
On Scalable and Efficient Distributed Failure Detectors

Indranil Gupta
Department of Computer

Science
Cornell University

Ithaca, NY 14853, USA
gupta@cs.cornell.edu

Tushar D. Chandra
IBM T.J. Watson Research

Center
P.O. Box 704

Yorktown Heights, NY, USA

tushar@us.ibm.com

Germdn S. Goldszmidt
IBM T.J. Watson Research

Center
P.O. Box 704

Yorktown Heights, NY, USA

gsg@us.ibm.com

ABSTRACT
Process groups in distributed applications and services rely
on failure detectors to detect process failures completely,
and as quickly, accurately, and scalably as possible, even
in the face of unreliable message deliveries. In this paper,
we look at quantifying the optimal scalability, in terms of
network load, (in messages per second, with messages hav-
ing a size limit) of distributed, complete failure detectors
as a function of application-specified requirements. These
requirements are 1) quick failure detection by some non-
faulty process, and 2) accuracy of failure detection. We
assume a crash-recovery (non-Byzantine) failure model, and
a network model that is probabilistically unreliable (w.r.t.
message deliveries and process failures). First, we charac-
terize, under certain independence assumptions, the opti-
mum worst-case network load imposed by any failure detec-
tor that achieves an application's requirements. We then
discuss why traditional heartbeating schemes are inherently
unscalable according to the optimal load. We also present
a randomized, distributed, failure detector algorithm that
imposes an equal expected load per group member. This
protocol satisfies the application defined constraints of com-
pleteness and accuracy, and speed of detection on an aver-
age. It imposes a network load that differs from the opti-
mal by a sub-optimality factor that is much lower than that
for traditional distributed heartbeating schemes. Moreover,
this sub-optimality factor does not vary with group size (for
large groups).

Keywords
Distributed systems, Failure detectors, Efficiency, Accuracy,
Scalability.

1. INTRODUCTION
Failure detectors are a central component in fault-tolerant
distributed systems based on process groups running over
unreliable, asynchronous networks eg., group membership
protocols [3], supercomputers, computer clusters [13], etc.

Penuission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servet~ or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 01 Newport Rhode Island USA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

The ability of the failure detector to detect process failures
completely and efficiently, in the presence of unreliable mes-
saging as well as arbitrary process crashes and recoveries,
can have a major impact on the performance of these sys-
tems. "Completeness" is the guarantee tha t the failure of
a group member is eventually detected by every non-faulty
group member. "Efficiency" means that failures are detected
quickly, as well as accurately (i.e., without too many mis-
takes).

The first work to address these properties of failure detec-
tors was by Chandra and Toueg [5]. The authors showed
why it is impossible for a failure detector algorithm to de-
terministically achieve both completeness and accuracy over
an asynchronous unreliable network. This result has lead to
a flurry of theoretical research on other ways of classify-
ing failure detectors, but more importantly, has served as
a guide to designers of failure detector algorithms for real
systems. For example, most distributed applications have
opted to circumvent the impossibility result by relying on
failure detector algorithms that guarantee completeness de-
terministically while achieving efficiency only probabilisti-
cally [1, 2, 4, 6, 7, 8, 14].

The recent emergence of applications for large scale dis-
tr ibuted systems has created a need for failure detector algo-
rithms that minimize the network load (in bytes per second,
or equivalently, messages per second with a limit on max-
imum message size) used, as well as the load imposed on
participating processes [7, 14]. Failure detectors for such
settings thus seek to achieve good scalability in addition to
efficiency, while still (deterministically) guaranteeing com-
pleteness.

Recently, Chen et al. [6] proposed a comprehensive set of
metrics to measure the Quality of Service (QoS) of complete
and efficient failure detectors. This paper presented three
primary metrics to quantify the performance of a failure de-
tector at one process detecting crash-recovery failures of a
single other process over an unreliable network. The authors
proposed failure detection time, and recurrence time and du-
ration times of mistaken detection as the primary metrics for
complete and efficient failure detectors. However, the paper
neither deal with the optimal relation among these metrics,
nor focussed on distributed or scalable failure detectors.

In this paper, we first address the question of quantifying
the optimum worst-case network load (in messages per sec-

170

ond, with a limit on messages sizes) needed by a complete
distributed failure detector protocol to satisfy the efficiency
requirements as specified by the application. We are con-
cerned with distributed failure detectors working in a group
of uniquely identifiable processes, which are subject to fail-
ures and recoveries, and communicate over an unreliable net-
work. We deal with complete failure detectors that satisfy
application-defined ejO~ciency constraints of 1) (quickness)
detection of any group member failure by some non-faulty
member within a time bound, and 2) (accuracy) probabil-
ity (within this time bound) of no other non-faulty member
detecting a given non-faulty member as having failed.

The first (quickness) requirement merits further discussion.
Many systems, such as multi-domain server farm clusters [7,
13] and virtual synchrony implementations [3] rely on a sin-
gle or a few central computers to aggregate failure detection
information from across the system. These computers are
then responsible for disseminating that information across
the entire system. In such systems, efficient detection of
a failure depends on the time the failure is first detected
by a non-faulty member. Even in the absence of a central
server, notification of a failure is typically communicated,
by the first member to detect it, to the entire group via a
(possibly unreliable) broadcast [3]. Thus, although achiev-
ing completeness is important, efficient detection of a failure
is more often related with the time to the first detection, by
another non-faulty member, of the failure.

We derive the optimal worst-case network load (in messages
per second, with a limit on maximum message size) imposed
on the network by a complete failure detector satisfying the
above application-defined constraints. We then discuss why
the traditional and popular distributed heartbeating fail-
ure detection schemes (eg., [7, 14]) do not achieve these op-
timal scalability limits. Finally, we present a randomized
distributed failure detector that can be configured to meet
the application-defined constraints of completeness and ac-
curacy, and expected speed of detection. With reasonable
assumptions on the network unreliability (member and mes-
sage failure rates of up to 15%), the worst-case network load
imposed by this protocol has a sub-optimality factor that is
much lower than that of traditional distributed heartbeat
schemes. This sub-optimality factor does not depend on
group size (in large groups), but only on the application-
specified efficiency constraints and the network unreliability
probabilities. Furthermore, the average load imposed per
member is independent of the group size.

In arriving at these results, we will assume that message loss
and member failures can each be characterized by probabilis-
tic distributions, independent across messages and failures.
While the practicality of these assumptions in real networks
will probably be subject to criticism, these assumptions are
necessary in order to take this first step towards quantifying
and achieving scalable and efficient failure detectors. Be-
sides, we believe that these independence assumptions are
partially justified because of 1) the randomized nature of the
new failure detector algorithm, and 2) the large temporal
separation between protocol periods, typically O(seconds)
in practice (mitigating much of the correlation among mes-
sage loss probability distributions).

The rest of the paper is orgartized as follows. Section 2
briefly summarizes previous work in this area. In Section 3,
we formally describe the process group model assumed in
this paper. Section 4 presents a discussion of how an ap-
plication can specify efficiency requirements to a failure de-
tector, and quantifies the optimal worst-case network load
a failure detector must impose, in order to meet these re-
quirements. Section 5 presents the new randomized failure
detector protocol. We conclude in section 6.

2. PREVIOUS WORK
Chaaadra arid Toueg [5] were the first to formally address
the completeness and accuracy properties of failure detec-
tors. Subsequent work has focused on different properties
and classifications of failure detectors. This area of litera-
ture has treated failure detectors as oracles used to solve the
Distributed Consensus/Agreement problem [9], which is un-
solvable in the general asynchronous network model. These
classifications of failure detectors are primarily based on the
weakness of the model required to implement them, in or-
der to solve the Distributed Consensus/Agreement problem
[111.

Proposals for implementable failure detectors have some-
times assumed network models with weak unreliability se-
mantics eg., timed-asynchronous model [8], quasi-synchronous
model [2], partial synchrony model [12], etc. These propos-
als have treated failure detectors only as a tool to efficiently
reach agreement, ignoring their efficiency from an applica-
tion designer's viewpoint. For example, most failure detec-
tors such as [12] provide eventual guarantees, while applica-
tions are typically concerned about real t iming constraints.

In most real-life distributed systems, the failure detection
service is implemented via variants of the "Heartbeat mech-
anism" [1, 2, 4, 6, 7, 8, 14], which have been popular as
they guarantee the completeness property. However, all ex-
isting heartbeat approaches have shortcomings. Centralized
heartbeat schemes create hot-spots that prevent them from
scaling. Distributed heartbeat schemes offer different levels
of accuracy and scalabifity depending on the exact heart-
beat dissemination mechanism used, but we show that they
are inherently not as efficient and scalable as claimed.

Probabilistic network models have been used to analyze heart-
beat failure detectors in [4, 6], but only with a single process
detecting failures of a single other process. [6] was the first
paper to propose metrics for non-distributed heartbeat fail-
ure detectors in the crash-recovery model. These metrics
were not inclusive of scalability concerns.

Our work differs from all this prior work in that it is the
first to approach the design of failure detectors from a dis-
tributed application developer's viewpoint. We quantify the
performance of a failure detector protocol as the network
load it requires to impose on the network, in order to sat-
isfy the application-defined constraints of completeness, and
quick and accurate detection z. We also present an efficient
and scalable distributed failure detector. The new failure
detector incurs a constant expected load per process, thus

1We will state these application-defined requirements for-
really in Section 4.

171

avoiding the hot-spot problem of centralized heartbeating
schemes.

3. MODEL
We consider a large group of n (>> 1) members ~. This set of
potential group members is fixed a Wior/. Group members
have unique identifiers. Each group member ma£ntains a
list, called a view, containing the identities of all other group
members (faulty or otherwise). Our protocol specification
and analysis assumes that this maximal group membership
is always the same at all members, but our results can be
extended to a model with dynamically changing membership
and members with incomplete views, using methodologies
similar to [10].

Members may suffer crash (non-Byzantine) failures, and re-
cover subsequently. Unlike other papers on failure detectors
(eg., [14]) that consider a member as faulty if they are per-
turbed and sleep for a time greater than some pre-specified
duration, our notion of failure considers that a member is
faulty if and only if it has really crashed. Perturbations at
members that might lead to message losses are accounted for
in the message loss rate p,~l (which we will define shortly).

Whenever a member recovers from a failure, it does so into
a new incarnation tha t is distinguishable from all its earlier
incarnations. At each member, an integer in non-volatile
storage, that is incremented every time the member recov-
ers, suffices to serve as the member's incarnation number.
The members in our group model thus have crash-recovery
semantics with incarnation numbers distinguishing different
failures and recoveries. When a member Mi crashes (fails),
it does so in its current incarnation (say i t s / ' t h incarnation).
We say that such a failure is "detected" at exactly the first
instant of time that some other non-faulty member detects
either 1) failure of Mi in incarnation greater than or equal
to l, or 2) recovery of Mi in an incarnation strictly greater
than I.

We characterize the member failure probability by a param-
eter pf. pf is the probability that a random group member
is faulty at a random time. Member crashes are assumed to
be independent across members.

We assume no synchronization of clocks across group mem-
bers. We only require tha t each individual member's clock
drift rate (from some fixed clock rate) remains constant.

Members communicate using unicast (point-to-point) mes-
saging on an asynchronous, fault-prone network. Since we
are interested in characterizing the network bandwidth uti-
lized, we will assume that maximal message sizes are a con-
stant, containing at most a few bytes of data (assuming a
bound on the size of message identifiers and headers, as is
typical in IP packets).

Each message sent out on the network fails to be delivered
at its recipient (due to network congestion, buffer overflow
at the sender or receiver due to member perturbations, etc.)
with probability p,~l E (0, 1). The worst-case message prop-

2All of which are either processes, or servers, or network
adaptors etc.

agation delay (from sender to receiver through the network)
for any delivered message is assumed to be so small com-
pared to the application-specified detection time (typically
O(several seconds)) that henceforth, for all practical pur-
poses, we can assume that each message is either delivered
immediately at the recipient with probability (1 -p ,~ l) , or
never reaches the recipient, s

This message loss distribution is also assumed to be indepen-
dent across messages. Message delivery losses could, in fact,
be correlated in such a network. However, if application-
specified failure detection times are much larger than mes-
sage propagation and congestion repair times in the network,
messages exchanged by the failure detector will have con-
siderable temporal separation. This reduces the correlation
among the loss distributions of different messages. Ran-
domized selection of message destinations in the new failure
detector also weakens such message loss correlation.

In the rest of the paper, we use the shorthands qf and q,nt
instead of (1 - pf) arid (1 - p,~t) respectively,

4. SCALABLE AND EFFICIENT FAILURE
DETECTORS

The first formal characterization of the properties of failure
detectors was offered in [5], which laid clown the following
properties for distributed failure detectors in process groups:

• { S t r o n g / W e a k } C o m p l e t e n e s s : crash-failure of any
group member is detected by {all/some} non-faulty
members 4,

• S t r o n g A c c u r a c y : no non-faulty group member 5 is
declared as failed by any other non-faulty group mem-
ber.

[5] also showed that a perfect failure detector i.e., one which
satisfies both Strong Completeness and Strong Accuracy, is
sufficient to solve distributed Consensus, but is impossible
to implement in a fault-prone network.

Subsequent work on designing efficient failure detectors has
attempted to trade off the Completeness and Accuracy prop-
erties in several ways. However, the completeness proper-
ties required by most distributed applications have lead to
the popular use of failure detectors that guarantee Strong
Completeness always, even if eventually [1, 2, 4, 5, 6, 7,
8, 14]. This of course means that such failure detectors
cannot guarantee Strong Accuracy always, but only with a
probability less than 1. For example, all-to-all (distributed)

3This assumption is made for simplicity. In fact, the opti-
mality results of section 4 hold if pml is assumed to be the
probability of message delivery within 7- time units after its
send. The randomized protocol of section 5 and its analysis
can be extended to hold if p,,~z is the probability of message
delivery within a sixth of the protocol period.
aRecollect that in our model, since members recover with
unique incarnations, detection of a member's failure or re-
covery also implies detection of failure of all it 's previous
incarnations.
5in its current incarnation

172

heartbeating schemes have been popular because they guar-
antee Strong Completeness (since a faulty member will stop
sending heartbeats), while providing varying degrees of ac-
curacy.

We have explained in Section 1 why in many distributed
applications, although the failure of a group member must
eventually be known to all non-faulty members, it is impor-
tant to have the failure detected quickly by some non-faulty
member (and not necessarily all non-faulty members). In
other words, the quickness of failure detectors depends on
the time from a member failure to Weak Completeness with
respect to that failure, although Strong Completeness is a
necessary property.

The requirements imposed by an application (or its designer)
on a failure detector protocol can thus be formally specified
and parameterized as follows:

1. COMPLETENESS: satisfy eventual Strong Completeness
for member failures.

2. EFFICIENCY:

(a) SPEED: every member failure is detected by some
non-faulty group member within 7- time units af-
ter its occurrence (7" >> worst-case message round
trip time).

(b) ACCURACY: at any time instant, for every non-
faulty member Mi not yet detected as failed, the
probability that no other non-faulty group mem-
ber will (mistakenly) detect Mi as faulty within
the next 7" time units is at least (1 - 7aM(7")).

7" and PM(7") are thus parameters specified by the applica-
tion (or its designer). For example, an application designer
might specify 7- : 3 seconds, and P M (3 seconds) = 10 -s .

To measure the scalability of a failure detector algorithm, we
use the worst-case network load it imposes - this is denoted
as L. Since several messages may be t ransmit ted simulta-
neously even from one group member, we define:

Definition 1. The worst-case network load L of a failure
detector protocol is the maximum number of messages trans-
mitted by any run of the protocol within any time interval
of length 7", divided by 7".

We also require that the failure detector impose a uniform
expected send and receive load at each member due to this
traffic.

The goal of a near-optimal failure detector algorithm is thus
to satisfy the above requirements (COMPLETENESS, EFFI-
CIENCY) while guaranteeing:

• Scal~. the worst-case network load L imposed by the
algorithm is close to the optimal possible, with equal
expected load per member.

That brings us to the question - what is the optimal worst-
case network load, call it L*, that is needed to satisfy the
above application-defined requirements - COMPLETENESS,
SPEED (7"), ACCURACY (79M(7")) ? We are able to an-
swer this question in the network model discussed earlier
when the group size n is very large (>> 1), and 79M(7 -) is
very small (<< p,nt).

THEOREM 1. Any distributed failure detector algorithm
for a group of size n (>> 1) that deterministically satisfies the
COMPLETENESS~ SPEED, ACCURACY requirements above, for
given values o f t and PM(7") (<< pint), imposes a minimal
worst-case network load (messages per time unit, as defined
above) of:

L* ----- n . log(PM(7"))
log(pml)" 7"

Furthermore, there is a failure detector that acMeves ttds
minimal worst-case bound wMle satisfying the COMPLETE-
NESS, SPEED, ACCURACY requirements.

L* is thus the optimal worst-case network load required to
satisfy the COMPLETENESS, SPEED, ACCURACY requirements.

PROOF. We prove the first part of the theorem by showing
that each non-faulty group member could transmit up to
=og{7~M{"1")) tog(p,~D messages in a time interval of length 7".

Consider a group member Mi at a random point in time
t. Let M~ not be detected as failed yet by any other group
member, and stay non-faulty until at least time t + 7". Let
m be the maximum number of messages sent by Mi, in the
time interval [t,t + 7-], in any possible run of the failure
detector protocol starting from time t.

Now, at time t, the event tha t "all messages sent by Mi in
the time interval [t, t+7"] are lost" happens with probability
at least P~l. Occurrence of this event entails that it is in-
distinguishable to the set of the rest of the non-faulty group
members (i.e., members other than Mi) as to whether Mi is
faulty or not. By the SPEED requirement, this event would
then imply that M~ is detected as failed by some non-faulty
group member between t and t + 7".

Thus, the probability that at t ime t, a given non-faulty mem-
ber Mi that is not yet detected as faulty, is detected as failed
by some other non-faulty group member within the next 7"
time units, is at least pmmz. By the ACCURACY reqUirement,
we have p ~ < P M (T] , which implies that m > I°g(T*M(T))

_ _ log(p,,~l) •

A failure detector that satisfies the COMPLETENESS, SPEED,
ACCURACY requirements and meets the L* bound works as
follows. It uses a highly avMlable, non-faulty server as a

[l o g (' P M (T)) 1 group leader 6. Every other group member sends t log(v,,D J
"I am alive" messages to this server every 7" time units. The

6The set of central computers, that collect failure informa-
tion and disseminate it to the system, can be designated as
the server.

173

server declares a member as failed when it does not receive
any "I am alive" message from it for 7" t ime units 7. []

Corollary: The optimal bound of Theorem 1 applies to the
crash-stop model as well.

Proof: By exactly the same arguments as in the proof of
Theorem 1. []

Definition 2. The sub-optimality factor of a failure de-
tector algorithm that imposes a worst-case network load
L, while satisfying the COMPLETENESS and EFFICIENCY re-

L quirements, is defined as Z-;-"

In the traditional distributed Heartbeating failure detection
algorithms, every group member periodically transmits a
"heartbeat" message (with an incremented counter) to ev-
ery other group member. A member M~ is declared as failed
by a non-faulty member Mj when My does not receive heart-
beats from M~ for some consecutive heartbeat periods (this
duration being the detection time 7-).

Distributed heaxtbeating schemes have been the most pop-
ulax implementation of failure detectors because they guar-
antee C O M P L E T E N E S S - a failed member will not send any
more heartbeat messages. However, the accuracy and scala-
bility guarantees of heartbeating algorithms differ, depend-
ing entirely on the actual mechanism used to disseminate
heartbeats.

In the simplest implementation, each member M~ transmits
a few "I am alive" messages to each group member it knows
of, every 7- time units. The worst-case number of messages
transmitted by each member per unit time is 0(n), and the
worst-case total network load L is 0(n9~). The sub-optimality
factor (i.e., L Z-;-) varies as O(n), for any values of pm~, pf and
79M(7-).

The Gossip-style failure detection service, proposed by van
Renesse et al. [14], uses a mechanism where every tgossip
time units, each member gossips a O(n) list of the latest
heartbeat counters (for all group members) to a few other
randomly selected group members. The authors show that
under this scheme, a new heartbeat count typically takes
an average time of O[log(n) • tgossip] to reach an arbitrary
other group member. The SPEED requirement thus leads

0 us to choose tgossip --- [zo--g~-~]- The worst-case network
load imposed by the Gossip-style heartbeat scheme is thus
0 . "2 I [,go,,~p, : 0[~r]. The sub-optimality factor varies as

O[n. log(n)[, for any values of pml, pf and ~°M(7-).

In fact, distributed heartbeating schemes do not meet the
optimality bound of Theorem 1 because they inherently at-
tempt to communicate a failure notification to a/l group
members. As we have seen above, this is an overkill for
systems that can rely on a centralized coordinated set of

7This implementation, which is essentially a centralized
heartbeat mechanism, is undesirable as it requires a highly
available server and has bad load balancing (does not satisfy
the Scale property).

servers to disseminate failure information. These systems
require only some other non-faulty member to detect a given
failure.

Other heartbeating schemes, such as Centralized heartbeat-
ing (as discussed in the proof of Theorem 1) and heartbeat-
ing along a logical ring of group members [71, can be config-
ured to meet the optimal load L*, but have problems such
as creating hot-spots (centralized heartbeating) or unpre-
dictable failure detection times in the presence of multiple
simultaneous faults at larger group sizes (heartbeating in a
ring).

5. A RANDOMIZED DISTRIBUTED
F A I L U R E D E T E C T O R P R O T O C O L

In the preceding sections, we have characterized the opti-
mal worst-case load imposed by a distributed failure de-
tector that satisfies the C O M P L E T E N E S S , SPEED and ACCU-
RACY requirements, for application specified values of 7- and
79M(7-) (Theorem 1). We have then studied why traditional
heartbeating schemes are inherently not scalable.

In this section, we relax the SPEED condition to detect a fail-
ure within an expected (rather than exact, as before) time
bound of 7- time units after the failure. We then present a
randomized distributed failure detector algorithm that guar-
antees COMPLETENESS with probability 1, detection of any
member failure within an expected time 7- from the failure,
and an ACCURACY probability of (1 - 79M(7-)). The proto-
col imposes an equal expected load per group member, and
a worst-case (and average case) network load L that differs
from the optimal L* of Theorem 1 by a sub-optimality factor
(i.e., L Z-;-) that is independent of group size n (>> 1). In such
large groups, at reasonable values of member and message
delivery failure rates pf and pro,, this sub-optimality factor
is much lower than the sub-optimality factors of the tra-
ditional distributed heartbeating schemes discussed in the
previous section.

5.1 New Failure Detector Algorithm
The failure detector algorithm uses two parameters: proto-
col period T I (in time units) and integer k, which is the size
of failure detection subgroups. We will show how the values
of these parameters can be configured from the required val-
ues of T and 7~M(7"), and the network parameters py,pml.
Parameters T ' and k are assumed to be known a priori at
all group members. Note that this does not need clocks
to be synchronized across members, but only requires each
member to have a steady clock rate to be able to measure
T I"

The algorithm is formally described in Figure 1. At each
non-faulty member Mi, steps (1-3) are executed once every
T ' time units (which we call a protocol periotO, while steps
(4,5,6) are executed whenever necessary. The data contained
in each message is shown in parentheses after the message. If
sequence numbers axe allowed to wrap around, the maximal
message size is bounded from above.

Figure 2 illustrates the protocol steps initiated by a member
Mi, during one protocol period of length T ' time units. At
the start of this protocol period at Mi, a random member

174

Integer pr; /* Local period number */

Etter'td T t time units at Mi :

O. pr := pr + 1
1. Select random member Mj from view

Send a ping(Mi, Mj, pr) message to Mj
Wait for the worst-ease message round-tr ip t ime for

an ack(Mi, Mj, pr) message
2. If have not received an ack(Mi, My, pr) message yet

Select k members randomly from view
Send each of them a ping-req(Mi, My, pr) message
Walt for an ack(Mi, Mj, pr) message until

the end of period pr
3. If have not received an ack(Mi, Mj, pr) message yet

Declare Mj as failed

Anytime at Mi :

4. On receipt of a ping-req(Mm, Mj, pr) (Mj # Mi)
Send a ping(Mi, Mj, Mm,pr) message to Mj
On receipt of an ack(Mi, Mj , Mm, pr) message from Mj
Send an ack(Mm, Mj, pr) message to received to Mm

Anytime at Mi :

5. On receipt of a ping(Mm, Mi, Ml, pr) message from
member M,~

Reply with an ack(Mm, Mi, Ml, pr) message to Mm

Anytime at Mi :

6. On receipt of a ping(M,,,, Mi, pr) message from member M,~
Reply with an aek(Mm, Mr, pr) message to Mm

F i g u r e 1: P r o t o c o l s t eps a t a g r o u p m e m b e r Mi.
D a t a in each message is s h o w n in p a r e n t h e s e s a f t e r
t he message . E a c h message also c o n t a i n s t h e c u r r e n t
i n c a r n a t i o n n u m b e r of t he s ende r .

is selected, in this case Mj, and a ping message sent to it.
If Mi does not receive a replying ack from Mj within some
time-out (determined by the message round-trip time, which
is << 7"), it selects k members at random and sends to each
a ping-mq message. Each of the non-faulty members among
these k which receives the ping-req message subsequently
pings Mj and forwards the ack received from Mj, if any, back
to Mi. In the example of Figure 2, one of the k members
manages to complete this cycle of events as Mj is up, and
Mi does not suspect Mj as faulty at the end of this protocol
period.

In the above protocol, member Mi uses a randomly selected
subgroup of k members to out-source ping-mq messages,
rather than sending out k repeat ping messages to the target
Mj. The effect of using the randomly selected subgroup is
to distribute the decision on failure detection across a sub-
group of (k + 1) members. Although we do not analyze it
in this paper, it can be shown that the new protocol's prop-
erties are preserved even in the presence of some degree of
variation of message delivery loss probabilities across group
members. Sending k repeat ping messages may not satisfy
this property. Our analysis in Section 5.2 shows that the
cost (in terms of sub-optimaiity factor of network load) of
using a (k + 1)-sized subgroup is not too significant.

5.2 Analysis
In this section, we calculate, for the above protocol, the
expected detection time of a member failure, as well as
the probability of an inaccurate detection of a non-faulty

T'

M i All
choose random M ~

I
members

l
I

F i g u r e 2: E x a m p l e p ro toco l p e r i o d a t Mi. T h i s
shows all t h e poss ib le messages t h a t a p r o t o c o l pe-
r iod m a y i n i t i a t e . S o m e me ssa ge c o n t e n t s e x c l u d e d
for s impl i c i ty .

member by some other (at least one) non-faulty member.
This will lead to calculation of the values of T ' and k, for
the above protocol, as a function of parameters specifying
application-specified requirements and network unreliabil-
ity, i.e., T , PM(7") , Pl , p,m.

For any group member Mj, faulty or otherwise,

Pr [at least one non-faulty member chooses to

ping Mj (directly) in a t ime interval T']

= 1 - (1 - 1 . qf) , ,_ 1
n

-- 1 - e -qI(since n >> 1)

Thus, the expected time between a failure of member Mj
and its detection by some non-faulty member is

E[7"] = T ' - 1 - T ' . eql
1 - e - q / e q l - - 1 (1)

This gives us a configurable value for T ' as a function of
7", Pl"

Now, denote

e q.f

C(p.f) -- eql _ 1

At any given time instant, a non-faulty member Mj will be
detected as faulty by another non-faulty member Ml within
the next T time units if M, chooses to ping Mj within the
next 7" time units and does not receive any acks, directly
or indirectly from transitive ping-req's, from Mj. Then,
PM(7") , the probability of inaccurate failure detection of
member Mj within the next 7" time units, is simply the
probability that there is at least one such member Ms in the
group.

A random group member Ml is non-faulty with probability

1 7 5

q f , and the probability of such a member choosing to ping
Mj within a time interval T is ~ • C(pf) . Given this, the
probability that such a Ml receives back no acks, direct or
indirect, according to the protocol of section 5.1 equals

((1 2 4 k
• -- qml)" (1 -- qI" q'rm))

Therefore,

P M (T) 1 [1 q! • C(pl) (1 2 q,m)-(1 - qI" qLz)k] " -1
n

~-- 1 - - e -q!'(1-q2ml)'(1-qy'qaml)k'C(pl)

(since n >> 1)

- - qI " (1 - q,m)'2 (1 - q y . qrnt)4 k . C09I)

(since T~M(T) << 1)

This gives us

log["PM(T) ,~ |
t (q y ' (1 - - q 2 1) ' ~) J

k = log(1 - qy. q 4) (2)

Thus, the new randomized failure detector protocol can be
configured using equations (1) and (2) to satisfy the SPEED
and ACCURACY requirements with parameters E[T], ~OM(T).
Moreover, given a member Mj that has failed (and stays
failed), every other non-faulty member Mi will eventually
choose to ping Mj in some protocol period, and discover Mj
as having failed. Hence,

THEOREM 2. This randomized failure detector protocol."
(a) satisfies eventual Strong Completeness, i.e., the COM-
PLETENESS r e q u i r e m e n t .

(b) can be configured via equations (1) and (~) to meet the
requirements of (expected) SPEED, and ACCURACY, and
(c) has a uniform expected send/receive load at all group
members.

PROOF. From the above discussion and equations (1),
(2). []

Finally, we upper-bound the worst-case and expected net-
work load (L, E[L] respectively) imposed by this failure de-
tector protocol.

The worst-case network load occurs when, every T ' time
units, each member initiates steps (1-6) in the algorithm
of Figure 1. Steps (1,6) involve at most 2 messages, while
steps (2-5) involve at most 4 messages per ping-req target
member. Therefore, the worst-case network load imposed
by this protocol (in messages/time unit) is

1
L = n . [2 + 4 . k] . ~ - 7

Then, from Theorem 1 and equations (1),(2),

t og [~,~_ (T) ~, 1

L - - [2 + 4 . (q ! ' O - q ~ z) ' ~ i--~f~_~)'.

X [e ~ ~ . t°9(p-") l
-- 1 log(79M(T))

(3)

L thus differs from the optimal L* by a factor tha t is inde-
pendent of the group size n. Furthermore, (3) can be written
as a linear function of 1 --Iog('PM(T)) as:

L 1
L-- 7 = g(py,p,m) + _log(TaM(T)) - f (py ,pmt)

where g(py, p,m) is:

l O g (p m l) e q! 1]
[4. t o g (1 - q1" q L ,) " eq! -

(4a)

(4b)
and f(py,P,m) is:

log(q I • (1 2 , eql , - q m t) " ; W ' ~ - I) } e q ! •

[{ 2 - 4. ?og(i ~ : q ~ , -) × (- log(pro,)) . ~--7~_ ~ ~

(4c)

THEOREM 3. The sub-optimality factor ~ of the protocol
of Figure 1, is independent of group size n (>> 1). Further-
m o r e :

1. iy Y (p 1 , p m ~) < o,
(a) L is monotonically increasing with - log(79 M (T)),
and
(b) As 7~M(T) --* 0 +. L • ~ - -" g (p I , p m ~) -

2. if f (p i ,p , ,a) > O,
(a) c is monotonically decreasing with - log(7~ M (T)) , Z-~
and
(b) As P M (T) --* 0 +. L • ~ ---* g(pi ,p,m) +

PROOF. From equations (43) through (4c). []

We next calculate the average network load imposed by the
new failure detector algorithm. Every T' time units, each
non-faulty member (numbering (n- qf) on an average) exe-
cutes steps (1-3), in the algorithm of Figure 1. Steps (1,6)
involve at most 2 messages, while steps (2-5) (which are ex-
ecuted only if no ack is received from the target of the ping
of step (1) - this happens with probability (1 - q f . q 2))
involve at most 4 messages per non-faulty ping-req target
member. Therefore, the average network load imposed by
this protocol (in messages/time unit) is

2 1
E[L] < n . q f . [2 T (1 - q l . q , . m) . 4 . k] . ~ 7

176

Then, fxom Theorem 1 and equations (1),(2),

E[L] <
L * -

Even E[L] can be upper-bounded from the optimal L* by a
factor that is independent of the group size n.

Do the values of L and SL--~. go very high compared to
the ideal value of 1.0 ? The answer is a 'No' when val-
ues of Pf,p~t are low, yet reasonable. Figure 3(a) shows
the variation of L Z-;" as in equation (3), at low but reason-
able values of pf,p,-,,,, and 7~M(7-). This plot shows that
the sub-optimality factor of the network load imposed by
the new failure detector rises as p,~ and pf increase, or
7~M(7 -) decreases, but is bounded above by the function
g(pf, pm,), at all values of :PM(7-). This happens because
f(pf,p,~,t) < 0 at such low values of pf and p~,, as seen
from Figure 3(b) - Theorem 3.1 thus applies here. From
figure 3(a), the function g(PS,P,~L) (bottom-most surface),
does not at tain too high values (staying below 26 for the
values shown). Thus the performance of the new failure de-
tector algorithm is good for reasonable assumptions on the
network unreliability.

I n (P r o (T)) - - 1 0
~0g[?='M('T) ,z, 1 I n (P r n (T)) - - - 3 0

2 (qy . (t - - q ~ l) . ~) ' . (I / L *) g (p f , p m l)

qf - [2A-4 (I qf q'~') / o . - ~ : ~ - f : ~]
2 8 [-

. e q , Z o g (v , , , ,) .]
• X'ol X[e~ --- 1 log(7~M(7-)) 16

I / j o . l s
I ~ . / o .12
" - - ~ . / 0 . 0 9

ElL] stays very Figure 3(c) shows that the upper bound on L*
low (below 8) for values of pf and pint up to 15%. More-

s-L~L actually over, as •M(7-) is decreased, the bound on L*
decreases. This curve reveals the advantage of using ran-
domization in the failure detector. Unlike traditional dis-
tributed heartbeating algorithms, the average case network
load behavior of the new protocol is much lower than the
worst-case network load behavior.

L (according to equation (a) Variation of Z-~
(3)) versus pm,,pf, at different values of
T>M(7-). For low values of p,,t and p f,

g(Pf,Pmz) is an upper bound on L .

f (p f , p m l) > 0

1

0

0 .8
0 . 6

- ' - - pp.4~---.~.~__ / r 0 .6 ~ - / 0 . 2 p m l

0 . 8 °

(b) Values ofpf ,pmt for which f(pf,p,, , t) is
positive or negative.

I n (P r o (T)) = - 1 0
I n (P m (T)) = - 3 0

(E [L] / L *) < =

8

6

4

0

0 . 1 5
0 . 1 2

o /o.o pr.,

(c) Variation of ~ versus p,,~, pf
(according to equation (5)).

F i g u r e 3: P e r f o r m a n c e o f n e w fa i lure d e t e c t o r algo-
r i t h m

Figure 3 reveals that for values of pf and pint below 15%,
the ~ for the new randomized failure detector stays be-

low 26, and SL{--~, stays below 8. Further, as is evident from
equations (3) and (5), the variation of these sub-optimality
factors does not depend on the group size (at large group
sizes). Compare this with the sub-optimality factors of dis-
tributed heartbeating schemes discussed in Section 4, which
are typically at least O[n].

In reality, message loss rates and process failure rates could
vary from time to time. The parameters pf and p,~t, needed
to configure protocol parameters T ' and k, may be diffi-
cult to estimate. However, Figure 3 shows that assuming
reasonable bounds on these message loss rates/failure rates
and using these bounds to configure the failure detector suf-
rices. In other words, configuring protocol parameters with
pf,p,~l = 15% will ensure that the failure detector preserves
the application specified constraints (7-, T~M(7-)) while im-
posing a network load that differs from the optimal worst-
case load L* by a factor of at most 26 in the worst-case, and
8 in the average case, as long as the message loss/process
failure rates do not exceed 15% (this load is lower when loss
or failure rates are lower).

177

5.3 Future Work and Optimizations
At Cornell University, we are currently testing performance
of a scalable distributed membership service that uses the
new randomized failure detection algorithm.

Extending the above protocol to the crash-stop model inher-
ent to dynamic groups involves several protocol extensions.
Every group member join, leave or failure detection entails a
broadcast to the non-faulty group members in order to up-
date their view. Further, this broadcast may not be reliable.

Implementing this protocol over a group spanning several
subnets requires tha t the load on the connecting routers or
gateways be low. The protocol currently imposes an O(n)
load (in bytes per second) on such touters during every pro-
tocol period. Reducing this load inevitably leads to compro-
mising some of the EFFICIENCY properties of the protocol,
as pings are sent less frequently across subnets.

The protocol can also be optimized to trade off worse SCALE
properties for bet ter ACCURACY properties. One such op-
timization is to follow a failure detection (by an individ-
ual non-faulty member through the described protocol) by
multicast of a suspicion of that failure, waiting for some
time before turn ing this suspicion into a declaration of a
member failure. Wi th such a suspicion multicast in place,
protocol periods at different non-faulty group members, tar-
geting this suspected member, can be correlated to improve
the ACCURACY properties. This would also reduce the effect
of correlated message failures on the frequency of mistaken
failure declarations.

A disadvantage of the protocol is that since messages are re-
stricted to contain at most a few bytes of data, large message
headers mean higher overheads per message. The proto-
col also precludes optimizations involving piggy-backed mes-
sages, primarily due to the random selection of ping targets.

The discussion in this paper also points us to several new
and interesting questions.

Is it possible to design a failure detector algorithm that ,
for an asynchronous network setting, satisfies COMPLETE-
NESS, EFFICIENCY, Scale requirements, and the SPEED re-
quirement (section 4) with a deterministic bound on time to
detection of a failure (7-), rather than as an average case as
we have done in this paper ?s Notice that this is not difficult
to achieve in a synchronous network setting (by modifying
the new failure detector algorithm to choose ping targets
in a deterministic and globally known manner during every
protocol period).

We also leave as an open problem the specification and re-
alization of optimality load conditions for a failure detec-
tor with the SPEED timing parameter 7" set as the time to
achieve Strong Completeness for any group member failure
(rather than just Weak Completeness).

s Heartbeating along a logical ring among group members
(eg., [7]) seems to provide a solution to this question. How-
ever, as pointed out before, ring heartbeating has unpre-
dictable failure detection times in the presence of multiple
simultaneous failures.

Of course, it would be ideal to extend all such results to
models that assume some degree of correlation among mes-
sage losses, and perhaps even member failures.

6. CONCLUDING COMMENTS
In this paper, we have looked at designing complete, scal-
able, distributed failure detectors from timing and accuracy
parameters specified by the distributed application. We
have restricted ourselves to a simple, probabilistically lossy,
network model. Under certain independence assumptions,
we have first quantified the optimal worst-case network load
(messages per second, with a limit on maximal message size)
required by a complete failure detector algorithm in a pro-
cess group over such a network, derived from application-
specified constraints of 1) detection time of a group member
failure by some non-faulty group member, and 2) proba-
bility (within the detection time period) of no other non-
faulty member detecting a given non-faulty member as hav-
ing failed. We have then shown why the popular distributed
heartbeating failure detection schemes inherently do not sat-
isfy this optimal scalability limit.

Finally, we have proposed a randomized failure detector al-
gorithm that imposes an equal expected load on all group
members. This failure detector can be configured to sat-
isfy the application-specified requirements of completeness
and accuracy, and speed of failure detection (on average).
Our analysis of the protocol shows that it imposes a worst-
case network load that differs from the optimal by a sub-
optimality factor greater than 1. For very stringent accuracy
requirements (~OM(7-) as low as e-3°), reasonable message
loss probabilities and process failure rates in the network
(up to 15% each), the sub-optimality factor is not as large as
that of traditional distributed heartbeating protocols. Fur-
ther, this sub-optimality factor does not vary with group
size, when groups are large.

We are currently involved in implementing and testing the
behavior of this protocol in dynamic group membership sce-
narios. This involves several extensions and optimizations
to the described protocol.

Acknowledgments
We thartk all the members of the Oc4ano group for their
feedback. We are also immensely grateful to the anony-
mous reviewers and Michael Kalaaatar for their suggestions
towards improving the quality of the paper.

7. REFERENCES
[1] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a

timeout-free failure detector for quiescent reliable
communication. In Proceedings of 11th International
Workshop on Distributed Algorithms (WDA G'97),
pages 126-140, September 1997.

[2] C. Almeida and P. Verissimo. Timing failure detection
and real-time group communication in real-time
systems. In Proceedings of 8th Euromicro Workshop
on Real-Time Systems, June 1996.

[3] K. P. Birman. The process group approach to rehable
distributed computing. Communications of the A CM,
36(12):37-53, December 1993.

178

[4] R. Bollo, J.-P. L. Narzul, M. Raynal, and F. Tronel.
Probabilistic analysis of a group failure detection
protocol. In Proceedings of ~th International
Workshop on Object-Oriented Real-Time Dependable
Systems, 1998.

[5] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225-267, March 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. In Proceedings of
30th International Conference on Dependable Systems
and Networks (ICDSN/FTCS-30), June 2000.

[7] S. A. Fakhouri, G. S. Goldszmidt, I. Gupta,
M. Kalantar, and J. A. Pershing. Guffstream - a
system for dynamic topology management in
multi-domain server farms. Technical Report R.C
21954, IBM T.J. Watson Research Center, February
2001.

[8] C. Fetzer and F. Cristian. Fall-awareness in timed
asynchronous systems. In Proceedings of 15th Annual
A CM Symposium on Principles of Distributed
Computing (PODC'96), pages 314-321a, May 1996.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed Consensus with one faulty
process. Journal of the ACM, 32(2):374-382, April
1985.

[10] I. Gupta, R. van Renesse, and K. P. Birman. A
probabilistically correct leader election protocol for
large groups. In Proceedings of 14th International
Symposium on Distributed Computing (DISC 2000),
LNCS-1914, pages 89-103, October 2000.

[11] J. M. Helary and M. Hurfin. Solving Agreement
problems with failure detectors; a survey. Annals of
Telecommunications, 52(9-10):447-464,
September-October 1997.

[12] M. Larrea, A. Fernandez, and S. Arevalo. Optimal
implementation of the weakest failure detector for
solving Consensus. In Proceedings of 19th Annual
A CM-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2000), July 2000.

[13] G. Pfister. In search of Clusters, the Ongoing Battle in
Lowly Parallel Computing. Prentice Hall, 1998.

[14] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proceedings of
International Conference and Distributed Systems
Platforms and Open Distributed Processing (IFIP),
1998.

179

