . coordinator paradigm in which the number of simultaneous

Lemma 4.12. In a good execution of algorithiR we have  coordinators increases exponentially in response to coordina-
M, = O(t + plogp/loglogp + f). tor failures. This approach enables effectiv@ ALL solutions
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that accommodate processor restarts. Moreover, when there4. Communications of the ACM, Special Issue on Group Commu-
are no restarts, the performance of the algorithm is compara-  nication Services, Vol. 39, No. 4, 1996

ble to that of previous algorithms. 5. R. De Prisco, A. Mayer, M. Yung: Time-Optimal Message-
There are two areas where improvements can be sought.  Efficient Work Performance in the Presence of Faults, In: Proc.
It appears not difficult to show that in our algorithms worker- 13th ACM Symposium on Principles of Distributed Computing,

to-coordinator multicasts need not be reliable. A worthwhile 1994, pp. 161-172 _ N
research direction is to design algorithms which use our ag- 6- C- Dwork, J. Halpern, O. Waarts: Performing Work Efficiently
gressive coordinator paradigm and unreliable coordinator-to- N the Presence of Faults, SIAM J. on Computm“g, 27(5), 1457~
worker communication. It is also interesting to consider the &\?gt,_lgtﬁs.éPrehmmar? ';/e_:smn”a_ppgars an tﬁgtiozg&shlng
models where processors have some stable storage. This may S or:] mon Srin::eisfenscgf%ist?lggen? n r%Ci—oloz 1992)
help reduce the reliance on broadcasts as the sole means for, ymp. P Lr. ~Omp., pp. ' .
information propagation . Z. Galll_, A. Mayer, M. Yung: Resolving Message Complexity of

. ) . Byzantine Agreement and Beyond, In: Proc. 36th IEEE Sympo-

For the fail-stop/restart model we developed an algorithm

hich tol failure/ h icted: sium on Foundations of Computer Science, pp. 724—733, 1995
which tolerates failure/restart patterns thatzgeestricted; a 8. V.Hadzilacos, S. Toueg: Fault-Tolerant Broadcasts and Related

26-restricted failure pattern is one such that for a6ycon- Problems, In: S. Mullender (ed.) Distributed Systems (2nd edn),
secutive steps of the algorithm there is at least one processor  addison-Wesley and ACM Press, 1993

alive in all the26 steps. The consta@t depends onthe algo- 9. p.c. Kanellakis, D. Michailidis, A.A. Shvartsman: Controlling
rithm. We conjecture that our algorithm can be easily modi-  Memory Access Concurrency in Efficient Fault-Tolerant Par-
fied by “squeezing” the phase into two stages, instead of the  allel Algorithms, Nordic Journal of Computing, 2, 146—180,
three used in the presentation for the sake of clarity. With this 1995 (Preliminary version in Pro&th International Workshop
modification17-restricted failure patterns can be tolerated. A on Distributed Algorithms, pp. 99-114, 1993)

different approach may solve the problemferestricted exe-  10. P.C.Kanellakis, A.A. Shvartsman: Efficient Parallel Algorithms

cutions with a smallek. However the problem is not solvable Can Be Made Robust, Dist. Comput. 5, 201-217, 1992. (Prel.
for 1-restricted executions and, as remarked in Sect. 2, there  version in Proc. of the 8th ACM Symp. on Principles of Dis-
is a qualitative difference betweerrestricted executions and tributed Computing, 1989, pp. 211-222)

k-restricted executions, with > 2. It is also clear that in or- 11. P.C. Kanellakis, A.A. Shvartsman: Fault-Tolerant Parallel Com-
der to achieve solutions that work fbsrestricted executions putation, ISBN 0-7923-9922-6, Dordrecht: Kluwer Academic

for small k it is necessary to use more messages. For exam- _ Publishers 1997 | okis: Effic el
ple for 2-restricted executions there must be transfer of state*?: ZM- Kedem, K.V. Palem, P. Spirakis: Efficient Robust Paralle
information in each step. Computations, In: Proc. 22nd ACM Symp. on Theory of Com-

. - . . . . puting, pp. 138-148, 1990.
p P cient Program Transformations for Resilient Parallel Computa-

we have done, buton at Ie@sprp_cessqrs, Whem'fs a fallurg tion via Randomization, In: Proc. 24th ACM Symp. on Theory

model parameter. Such definition yields families of failure of Comp., pp. 306-318, 1992

models?-‘}kg” and]—‘}ks"j%,and more efficientalgorithms could  14. C. Martel, A. Park, R. Subramonian: Work-Optimal Asyn-

be sought for these models. This is because the failure models  chronous Algorithms for Shared Memory Parallel Computers,

are more benign, i.ef}ks’l) ) ]:I(Tkqu) andf}ks’}z o Flka) SIAM J. Comput. 21 (1992) 1070-1099. (Prel. version appears
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