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ABSTRACT 
Process groups in distributed applications and services rely 
on failure detectors to detect process failures completely, 
and as quickly, accurately, and scalably as possible, even 
in the face of unreliable message deliveries. In this paper, 
we look at quantifying the optimal scalability, in terms of 
network load, (in messages per second, with messages hav- 
ing a size limit) of distributed, complete failure detectors 
as a function of application-specified requirements. These 
requirements are 1) quick failure detection by some non- 
faulty process, and 2) accuracy of failure detection. We 
assume a crash-recovery (non-Byzantine) failure model, and 
a network model that  is probabilistically unreliable (w.r.t. 
message deliveries and process failures). First, we charac- 
terize, under certain independence assumptions, the opti- 
mum worst-case network load imposed by any failure detec- 
tor that  achieves an application's requirements. We then 
discuss why traditional heartbeating schemes are inherently 
unscalable according to the optimal load. We also present 
a randomized, distributed, failure detector algorithm that  
imposes an equal expected load per group member. This 
protocol satisfies the application defined constraints of com- 
pleteness and accuracy, and speed of detection on an aver- 
age. It  imposes a network load that  differs from the opti- 
mal by a sub-optimality factor that  is much lower than that  
for traditional distributed heartbeating schemes. Moreover, 
this sub-optimality factor does not vary with group size (for 
large groups). 

Keywords 
Distributed systems, Failure detectors, Efficiency, Accuracy, 
Scalability. 

1. INTRODUCTION 
Failure detectors are a central component in fault-tolerant 
distributed systems based on process groups running over 
unreliable, asynchronous networks eg., group membership 
protocols [3], supercomputers, computer clusters [13], etc. 
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The ability of the failure detector to detect process failures 
completely and efficiently, in the presence of unreliable mes- 
saging as well as arbitrary process crashes and recoveries, 
can have a major impact on the performance of these sys- 
tems. "Completeness" is the guarantee tha t  the failure of 
a group member is eventually detected by every non-faulty 
group member. "Efficiency" means that  failures are detected 
quickly, as well as accurately (i.e., without too many mis- 
takes). 

The first work to address these properties of failure detec- 
tors was by Chandra and Toueg [5]. The authors showed 
why it is impossible for a failure detector algorithm to de- 
terministically achieve both completeness and accuracy over 
an asynchronous unreliable network. This result has lead to 
a flurry of theoretical research on other ways of classify- 
ing failure detectors, but more importantly, has served as 
a guide to designers of failure detector algorithms for real 
systems. For example, most distributed applications have 
opted to circumvent the impossibility result by relying on 
failure detector algorithms that  guarantee completeness de- 
terministically while achieving efficiency only probabilisti- 
cally [1, 2, 4, 6, 7, 8, 14]. 

The recent emergence of applications for large scale dis- 
tr ibuted systems has created a need for failure detector algo- 
rithms that  minimize the network load (in bytes per second, 
or equivalently, messages per second with a limit on max- 
imum message size) used, as well as the load imposed on 
participating processes [7, 14]. Failure detectors for such 
settings thus seek to achieve good scalability in addition to 
efficiency, while still (deterministically) guaranteeing com- 
pleteness. 

Recently, Chen et al. [6] proposed a comprehensive set of 
metrics to measure the Quality of Service (QoS) of complete 
and efficient failure detectors. This paper presented three 
primary metrics to quantify the performance of a failure de- 
tector at one process detecting crash-recovery failures of a 
single other process over an unreliable network. The authors 
proposed failure detection time, and recurrence time and du- 
ration times of mistaken detection as the primary metrics for 
complete and efficient failure detectors. However, the paper 
neither deal with the optimal relation among these metrics, 
nor focussed on distributed or scalable failure detectors. 

In this paper, we first address the question of quantifying 
the optimum worst-case network load (in messages per sec- 
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ond, with a limit on messages sizes) needed by a complete 
distributed failure detector protocol to satisfy the efficiency 
requirements as specified by the application. We are con- 
cerned with distributed failure detectors working in a group 
of uniquely identifiable processes, which are subject to fail- 
ures and recoveries, and communicate over an unreliable net- 
work. We deal with complete failure detectors that  satisfy 
application-defined ejO~ciency constraints of 1) (quickness) 
detection of any group member failure by some non-faulty 
member within a time bound, and 2) (accuracy) probabil- 
ity (within this time bound) of no other non-faulty member 
detecting a given non-faulty member as having failed. 

The first (quickness) requirement merits further discussion. 
Many systems, such as multi-domain server farm clusters [7, 
13] and virtual synchrony implementations [3] rely on a sin- 
gle or a few central computers to aggregate failure detection 
information from across the system. These computers are 
then responsible for disseminating that  information across 
the entire system. In such systems, efficient detection of 
a failure depends on the time the failure is first detected 
by a non-faulty member. Even in the absence of a central 
server, notification of a failure is typically communicated, 
by the first member to detect it, to the entire group via a 
(possibly unreliable) broadcast [3]. Thus, although achiev- 
ing completeness is important,  efficient detection of a failure 
is more often related with the time to the first detection, by 
another non-faulty member, of the failure. 

We derive the optimal worst-case network load (in messages 
per second, with a limit on maximum message size) imposed 
on the network by a complete failure detector satisfying the 
above application-defined constraints. We then discuss why 
the traditional and popular distributed heartbeating fail- 
ure detection schemes (eg., [7, 14]) do not achieve these op- 
timal scalability limits. Finally, we present a randomized 
distributed failure detector that  can be configured to meet 
the application-defined constraints of completeness and ac- 
curacy, and expected speed of detection. With  reasonable 
assumptions on the network unreliability (member and mes- 
sage failure rates of up to 15%), the worst-case network load 
imposed by this protocol has a sub-optimality factor that  is 
much lower than that  of traditional distributed heartbeat 
schemes. This sub-optimality factor does not depend on 
group size (in large groups), but  only on the application- 
specified efficiency constraints and the network unreliability 
probabilities. Furthermore, the average load imposed per 
member is independent of the group size. 

In arriving at these results, we will assume that  message loss 
and member failures can each be characterized by probabilis- 
tic distributions, independent across messages and failures. 
While the practicality of these assumptions in real networks 
will probably be subject to criticism, these assumptions are 
necessary in order to take this first step towards quantifying 
and achieving scalable and efficient failure detectors. Be- 
sides, we believe that  these independence assumptions are 
partially justified because of 1) the randomized nature of the 
new failure detector algorithm, and 2) the large temporal 
separation between protocol periods, typically O(seconds) 
in practice (mitigating much of the correlation among mes- 
sage loss probability distributions). 

The rest of the paper is orgartized as follows. Section 2 
briefly summarizes previous work in this area. In Section 3, 
we formally describe the process group model assumed in 
this paper. Section 4 presents a discussion of how an ap- 
plication can specify efficiency requirements to a failure de- 
tector, and quantifies the optimal worst-case network load 
a failure detector must impose, in order to meet these re- 
quirements. Section 5 presents the new randomized failure 
detector protocol. We conclude in section 6. 

2. PREVIOUS WORK 
Chaaadra arid Toueg [5] were the first to formally address 
the completeness and accuracy properties of failure detec- 
tors. Subsequent work has focused on different properties 
and classifications of failure detectors. This area of litera- 
ture has treated failure detectors as oracles used to solve the 
Distributed Consensus/Agreement problem [9], which is un- 
solvable in the general asynchronous network model. These 
classifications of failure detectors are primarily based on the 
weakness of the model required to implement them, in or- 
der to solve the Distributed Consensus/Agreement problem 
[111. 

Proposals for implementable failure detectors have some- 
times assumed network models with weak unreliability se- 
mantics eg., timed-asynchronous model [8], quasi-synchronous 
model [2], partial synchrony model [12], etc. These propos- 
als have treated failure detectors only as a tool to efficiently 
reach agreement, ignoring their efficiency from an applica- 
tion designer's viewpoint. For example, most failure detec- 
tors such as [12] provide eventual guarantees, while applica- 
tions are typically concerned about real t iming constraints. 

In most real-life distributed systems, the failure detection 
service is implemented via variants of the "Heartbeat mech- 
anism" [1, 2, 4, 6, 7, 8, 14], which have been popular as 
they guarantee the completeness property. However, all ex- 
isting heartbeat approaches have shortcomings. Centralized 
heartbeat schemes create hot-spots that  prevent them from 
scaling. Distributed heartbeat schemes offer different levels 
of accuracy and scalabifity depending on the exact heart- 
beat dissemination mechanism used, but  we show that  they 
are inherently not as efficient and scalable as claimed. 

Probabilistic network models have been used to analyze heart- 
beat failure detectors in [4, 6], but  only with a single process 
detecting failures of a single other process. [6] was the first 
paper to propose metrics for non-distributed heartbeat fail- 
ure detectors in the crash-recovery model. These metrics 
were not inclusive of scalability concerns. 

Our work differs from all this prior work in that  it is the 
first to approach the design of failure detectors from a dis- 
tributed application developer's viewpoint. We quantify the 
performance of a failure detector protocol as the network 
load it requires to impose on the network, in order to sat- 
isfy the application-defined constraints of completeness, and 
quick and accurate detection z. We also present an efficient 
and scalable distributed failure detector. The new failure 
detector incurs a constant expected load per process, thus 

1We will state these application-defined requirements for- 
really in Section 4. 
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avoiding the hot-spot problem of centralized heartbeating 
schemes. 

3. MODEL 
We consider a large group of n (>> 1) members ~. This set of 
potential group members is fixed a Wior/. Group members 
have unique identifiers. Each group member ma£ntains a 
list, called a view, containing the identities of all other group 
members (faulty or otherwise). Our protocol specification 
and analysis assumes that  this maximal group membership 
is always the same at all members, but  our results can be 
extended to a model with dynamically changing membership 
and members with incomplete views, using methodologies 
similar to [10]. 

Members may suffer crash (non-Byzantine) failures, and re- 
cover subsequently. Unlike other papers on failure detectors 
(eg., [14]) that  consider a member as faulty if they are per- 
turbed and sleep for a time greater than  some pre-specified 
duration, our notion of failure considers that  a member is 
faulty if and only if it has really crashed. Perturbations at 
members that  might lead to message losses are accounted for 
in the message loss rate p,~l (which we will define shortly). 

Whenever a member recovers from a failure, it does so into 
a new incarnation tha t  is distinguishable from all its earlier 
incarnations. At each member, an integer in non-volatile 
storage, that  is incremented every time the member recov- 
ers, suffices to serve as the member's incarnation number. 
The members in our group model thus have crash-recovery 
semantics with incarnation numbers distinguishing different 
failures and recoveries. When a member Mi crashes (fails), 
it does so in its current incarnation (say i t s / ' t h  incarnation). 
We say that  such a failure is "detected" at exactly the first 
instant of time that  some other non-faulty member detects 
either 1) failure of Mi in incarnation greater than or equal 
to l, or 2) recovery of Mi in an incarnation strictly greater 
than I. 

We characterize the member failure probability by a param- 
eter pf. pf is the probability that  a random group member 
is faulty at a random time. Member crashes are assumed to 
be independent across members. 

We assume no synchronization of clocks across group mem- 
bers. We only require tha t  each individual member's clock 
drift rate (from some fixed clock rate) remains constant. 

Members communicate using unicast (point-to-point) mes- 
saging on an asynchronous, fault-prone network. Since we 
are interested in characterizing the network bandwidth uti- 
lized, we will assume that  maximal message sizes are a con- 
stant, containing at most a few bytes of data (assuming a 
bound on the size of message identifiers and headers, as is 
typical in IP packets). 

Each message sent out on the network fails to be delivered 
at its recipient (due to network congestion, buffer overflow 
at the sender or receiver due to member perturbations, etc.) 
with probability p,~l E (0, 1). The worst-case message prop- 

2All of which are either processes, or servers, or network 
adaptors etc. 

agation delay (from sender to receiver through the network) 
for any delivered message is assumed to be so small com- 
pared to the application-specified detection time (typically 
O( several seconds )) that  henceforth, for all practical pur- 
poses, we can assume that  each message is either delivered 
immediately at the recipient with probability (1 -p ,~ l ) ,  or 
never reaches the recipient, s 

This message loss distribution is also assumed to be indepen- 
dent across messages. Message delivery losses could, in fact, 
be correlated in such a network. However, if application- 
specified failure detection times are much larger than mes- 
sage propagation and congestion repair times in the network, 
messages exchanged by the failure detector will have con- 
siderable temporal separation. This reduces the correlation 
among the loss distributions of different messages. Ran- 
domized selection of message destinations in the new failure 
detector also weakens such message loss correlation. 

In the rest of the paper, we use the shorthands qf and q,nt 
instead of (1 - pf)  arid (1 - p,~t) respectively, 

4. SCALABLE AND EFFICIENT FAILURE 
DETECTORS 

The first formal characterization of the properties of failure 
detectors was offered in [5], which laid clown the following 
properties for distributed failure detectors in process groups: 

• { S t r o n g / W e a k }  C o m p l e t e n e s s :  crash-failure of any 
group member is detected by {all/some} non-faulty 
members 4, 

• S t r o n g  A c c u r a c y :  no non-faulty group member 5 is 
declared as failed by any other non-faulty group mem- 
ber. 

[5] also showed that  a perfect failure detector i.e., one which 
satisfies both Strong Completeness and Strong Accuracy, is 
sufficient to solve distributed Consensus, but is impossible 
to implement in a fault-prone network. 

Subsequent work on designing efficient failure detectors has 
attempted to trade off the Completeness and Accuracy prop- 
erties in several ways. However, the completeness proper- 
ties required by most distributed applications have lead to 
the popular use of failure detectors that  guarantee Strong 
Completeness always, even if eventually [1, 2, 4, 5, 6, 7, 
8, 14]. This of course means that  such failure detectors 
cannot guarantee Strong Accuracy always, but  only with a 
probability less than  1. For example, all-to-all (distributed) 

3This assumption is made for simplicity. In fact, the opti- 
mality results of section 4 hold if pml is assumed to be the 
probability of message delivery within 7- time units after its 
send. The randomized protocol of section 5 and its analysis 
can be extended to hold if p,,~z is the probability of message 
delivery within a sixth of the protocol period. 
aRecollect that  in our model, since members recover with 
unique incarnations, detection of a member's failure or re- 
covery also implies detection of failure of all it 's previous 
incarnations. 
5in its current incarnation 
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heartbeating schemes have been popular because they guar- 
antee Strong Completeness (since a faulty member will stop 
sending heartbeats), while providing varying degrees of ac- 
curacy. 

We have explained in Section 1 why in many distributed 
applications, although the failure of a group member must 
eventually be known to all non-faulty members, it is impor- 
tant  to have the failure detected quickly by some non-faulty 
member (and not necessarily all non-faulty members). In 
other words, the quickness of failure detectors depends on 
the time from a member failure to Weak Completeness with 
respect to that  failure, although Strong Completeness is a 
necessary property. 

The requirements imposed by an application (or its designer) 
on a failure detector protocol can thus be formally specified 
and parameterized as follows: 

1. COMPLETENESS: satisfy eventual Strong Completeness 
for member failures. 

2. EFFICIENCY: 

(a) SPEED: every member failure is detected by some 
non-faulty group member within 7- time units af- 
ter its occurrence (7" >> worst-case message round 
trip time). 

(b) ACCURACY: at any time instant, for every non- 
faulty member Mi not yet detected as failed, the 
probability that  no other non-faulty group mem- 
ber will (mistakenly) detect Mi as faulty within 
the next 7" time units is at least (1 - 7aM(7")). 

7" and PM(7") are thus parameters specified by the applica- 
tion (or its designer). For example, an application designer 
might specify 7- : 3 seconds, and P M ( 3  seconds) = 10 -s .  

To measure the scalability of a failure detector algorithm, we 
use the worst-case network load it imposes - this is denoted 
as L. Since several messages may be t ransmit ted simulta- 
neously even from one group member, we define: 

Definition 1. The worst-case network load L of a failure 
detector protocol is the maximum number of messages trans- 
mitted by any run of the protocol within any time interval 
of length 7", divided by 7". 

We also require that  the failure detector impose a uniform 
expected send and receive load at each member due to this 
traffic. 

The goal of a near-optimal failure detector algorithm is thus 
to satisfy the above requirements (COMPLETENESS, EFFI- 
CIENCY) while guaranteeing: 

• Scal~. the worst-case network load L imposed by the 
algorithm is close to the optimal possible, with equal 
expected load per member. 

That  brings us to the question - what is the optimal worst- 
case network load, call it L*, that  is needed to satisfy the 
above application-defined requirements - COMPLETENESS, 
SPEED (7"), ACCURACY (79M(7")) ? We are able to an- 
swer this question in the network model discussed earlier 
when the group size n is very large (>> 1), and 79M(7 -) is 
very small ( << p,nt). 

THEOREM 1. Any distributed failure detector algorithm 
for a group of size n (>> 1) that deterministically satisfies the 
COMPLETENESS~ SPEED, ACCURACY requirements above, for 
given values o f t  and PM(7")  (<< pint), imposes a minimal 
worst-case network load (messages per time unit, as defined 
above) of: 

L* ----- n .  log(PM(7")) 
log(pml)" 7" 

Furthermore, there is a failure detector that acMeves ttds 
minimal worst-case bound wMle satisfying the COMPLETE- 
NESS, SPEED, ACCURACY requirements. 

L* is thus the optimal worst-case network load required to 
satisfy the COMPLETENESS, SPEED, ACCURACY requirements. 

PROOF. We prove the first part  of the theorem by showing 
that each non-faulty group member could transmit  up to 
=og{7~M{"1")) tog(p,~D messages in a time interval of length 7". 

Consider a group member Mi at a random point in time 
t. Let M~ not be detected as failed yet by any other group 
member, and stay non-faulty until at least time t + 7". Let 
m be the maximum number of messages sent by Mi, in the 
time interval [t,t + 7-], in any possible run of the failure 
detector protocol starting from time t. 

Now, at time t, the event tha t  "all messages sent by Mi in 
the time interval [t, t+7"] are lost" happens with probability 
at least P~l. Occurrence of this event entails that  it is in- 
distinguishable to the set of the rest of the non-faulty group 
members (i.e., members other than Mi) as to whether Mi is 
faulty or not. By the SPEED requirement, this event would 
then imply that  M~ is detected as failed by some non-faulty 
group member between t and t + 7". 

Thus, the probability that  at t ime t, a given non-faulty mem- 
ber Mi that  is not yet detected as faulty, is detected as failed 
by some other non-faulty group member within the next 7" 
time units, is at least pmmz. By the ACCURACY reqUirement, 
we have p ~  < P M ( T ] ,  which implies that  m > I°g(T*M(T)) 

_ _ log(p,,~l ) • 

A failure detector that  satisfies the COMPLETENESS, SPEED, 
ACCURACY requirements and meets the L* bound works as 
follows. It uses a highly avMlable, non-faulty server as a 

[ l o g ( ' P M ( T ) )  1 group leader 6. Every other group member sends t log(v,,D J 
"I am alive" messages to this server every 7" time units. The 

6The set of central computers, that  collect failure informa- 
tion and disseminate it to the system, can be designated as 
the server. 
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server declares a member as failed when it does not receive 
any "I am alive" message from it for 7" t ime units 7. [] 

Corollary: The optimal bound of Theorem 1 applies to the 
crash-stop model as well. 

Proof: By exactly the same arguments as in the proof of 
Theorem 1. [] 

Definition 2. The sub-optimality factor of a failure de- 
tector algorithm that  imposes a worst-case network load 
L, while satisfying the COMPLETENESS and EFFICIENCY re- 

L quirements, is defined as Z-;-" 

In the traditional distributed Heartbeating failure detection 
algorithms, every group member periodically transmits  a 
"heartbeat" message (with an incremented counter) to ev- 
ery other group member. A member M~ is declared as failed 
by a non-faulty member Mj when My does not receive heart- 
beats from M~ for some consecutive heartbeat  periods (this 
duration being the detection time 7-). 

Distributed heaxtbeating schemes have been the most pop- 
ulax implementation of failure detectors because they guar- 
antee C O M P L E T E N E S S  - a failed member will not send any 
more heartbeat messages. However, the accuracy and scala- 
bility guarantees of heartbeating algorithms differ, depend- 
ing entirely on the actual mechanism used to disseminate 
heartbeats. 

In the simplest implementation, each member M~ transmits 
a few "I am alive" messages to each group member it knows 
of, every 7- time units. The worst-case number  of messages 
transmitted by each member per unit  time is 0(n), and the 
worst-case total network load L is 0(n9~). The sub-optimality 
factor (i.e., L Z-;-) varies as O(n), for any values of pm~, pf and 
79M(7-). 

The Gossip-style failure detection service, proposed by van 
Renesse et al. [14], uses a mechanism where every tgossip 
time units, each member gossips a O(n) list of the latest 
heartbeat counters (for all group members) to a few other 
randomly selected group members. The authors show that  
under this scheme, a new heartbeat count typically takes 
an average time of O[log(n) • tgossip] to reach an arbitrary 
other group member. The SPEED requirement thus leads 

0 us to choose tgossip --- [zo--g~-~]- The worst-case network 
load imposed by the Gossip-style heartbeat scheme is thus 
0 .  "2 I [,go,,~p, : 0[ ~r ]. The sub-optimality factor varies as 

O[n. log(n)[, for any values of pml, pf  and ~°M(7-). 

In fact, distributed heartbeating schemes do not meet the 
optimality bound of Theorem 1 because they inherently at- 
tempt to communicate a failure notification to a/l group 
members. As we have seen above, this is an overkill for 
systems that  can rely on a centralized coordinated set of 

7This implementation, which is essentially a centralized 
heartbeat mechanism, is undesirable as it requires a highly 
available server and has bad load balancing (does not satisfy 
the Scale property). 

servers to disseminate failure information. These systems 
require only some other non-faulty member to detect a given 
failure. 

Other heartbeating schemes, such as Centralized heartbeat- 
ing (as discussed in the proof of Theorem 1) and heartbeat- 
ing along a logical ring of group members [71, can be config- 
ured to meet the optimal load L*, but  have problems such 
as creating hot-spots (centralized heartbeating) or unpre- 
dictable failure detection times in the presence of multiple 
simultaneous faults at larger group sizes (heartbeating in a 
ring). 

5. A RANDOMIZED DISTRIBUTED 
F A I L U R E  D E T E C T O R  P R O T O C O L  

In the preceding sections, we have characterized the opti- 
mal worst-case load imposed by a distributed failure de- 
tector that  satisfies the C O M P L E T E N E S S ,  SPEED and ACCU- 
RACY requirements, for application specified values of 7- and 
79M(7-) (Theorem 1). We have then studied why traditional 
heartbeating schemes are inherently not scalable. 

In this section, we relax the SPEED condition to detect a fail- 
ure within an expected (rather than exact, as before) time 
bound of 7- time units after the failure. We then present a 
randomized distributed failure detector algorithm that  guar- 
antees COMPLETENESS with probability 1, detection of any 
member failure within an expected time 7- from the failure, 
and an ACCURACY probability of (1 - 79M(7-)). The proto- 
col imposes an equal expected load per group member, and 
a worst-case (and average case) network load L that  differs 
from the optimal L* of Theorem 1 by a sub-optimality factor 
(i.e., L Z-;-) that  is independent of group size n (>> 1). In such 
large groups, at reasonable values of member and message 
delivery failure rates pf and pro,, this sub-optimality factor 
is much lower than the sub-optimality factors of the tra- 
ditional distributed heartbeating schemes discussed in the 
previous section. 

5.1 New Failure Detector Algorithm 
The failure detector algorithm uses two parameters: proto- 
col period T I (in time units) and integer k, which is the size 
of failure detection subgroups. We will show how the values 
of these parameters can be configured from the required val- 
ues of T and 7~M(7"), and the network parameters py,pml. 
Parameters T '  and k are assumed to be known a priori at 
all group members. Note that  this does not need clocks 
to be synchronized across members, but  only requires each 
member to have a steady clock rate to be able to measure 
T I" 

The algorithm is formally described in Figure 1. At each 
non-faulty member Mi, steps (1-3) are executed once every 
T '  time units (which we call a protocol periotO, while steps 
(4,5,6) are executed whenever necessary. The data contained 
in each message is shown in parentheses after the message. If 
sequence numbers axe allowed to wrap around, the maximal 
message size is bounded from above. 

Figure 2 illustrates the protocol steps initiated by a member 
Mi, during one protocol period of length T '  time units. At 
the start of this protocol period at Mi, a random member 
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Integer pr;  /*  Local period number */  

Etter'td T t time units at Mi : 

O. pr := pr  + 1 
1. Select random member Mj from view 

Send a ping(Mi, Mj,  pr) message to Mj 
Wait  for the worst-ease message round-tr ip t ime for 

an ack(Mi, Mj,  pr)  message 
2. If have not received an ack(Mi, My, pr) message yet 

Select k members randomly from view 
Send each of them a ping-req(Mi, My, pr) message 
Walt  for an ack(Mi, Mj,  pr)  message until  

the end of period pr  
3. If have not received an ack(Mi, Mj,  pr) message yet  

Declare Mj as failed 

Anytime at Mi : 

4. On receipt of a ping-req(Mm, Mj,  pr) (Mj # Mi) 
Send a ping(Mi, Mj,  Mm,pr)  message to Mj 
On receipt of an ack(Mi, Mj ,  Mm, pr)  message from Mj 
Send an ack(Mm, Mj, pr) message to received to Mm 

Anytime at Mi : 

5. On receipt of a ping(Mm, Mi,  Ml, pr )  message from 
member M,~ 

Reply with an ack(Mm, Mi,  Ml, pr)  message to Mm 

Anytime at Mi : 

6. On receipt of a ping(M,,,, Mi,  pr)  message from member M,~ 
Reply with an aek(Mm, Mr, pr)  message to Mm 

F i g u r e  1: P r o t o c o l  s t eps  a t  a g r o u p  m e m b e r  Mi. 
D a t a  in  each  message  is s h o w n  in  p a r e n t h e s e s  a f t e r  
t he  message .  E a c h  message  also c o n t a i n s  t h e  c u r r e n t  
i n c a r n a t i o n  n u m b e r  of t he  s ende r .  

is selected, in this case Mj, and a ping message sent to it. 
If Mi does not receive a replying ack from Mj within some 
time-out (determined by the message round-trip time, which 
is << 7"), it selects k members at random and sends to each 
a ping-mq message. Each of the non-faulty members among 
these k which receives the ping-req message subsequently 
pings Mj and forwards the ack received from Mj, if any, back 
to Mi. In the example of Figure 2, one of the k members 
manages to complete this cycle of events as Mj is up, and 
Mi does not suspect Mj as faulty at the end of this protocol 
period. 

In the above protocol, member Mi uses a randomly selected 
subgroup of k members to out-source ping-mq messages, 
rather than sending out k repeat ping messages to the target 
Mj.  The effect of using the randomly selected subgroup is 
to distribute the decision on failure detection across a sub- 
group of (k + 1) members. Although we do not analyze it 
in this paper, it can be shown that  the new protocol's prop- 
erties are preserved even in the presence of some degree of 
variation of message delivery loss probabilities across group 
members. Sending k repeat ping messages may not satisfy 
this property. Our analysis in Section 5.2 shows that  the 
cost (in terms of sub-optimaiity factor of network load) of 
using a (k + 1)-sized subgroup is not too significant. 

5.2 Analysis 
In this section, we calculate, for the above protocol, the 
expected detection time of a member failure, as well as 
the probability of an inaccurate detection of a non-faulty 

T' 

M i All 
choose random M ~  

I 
members 

l 
I 

F i g u r e  2: E x a m p l e  p ro toco l  p e r i o d  a t  Mi. T h i s  
shows all  t h e  poss ib le  messages  t h a t  a p r o t o c o l  pe-  
r iod  m a y  i n i t i a t e .  S o m e  me ssa ge  c o n t e n t s  e x c l u d e d  
for s impl i c i ty .  

member by some other (at least one) non-faulty member. 
This will lead to calculation of the values of T '  and k, for 
the above protocol, as a function of parameters specifying 
application-specified requirements and network unreliabil- 
ity, i.e., T ,  PM(7" ) ,  Pl ,  p,m. 

For any group member Mj,  faulty or otherwise, 

Pr [at least one non-faulty member chooses to 

ping Mj (directly) in a t ime interval T'] 

= 1 -  ( 1 -  1 .  qf) , ,_ 1 
n 

-- 1 - e -qI(since n >> 1) 

Thus, the expected time between a failure of member Mj 
and its detection by some non-faulty member is 

E[7"] = T ' -  1 - T ' .  eql 
1 - e - q /  e q l  - -  1 ( 1 )  

This gives us a configurable value for T '  as a function of 
7", Pl" 

Now, denote 

e q.f 

C(p.f) -- eql _ 1 

At any given time instant, a non-faulty member Mj will be 
detected as faulty by another non-faulty member Ml within 
the next T time units if M, chooses to ping Mj within the 
next 7" time units  and does not receive any acks, directly 
or indirectly from transitive ping-req's, from Mj. Then, 
PM(7") ,  the probability of inaccurate failure detection of 
member Mj within the next 7" time units, is simply the 
probability that  there is at least one such member Ms in the 
group. 

A random group member Ml is non-faulty with probability 

1 7 5  



q f ,  and the probability of such a member choosing to ping 
Mj within a time interval T is ~ • C(pf) .  Given this, the 
probability that  such a Ml receives back no acks, direct or 
indirect, according to the protocol of section 5.1 equals 

( (1  2 4 k 
• -- qml)" (1 -- qI" q'rm) ) 

Therefore, 

P M ( T )  1 [1 q! • C(pl )  (1 2 . . . . . .  q,m)-(1 - qI" qLz)k] " -1  
n 

~-- 1 - -  e -q!'(1-q2ml)'(1-qy'qaml)k'C(pl ) 

(since n >> 1) 

- -  qI  " (1 - q,m)'2 (1  - q y .  qrnt)4 k . C09I ) 

(since T~M(T) << 1) 

This gives us 

log[ "PM(T) ,~ | 
t ( q y ' ( 1 - - q 2 1 ) ' ~  ) J 

k = log(1 - qy. q 4 )  (2) 

Thus, the new randomized failure detector protocol can be 
configured using equations (1) and (2) to satisfy the SPEED 
and ACCURACY requirements with parameters E[T], ~OM(T). 
Moreover, given a member Mj that  has failed (and stays 
failed), every other non-faulty member Mi will eventually 
choose to ping Mj in some protocol period, and discover Mj 
as having failed. Hence, 

THEOREM 2. This randomized failure detector protocol." 
(a) satisfies eventual Strong Completeness, i.e., the COM- 
PLETENESS r e q u i r e m e n t .  

(b) can be configured via equations (1) and (~) to meet the 
requirements of (expected) SPEED, and ACCURACY, and 
(c) has a uniform expected send/receive load at all group 
members. 

PROOF. From the above discussion and equations (1), 
(2). [ ]  

Finally, we upper-bound the worst-case and expected net- 
work load (L, E[L] respectively) imposed by this failure de- 
tector protocol. 

The worst-case network load occurs when, every T '  time 
units, each member initiates steps (1-6) in the algorithm 
of Figure 1. Steps (1,6) involve at most 2 messages, while 
steps (2-5) involve at most 4 messages per ping-req target 
member. Therefore, the worst-case network load imposed 
by this protocol (in messages/time unit) is 

1 
L = n . [ 2 + 4 . k ] . ~ -  7 

Then, from Theorem 1 and equations (1),(2), 

t og [  ~,~_ (T)  ~, 1 

L - -  [2 + 4 .  ( q ! ' O - q ~ z ) ' ~  i--~f~_~)'. 

X [ e ~  ~ . t°9(p-") l 
-- 1 log(79M(T)) 

(3) 

L thus differs from the optimal L* by a factor tha t  is inde- 
pendent of the group size n. Furthermore, (3) can be written 
as a linear function of 1 --Iog( 'PM(T)) as: 

L 1 
L-- 7 = g(py,p,m) + _log(TaM(T)) - f (py ,pmt)  

where g(py, p,m) is: 

l O g ( p m l )  e q! 1] 
[4. t o g ( 1  - q1" q L , )  " eq! - 

(4a) 

(4b) 
and f(py,P,m) is: 

log(q I • (1 2 , eql , - q m t )  " ; W ' ~ - I )  } e q !  • 

[ { 2 -  4.  ?og(i ~ : q ~ , - )  × (- log(pro,)) .  ~--7~_ ~ ~ 

(4c) 

THEOREM 3. The sub-optimality factor ~ of the protocol 
of Figure 1, is independent of group size n (>> 1). Further- 
m o r e :  

1. iy  Y ( p 1 , p m ~ )  < o, 
(a) L is monotonically increasing with - log(  79 M ( T)  ), 
and 
(b) As 7~M(T) --* 0 +. L • ~ - -"  g ( p I , p m ~ ) -  

2. if f (p i ,p , ,a)  > O, 
(a) c is monotonically decreasing with - log(  7~ M ( T)  ) , Z-~ 
and 
(b) As P M ( T )  --* 0 +. L • ~ ---* g(pi ,p,m) + 

PROOF. From equations (43) through (4c). [ ]  

We next calculate the average network load imposed by the 
new failure detector algorithm. Every T'  time units, each 
non-faulty member (numbering (n-  qf) on an average) exe- 
cutes steps (1-3), in the algorithm of Figure 1. Steps (1,6) 
involve at most 2 messages, while steps (2-5) (which are ex- 
ecuted only if no ack is received from the target of the ping 
of step (1) - this happens with probability (1 - q f .  q 2 ) )  
involve at most 4 messages per non-faulty ping-req target 
member. Therefore, the average network load imposed by 
this protocol (in messages/time unit) is 

2 1 
E[L] < n . q f . [ 2 T ( 1 - q l . q , . m ) . 4 . k ] . ~ 7  
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Then, fxom Theorem 1 and equations (1),(2), 

E[L] < 
L *  - 

Even E[L] can be upper-bounded from the optimal L* by a 
factor that  is independent of the group size n. 

Do the values of L and SL--~. go very high compared to 
the ideal value of 1.0 ? The answer is a 'No' when val- 
ues of Pf,p~t are low, yet reasonable. Figure 3(a) shows 
the variation of L Z-;" as in equation (3), at low but  reason- 
able values of pf,p,-,,,, and 7~M(7-). This plot shows that 
the sub-optimality factor of the network load imposed by 
the new failure detector rises as p,~ and pf increase, or 
7~M(7 -) decreases, but  is bounded above by the function 
g(pf, pm,), at all values of :PM(7-). This happens because 
f(pf,p,~,t) < 0 at such low values of pf and p~,, as seen 
from Figure 3(b) - Theorem 3.1 thus applies here. From 
figure 3(a), the function g(PS,P,~L) (bottom-most surface), 
does not at tain too high values (staying below 26 for the 
values shown). Thus the performance of the new failure de- 
tector algorithm is good for reasonable assumptions on the 
network unreliability. 

I n ( P r o ( T ) ) - - 1 0  
~0g[ ?='M('T) ,z, 1 I n ( P r n ( T ) ) - - - 3 0  ............ 

2 (qy . ( t - - q ~ l ) .  ~ ) ' .  (I / L * )  g ( p f , p m l )  

qf - [2A-4  (I qf q'~') / o . - ~ : ~ - f : ~  ] 
2 8 [ -  

. e q ,  Z o g ( v , , , , )  .] 
• X'ol  X[e~ --- 1 log(7~M(7-)) 16 

I / j o . l s  
I ~  . / o .12  
" - - ~ .  / 0 . 0 9  

ElL] stays very Figure 3(c) shows that  the upper bound on L* 
low (below 8) for values of pf and pint up to 15%. More- 

s-L~L actually over, as •M(7-) is decreased, the bound on L* 
decreases. This curve reveals the advantage of using ran- 
domization in the failure detector. Unlike traditional dis- 
tributed heartbeating algorithms, the average case network 
load behavior of the new protocol is much lower than the 
worst-case network load behavior. 

L (according to equation (a) Variation of Z-~ 
(3)) versus pm,,pf, at different values of 
T>M(7-). For low values of p,,t and p f,  

g(Pf,Pmz) is an upper bound on L .  

f ( p f , p m l )  > 0 

1 

0 

0 .8  
0 . 6  

- ' - -  pp.4~---.~.~__ / r 0 .6  ~ - /  0 . 2  p m l  

0 . 8  ° 

(b) Values ofpf ,pmt for which f(pf,p,, , t)  is 
positive or negative. 

I n ( P r o ( T ) ) = - 1 0  
I n ( P m ( T ) ) = - 3 0  . . . . . . . . . . . .  

( E [ L ] / L * )  < =  

8 

6 

4 

0 

0 . 1 5  
0 . 1 2  

o /o.o  pr., 

(c) Variation of ~ versus p,,~, pf  
(according to equation (5)). 

F i g u r e  3: P e r f o r m a n c e  o f  n e w  fa i lure  d e t e c t o r  algo-  
r i t h m  

Figure 3 reveals that  for values of pf and pint below 15%, 
the ~ for the new randomized failure detector stays be- 

low 26, and SL{--~, stays below 8. Further, as is evident from 
equations (3) and (5), the variation of these sub-optimality 
factors does not depend on the group size (at large group 
sizes). Compare this with the sub-optimality factors of dis- 
tributed heartbeating schemes discussed in Section 4, which 
are typically at least O[n]. 

In reality, message loss rates and process failure rates could 
vary from time to time. The parameters pf and p,~t, needed 
to configure protocol parameters T '  and k, may be diffi- 
cult to estimate. However, Figure 3 shows that  assuming 
reasonable bounds on these message loss rates/failure rates 
and using these bounds to configure the failure detector suf- 
rices. In other words, configuring protocol parameters with 
pf,p,~l = 15% will ensure that  the failure detector preserves 
the application specified constraints (7-, T~M(7-)) while im- 
posing a network load that  differs from the optimal worst- 
case load L* by a factor of at most 26 in the worst-case, and 
8 in the average case, as long as the message loss/process 
failure rates do not exceed 15% (this load is lower when loss 
or failure rates are lower). 
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5.3 Future Work and Optimizations 
At Cornell University, we are currently testing performance 
of a scalable distributed membership service that  uses the 
new randomized failure detection algorithm. 

Extending the above protocol to the crash-stop model inher- 
ent to dynamic groups involves several protocol extensions. 
Every group member join, leave or failure detection entails a 
broadcast to the non-faulty group members in order to up- 
date their view. Further, this broadcast may not be reliable. 

Implementing this protocol over a group spanning several 
subnets requires tha t  the load on the connecting routers or 
gateways be low. The protocol currently imposes an O(n) 
load (in bytes per second) on such touters during every pro- 
tocol period. Reducing this load inevitably leads to compro- 
mising some of the EFFICIENCY properties of the protocol, 
as pings are sent less frequently across subnets. 

The protocol can also be optimized to trade off worse SCALE 
properties for bet ter  ACCURACY properties. One such op- 
timization is to follow a failure detection (by an individ- 
ual non-faulty member through the described protocol) by 
multicast of a suspicion of that  failure, waiting for some 
time before turn ing  this suspicion into a declaration of a 
member failure. Wi th  such a suspicion multicast in place, 
protocol periods at different non-faulty group members, tar- 
geting this suspected member, can be correlated to improve 
the ACCURACY properties. This would also reduce the effect 
of correlated message failures on the frequency of mistaken 
failure declarations. 

A disadvantage of the protocol is that  since messages are re- 
stricted to contain at most a few bytes of data, large message 
headers mean higher overheads per message. The proto- 
col also precludes optimizations involving piggy-backed mes- 
sages, primarily due to the random selection of ping targets. 

The discussion in this paper also points us to several new 
and interesting questions. 

Is it possible to design a failure detector algorithm that ,  
for an asynchronous network setting, satisfies COMPLETE- 
NESS, EFFICIENCY, Scale requirements, and the SPEED re- 
quirement (section 4) with a deterministic bound on time to 
detection of a failure (7-), rather than as an average case as 
we have done in this paper ?s Notice that  this is not difficult 
to achieve in a synchronous network setting (by modifying 
the new failure detector algorithm to choose ping targets 
in a deterministic and globally known manner  during every 
protocol period). 

We also leave as an open problem the specification and re- 
alization of optimality load conditions for a failure detec- 
tor with the SPEED timing parameter 7" set as the time to 
achieve Strong Completeness for any group member failure 
(rather than  just  Weak Completeness). 

s Heartbeating along a logical ring among group members 
(eg., [7]) seems to provide a solution to this question. How- 
ever, as pointed out before, ring heartbeating has unpre- 
dictable failure detection times in the presence of multiple 
simultaneous failures. 

Of course, it would be ideal to extend all such results to 
models that assume some degree of correlation among mes- 
sage losses, and perhaps even member failures. 

6. CONCLUDING COMMENTS 
In this paper, we have looked at designing complete, scal- 
able, distributed failure detectors from timing and accuracy 
parameters specified by the distributed application. We 
have restricted ourselves to a simple, probabilistically lossy, 
network model. Under certain independence assumptions, 
we have first quantified the optimal worst-case network load 
(messages per second, with a limit on maximal message size) 
required by a complete failure detector algorithm in a pro- 
cess group over such a network, derived from application- 
specified constraints of 1) detection time of a group member 
failure by some non-faulty group member, and 2) proba- 
bility (within the detection time period) of no other non- 
faulty member detecting a given non-faulty member as hav- 
ing failed. We have then shown why the popular distributed 
heartbeating failure detection schemes inherently do not sat- 
isfy this optimal scalability limit. 

Finally, we have proposed a randomized failure detector al- 
gorithm that  imposes an equal expected load on all group 
members. This failure detector can be configured to sat- 
isfy the application-specified requirements of completeness 
and accuracy, and speed of failure detection (on average). 
Our analysis of the protocol shows that  it imposes a worst- 
case network load that  differs from the optimal by a sub- 
optimality factor greater than 1. For very stringent accuracy 
requirements (~OM(7-) as low as e-3°), reasonable message 
loss probabilities and process failure rates in the network 
(up to 15% each), the sub-optimality factor is not as large as 
that  of traditional distributed heartbeating protocols. Fur- 
ther, this sub-optimality factor does not vary with group 
size, when groups are large. 

We are currently involved in implementing and testing the 
behavior of this protocol in dynamic group membership sce- 
narios. This involves several extensions and optimizations 
to the described protocol. 
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