
E X P L O I T I N G V I R T U A L S Y N C H R O N Y I N D I S T R I B U T E D S Y S T E M S

Kenneth P. Birman and Thomas A. J o s e p h

Department of Computer Science,
Cornell University, Ithaca, New York 14853.

Abstract: We describe applications of a virtually synchro-
nous environment for distributed programming, which
underlies a collection of distributed programming tools in
the 1SIS2 system. A virtually synchronous environment
allows processes to be structured into process groups, and
makes events like broadcasts to the group as an entity,
group membership changes, and even migration of an
activity from one place to another appear to occur instan-
taneously -- in other words, synchronously. A major
advantage to this approach is that many aspects of a dis-
tributed application can be treated independently without
compromising correctness. Moreover, user code that is
designed as if the system were synchronous can often be
executed concurrently. We argue that this approach to
building distributed and fault-tolerant software is more
straightforward, more flexible, and more likely to yield
correct solutions than alternative approaches.

1. A toolkit for distributed s y s t e m s

Consider the design of a distributed system for

factory automation, say for VLSI chip fabrication.

Such a system would need to group control 'processes

into services responsible for different aspects of the

fabrication procedure. One service might accept

batches of chips needing photographic emulsions,

another oversee transport of chips from station to sta-

tion, etc. Within a service, algorithms would be

needed for scheduling work, replicating data, coordi-

This work was supported by the Defense Advanced
Research Projects Agency (DoD) under ARPA order 5378,
Contracts MDA903-85-C-0124 and N00140-87-C-8904, and
by the National Science Foundation under grant DCR-
8412582. The views, opinions and findings contained in
this report are those of the authors and should not be con-
strued as an official Department of Defense position, pol-
icy, or decision.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

nat ing actions at physmally separate locations, load

balancing, and dynamically reconfiguring the system

after a component goes off line or comes back on line.

The premise of the ISIS project and this paper is

that the existing software development methodology

is inadequate to address this class of applications.

Here, we put forward a new approach that permits

applications to be decomposed into orthogonal com-

ponents that can be treated separately and in a

surprisingly "non-distributed" fashion. Our research

seeks to provide a toolkit for distributed programming
to assist in solving those sub-problems that arise most

commonly in distributed systems. Each tool consists

of a set of subroutines callable from application

software, in some cases augmented by a distributed

program that maintains persistent state information.

Users develop software by interconnecting non-

distributed programs using the tools. ISIS2 provides

tools for ini t iat ing asynchronous actions, updating

replicated data without blocking, obtaining mutual

exclusion using fault-tolerant replicated semaphores,

and many others. A distributed program that uses

replicated data would consist of a set of conventional

programs, each of which performs subroutine calls to

the appropriate tool to access their shared state.

The essential issue in designing the toolkit is to

ensure that the tools have orthogonal functionality,

since it is this aspect that permits the programmer to

break up an application into components that can be

solved independently and extended gradually into a

complete system. A second issue relates to con-

currency. In order to make full use of the potential

for concurrency available in a distributed system,

processes must be able to make local decisions when-

ever possible, since a process that must interact with

others before making a decision would be delayed

unti l they respond. To address these issues we have

© 1 9 8 7 ACM089791-242-X/87 /0011 /0123 $1.50
123

developed a new computation model that we refer to

as vir tual synchrony. In a vir tual ly synchronous

environment, routines can be programmed and will
behave as if distr ibuted actions were performed

instantaneously and in lock-step. The physical reali-

zation of such an environment can be much more con-

current , however. For example, the replicated update

tool mentioned above operates asynchronously. That

is, the caller tha t requested an update may continue

computing without wait ing for i t to complete every-

where, but can be programmed as if updates occur

instantaneously. No sequence of actions, even

indirect ones, will cause a read that is performed after

such an update to be satisfied using a prior value of

the updated data item. The tools themselves are

implemented using a more primit ive communication

mechanism tha t provides virtual ly synchronous pro-

cess groups [Birman-a].

The notion of providing an idealized distributed

programming environment is not a new one

[Lamport-a] [Schneider-a]. Similari t ies exist between

our work and tha t of [Cheriton] (who proposed a sys-

tem s t ructur ing based on process groups), of [Chang]

(who gives a protocol for atomic mult icast
communication) and of [Jefferson] [Strom] and [Peter-

son] (who develop mechanisms for supporting asyn-

chronous executions that exhibit properties s imilar to

v i r tual synchrony). Since vir tual synchrony combines

a notion of atomicity with an ordering restriction, it

is also related to transactional serializability,

al though nothing analogous to the "transaction"

exists in a vir tual ly synchronous setting. What we

have done in the 1SIS 2 project is essentially to unify

these concepts, weakening some aspects that proved

to be overly l imiting, and optimizing behavior in the

common situations that arise when asynchronous

computat ion is desired and failures can occur. The

resul t is a system capable of satisfying even demand-

ing practi t ioners tha t is at the same t ime formally

rigorous.

This paper begins by exploring the concept of vir-

tual synchrony and the ways that it is reflected in the

interfaces provided by the 1SIS 2 toolkit. We i l lustrate

these mechanisms by examining the internal stepwise

development of an ISIS 2 application and of a typical

toolkit routine. We then examine performance issues.

2. V i r t u a l s y n c h r o n y

2.1. A s s u m p t i o n s

In this work, we assume that a distr ibuted sys-

tem consists of processes with disjoint address spaces

communicat ing over a conventional LAN using mes-

sage passing. Processes are assumed to execute on

computing sites. Individual processes and entire sites

can crash; the former type of crash is assumed detect-

able by some monitoring mechanism at the site of the

process, while the la t ter can only be detected by

another site by means of a timeout. It is assumed

tha t failing processes send no incorrect messages.
Our system tolerates message loss, but not parti t ion-

ing failures (wherein links tha t interconnect groups of

sites fail). Par t i t ioning could cause parts of our sys-

tem to hang until communication is restored.

2 ,2 . S u b p r o b l e m s w e w i s h to s o l v e

We now enumerate some of the specific sub-

problems we wish to solve in this setting; each of

these corresponds to a separate tool within 1SIS 2.

Process groups and group communication. It is

often desirable to s tructure a system into "groups" o f

(possibly non-identical) processes -- such a group

might implement a high level abstraction like the

emulsion depositing service, or a low level one, like a

replicated data item. Ideally, such a mechanism

should enable each process to belong to multiple pro-
cess groups, provide flexible mechanisms for joining

and leaving groups, and be inexpensive. Also needed

is a facility for communicating with the members of a
group while membership is changing.

D e c i d i n g how to respond to a request. When a

group of processes receives a request, a s trategy must

be devised for executing it. The process group

mechanism should enable a process to respond to a
request using only local information (without running

any agreement protocol among the group members), if
i t is pract ical to do so.

Concurrency. As much as possible, designers will

need to exploit the concurrency available in a distri-

buted system, for example by arranging for several

processes to take actions at the same time, or to con-

t inue executing asynchronously after sending a mes-

sage to inform other processes of some event (without

wai t ing for tha t message to be delivered).

Synchronization. On the flip side of the coin,

processes executing concurrently will need locking

124

and mutual exclusion mechanisms to avoid interfer-

ence between concurrent activities. These mechan-

isms must also deal with the failure of a process h01d-

ing a lock or semaphore, and with deadlock detection.

Repl ica ted data . Many applications require efficient

mechanisms for replicating data, at the level of indi-

vidual data structures, and among cooperating but

not necessarily identical processes.

Detecting and reacting to a failure. A mechanism

is required for detecting failures and informing any

interested parties of a failure. For example, when the

members of a group are cooperating to respond to a

request from a caller, operational members should be

informed if a member fails, and the caller should be

informed if all members fail. One would also like the

assurance that a message from a failed process will

never be delayed so long as to arrive after the failure

has already been observed.

D y n a m i c reconf igura t ion . After a failure, recovery,

or in response to certain types of requests or changes

in system load, it may be desirable to adjust the sys-

tem configuration. To be practical, this must impact

as little as possible on new and ongoing activities.

Stable storage. If processes need to recover their

state after a failure, a mechanism is needed for creat-

ing periodic checkpoints or logs that can be replayed

on recovery.

Recovery. It should be possible to design software

capable of recovering after failures. After a total

failure, where all the processes that make up an

application crash simultaneously, the need is to res-

tar t the whole application gracefully using its stable

state. The second and more common problem is to

recover from a partial failure, when a failed process is

a t tempting to recover while the remainder of the sys-

tem is still operational. Mechanisms are needed for

reintegrat ing such a process into the system, and

perhaps for transferring some part of the current sys-

tem state to it.

Transactions. Applications that manage shared

complex disk-based data structures or distributed

ones will sometimes need ways to access and update

them as a transaction. Even though the focus of

ISIS 2 is on non-transactional software, such applica-

tions will need to be supported, and they should be

able to make use of the remainder of ISIS 2 as well.

Protection. To the maximum extent that is practi-

cal, the IS1S2 system must protect itself and its

clients against actions by erroneous clients.

Consistency. Pervading the above discussion is an

implicit notion of consistency. Despite the uncer-

tainty of the system state introduced by concurrency

and failures, the designer needs to know that there is

some sense in which the operational processes in the

system will satisfy a global correctness constraint. As

far as possible, given locally correct algorithms one

would like to know that a globally correct system will

result from interconnecting them. In particular, con-

currency should not introduce subtle correctness prob-

lems, even when processes are sometimes out of synch

with other processes they need to interact with.

2 .3 . E x i s t i n g m e t h o d o l o g i e s

What makes problems hard to tackle in a conven-

tional environment is the asynchronous propagation

of information among processes. In the absence of

shared memory, the only way a process can learn of

the behavior of other processes is through messages it

receives. Since message transmission times vary from

process to process, and change with the load on the

system, messages relating to a single event may

arrive at different processes at different times, and in

different orders relative to other messages. Further,

the failure of a process can only be detected when a

timeout occurs while waiting for a message from it,

and hence cannot be distinguished from a transient

communication failure or an overload. All this makes

it difficult for a set of processes to maintain a con-

sistent view of one another's status, or for them to

coordinate their actions efficiently.

We believe that the current distributed program-

ming methodologies are inadequate in light of these

concerns. Most distributed systems are based on

remote procedure calls (RPC) with timeout for failure

detection [Birrell]: a mechanism that provides almost

no support for any of the issues cited above. The

current trend is to tu rn to nested transactions [Moss]

or atomic actions for purposes of fault-tolerance, but

these provide only a limited solution. Transactions

facilitate the management of stable storage, but they

offer no help in integrating a recovered state with the

current state of the rest of the system. In large sys-

tems, transactional concurrency control can be overly

restrictive: many of the behaviors listed above are

inherently nonserializable. Further, long computa-

tions tend to lock shared data structures for extended

periods, delaying other computations. We claim that

transactions are the appropriate mechanism in situa-

125

tions that involve short-lived access to shared data

stored on a disk. Alternatives are needed in other

situations.

2 .4 . V i r t u a l l y s y n c h r o n o u s e n v i r o n m e n t s

One way out of the problems enumerated in Sec.

2.2 would be to base the system on atomic multicast

protocols.1 A multicast is atomic if all of its opera-

tional destinations receive the message unless the

sender fails, in which case either all receive it or none

does so. Moreover, all recipients see the same mes-

sage delivery ordering. We need to extend this

definition of atomicity to cover the case of a multicast

whose destinations include process groups with

memberships that may be changing. Such a multi-

cast should logically be delivered to the group

membership that applied when it was invoked, but

this may not be the one that is current at the time of

delivery. We will consequently require that the

delivery of an atomic multicast is always completed

before a group that forms part of its destinations is

allowed to take on a new member. We point out that

many existing atomic multicast protocols assume

static sets of destinations that are known when the

protocol is initiated [Chang] [Cristian] [Schneider-b].

We will use the term synchronous to a describe

an environment in which multicasts are atomic and

events such as message deliveries, process and site

failures, recoveries, and other events described below,

occur in the same order everywhere. In a synchro-

nous environment, mechanisms solving all the prob-

lems cited above can be implemented without much

difficulty. Processes can easily maintain a consistent

view of one another, as each process is always in the
same point in its computation as any other. Syn-

chronization, when needed, is simple for the same

reason. Process failures can be handled consistently

because all operational processes learn of a failure

simultaneously, in the same computational step.

Unfortunately, this is prohibitively expensive. The

problem is that it requires all message deliveries to

be ordered relative to one another, regardless of

whether the application needs this to maintain con-

sistency. The protocols needed to achieve such a

strong ordering are invariably costly, both in terms of

1This is a multi'cast to a set of processes, not a broad-
cast to all the machines connected to a local network with
a hardware broadcast capability. Such hardware might,
however, be exploited to optimize the implementation of
the multicast protocol [Babaoglu].

the number of messages sent and in terms of the time

spent waiting for them to terminate.

This leads us to the concept of virtual synchrony.

The basic idea is to preserve the illusion that events

are occurring instantaneously, but to use different

communication primitives that enforce weaker

delivery orderings in situations where the application

or tool is insensitive to the delivery ordering. For

example, one could imagine a multicast primitive

that delivers messages in the order that the sending

process sent them, but is completely unordered rela-

tive to multicasts from other origins. A process with

private access to a replicated FIFO queue could use

this primitive to update it, since updates would be

processed in the same order at all copies. On the

other hand, if more than one process can perform

operations on the queue, this primitive would be

inadequate, because updates from different processes

might be processed out of order. The advantage of

using this primitive in the former case is that it is

likely to have a cheaper implementation than a full

atomic multicast, and yet gives the degree of syn-

chrony needed for that application.

A virtually synchronous execution is thus charac-

terized by the following property:

It will appear to any observer -- any process

using the system -- that all processes observed

the same events in the same order. This applies

not just to message delivery events, but also to

failures, recoveries, group membership changes,

and other events described below. As we will see

in the next section, this enables one to make a-

priori assumptions about the actions other

processes will take, and simplifies algorithmic

design.

Recall that the actual sequence of events will some-

times differ from process to process in situations

where the resulting actions are the same (or semanti-

cally equivalent) to those that would have been taken

had the event sequences actually been identical. We

will exploit this to increase concurrency.

2 .5 . O t h e r v i r t u a l l y s y n c h r o n o u s t o o l s

The above discussion is so focused on atomic mul-

ticasting that one might conclude that this is all

1SIS 2 provides. In fact, we view atomic multicasts as

just one of a family of tools that all provide virtually

synchronous behavior. For example, there is a tool

that supports bulk transfers of information between

processes in a way that looks instantaneous. Another

126

tool makes updates to replicated data appear to be

instantaneous. The actual implementations of the

tools, moreover, are highly concurrent and asynchro-

nous. The main point is that they can be used as i f

they were synchronous. Furthermore, the tools meet

our goal of orthogonality. After developing an appli-

cation using the replication tool, one can extend it

using the state transfer tool: these two kinds of
"instantaneous" events are guaranteed not to conflict.

These and other tools are described in the next sec-

tion.

3. V i r t u a l l y s y n c h r o n o u s t o o l s

This section reviews some of the tools supported

by 1S1S 2, describing both the role of each tool and the

sense in which its behavior is virtually synchronous.

Our aim in chosing this set of tools was to enable one

to develop applications using a small set of tools, and

then to add functionality by invoking additional tools,

making only minor changes to the existing code. We

expect the tools to grow into an extensive collection

covering most of the problems that arise commonly in

distributed systems. We begin our discussion with

the lowest level of the system, which provides com-

munication primitives, and then work up to higher

level tools, many of which use these primitives.

Except in Section 3.11, we restrict ourselves to tools

that are fully operational (as of August, 1987).

3 ,1 . A t o m i c m u l t i c a s t primitives

The three primitives described below, ABCAST,

CBCAST and GBCAST have been described in

[Birman-a]. The implementation is faithful to the one

in that paper and is not discussed here. Readers fam-

iliar with the primitives may wish to skip to Section

3.2.

ABCAST primitive. A commonly occurring

situation involves a number of concurrently executing

processes that communicate with a shared distributed

resource, whose internal state is sensitive to the order

in which requests arrive at different components of

the resource. For example, concurrent operations on

a shared replicated FIFO queue must be received and

processed at all copies in the same order. This

ordering requirement corresponds to the primitive we

call A B C A S T , which delivers messages atomically and

in the same order everywhere. If all requests for

queue operations are transmitted using this primi-
tive, the enqueuing operations would look synchro-

nous relative to other such operations on the same
queue.

CBCAST primit ive. The correctness of a repli-

cated FIFO queue depends on preserving the order of

all operations performed on it. Consider, instead, a

service that maintains a set of replicated variables on

behalf of several clients. Each client has exclusive

access to its variables. Although the service is likely

to receive requests concurrently from many clients, it

is only necessary to preserve the order of requests ori-

ginat ing from the same client. Clearly, a multicast

primitive weaker than A B C A S T could be used in this

case. On the other hand, because of remote procedure

calls, a computation could span multiple processes,

and hence messages sent by the same client could ori-

ginate from several different processes. Short of ord-

ering all multicasts, is there a way of characterizing

the ordering requirement applicable in this case?

Lamport observed that in a distributed system,

the ordering of events is meaningful only when infor-

mation could have flowed from one to the other

through some chain of message transmissions, recep-

tions and intervening local computations [Lamport-b].

It follows that we can define two multicast events to

be potentially causally related if information about the

first could have reached the point where the second

was begun before it was initiated there. Notice that

by this definition, two multicasts issued by a single

computation are always potentially causally related.

This leads us to the primitive called CBCAST, which

guarantees that if any invocations of CBCAST are

potentially causally related, the corresponding mes-

sages are delivered everywhere in the order of invoca-

tion. This is a conservative 2 approach to ensuring

that any genuinely related operations will be seen in

the correct order.

GBCAST primitive. We have arrived at a

situation in which applications might be constructed

using mixtures of two kinds of multicasts -- A B C A S T

and CBCAST. For example, one could use A B C A S T to

obtain a replicated lock on a distributed resource, and

once mutual exclusion has been obtained, switch to

C B C A S T when accessing that resource. Some algo-

rithms, however, will perform operations that look

instantaneous with respect to both kinds of primitive.

This is what the protocol we call GBCAST is designed

to do. GBCAST is used by the system to manage

2CBCAST is conservative because, were we in a posi-
tion to exploit still more semantic information, it might be
possible to use a weaker primitive. See [Schmuck] for a
more sophisticated treatment of this issue.

127

group addressing, and is available to users as well, for

managing configuration data structures (see below).

3 .2 . P r o c e s s g r o u p s a n d g r o u p R P C

Process groups . This collection of tools imple-

ments process groups, providing an interface that can

be used to join a group, leave a group, and to monitor

group membership changes. Each member sees the

same sequence of membership changes, and all

processes receiving a multicast addressed to the group

see the same "current" membership at the time of

reception. Moreover, the membership list is sorted in

order of decreasing age, providing a natural ranking

on the members, and one that is the same at all

members. If a process group member combines these

properties with knowledge of the algorithms that

other members are using, actions taken by the

different members can be coordinated using any

deterministic rule, without a special exchange of mes-

sages. Notice that in a synchronous system these pro-

perties are immediate consequences because group

membership changes occur instantly and when no

messages are being sent to a process group. Thus, the

behavior we describe is virtually synchronous.

Broadcas t s a n d g roup RPC. This facility pro-

vides a remote-procedure call interface to the

CBCAST, ABCAST, and GBCAST protocols. Each mes-

sage can be t ransmit ted to a list of destinations; if

one of these destinations is a process group, a copy

will be delivered to each of its members as described

in the previous section. On receiving a message, a

process group member can assume that all other

current members received a copy too, and process the

message accordingly (this does not imply that all reci-

pients process the message; it is always possible for a

recipient to crash before being able to act upon a mes-

sage).

The caller indicates how many responses are

desired; this will normally be 0, 1, or ALL, although

any limit could be specified. If no responses are

desired, the broadcast is performed asynchronously 3

and the client is permitted to continue executing.

Otherwise, the client specifies an array into which

responses can be stored, and a second array into

3When messages are being sent asynchronously, it is
advisable to invoke the flush primitive described in
[Birman-a] prior to interacting with the external world or
updating stable storage. Flush blocks until all asynchro-
nous broadcasts have been delivered, and is called au-
tomatically by the tools that manage logs and stable
storage.

which the addresses of the respondents can be stored.

While collecting responses, the system waits until it

has the number desired, or until all the remaining

destinations have failed.

A reply mechanism is used to respond to a group

RPC. The reply itself will be transmitted using a

multicast protocol, hence copies can be sent to other

processes if desired, and we will use this ability

below. Superfluous and duplicate replies are discarded

silently. It is also possible for a destination to send a

null reply, indicating that it does not intend to send a

normal reply to a message. The null reply mechan-

ism is useful when a group includes extra processes

that receive copies of messages to the group but sim-

ply log or ignore them, as a standby might do. In this

case, the standbys can send null replies and the sys-

tem will not wait for them even if a client requests

replies from ALL group members. This makes it

unnecessary for a client to know about the existence

of the standbys.

3.3. Cooperat ing to execute requests

IS1S2 provides tools that make it possible to

employ any of the popular methods for responding to

a request, as well as to create one's own method,

depending on the needs of application.

Conf igu ra t i on tool. This tool allows a process

group to main ta in a configuration data structure,

much like the one that lists membership for a process

group. The data structure is stored directly in the

process group members, hence there is minimal over-

head associated with accessing it. As with a group

membership change, it will appear that configuration
changes occur when no multicasts to the group are

pending, hence all recipients of a message will see the

same group configuration when a message arrives. If

all members use this data structure to decide how to

divide up the work, they will make mutually con-

sistent decisions.

Q u o r u m a n d full repl icat ion. Some replicated

processing methods, such as the full replication

method used in CIRCUS [Cooper] or the quorum

methods used in [Gifford] [Herlihy], have straightfor-

ward implementations in ISIS 2. In the former case,

the caller waits for ALL responses and all recipients

respond. If the caller knows the quorum size, Q, it

simply waits for Q replies. If it does not know the

quorum, it waits for ALL replies, and the Q oldest

group members (or any other set of Q members that

can be identified consistently) reply, giving the value

128

of Q as part of their reply. Other members send nul l

replies. The caller will obtain fewer than Q replies

only if some of the processes responsible for executing

a request have failed.

Coordinator-cohort tool. The preferred repli-

cated processing method in ISIS 2 is the coordinator-

cohort scheme, whereby the action associated with a

request is performed by one group member while oth-

ers monitor its progress, taking over one by one as

failures occur [Birman-b]. The tool is invoked by all

processes receiving a request for a computation (nor-

mally, all members of a process group). The tool

picks the coordinator to reside at the same site as the

caller if possible (to minimize latency), and otherwise

in a way that will balance load. When the coordina-

tor terminates, a copy of its reply message is sent to

the cohorts. Because the multicast used to send this

reply is atomic, it reaches the cohorts if it reached the

caller. Thus, if the coordinator is observed to fail

before receiving the reply, the tool can deduce that

the reply was not sent and select a cohort to take

over. If a copy of the reply is received, the computa-

tion succeeded.

3 .4 . Concurrency

The primary tool for obtaining concurrency in

1SIS 2 is the asynchronous multicast. One can multi-

cast a request to a set of processes; all will receive the

request concurrently and can execute it in parallel.

For example, when C B C A S T is used to asynchronously

update replicated information, the caller can pretend

that the message was delivered to its destinations at

the moment the C B C A S T was issued. The properties

of C B C A S T ensure that such a caller will not

somehow interact with an "out of synch" destination.

Thus, there is no need to implement timestamps at

the application level, as in [Liskov], where this is

done to resynchronize callers and services when asyn-

chronous updates are being done.

3.5. S e m a p h o r e s

1 s i s 2 provides replicated semaphores, using a

fair (FIFO) request queueing method. If desired, a

semaphore will automatically be released when the

holder fails.

3.6. Replicated data

This tool provides a simple way to replicate data,

reducing access time in read-intensive settings and

achieving low-overhead fault-tolerance. The processes

that are managing the item supply routines that will

update and, if meaningful, perform read-only access

to the item. Arguments such as the item name, byte

offset, etc. are passed to these routines without
interpretation. The client, which may be one of the

processes managing a copy of the item, sees an inter-

face exported by the tool, which can be concealed

beneath an RPC stub. In an optional logging mode,

the tool records updates on stable storage, making it

possible to reload data after recovery from a crash

and to automatically transfer it to a process joining a

process group (see Sec. 3.9). In this mode, a check-

pointing routine can optionally be supplied; it must

be capable of carving the replicated data into some

number of chunks (of variable size), and is invoked

repeatedly during transfers and to create a checkpoint

if the log gets long.

The replication tool is completely general: repli-

cated data could be memory resident, stored on a disk,

or could even be computed on request. The tool inter-

face handles the multicasting needed to ensure that

the replicated data structure will remain in a con-

sistent state. If the process managing a replicated

data structure indicates that it requires a globally

consistent request ordering, like the FIFO queue we

mentioned earlier, A B C A S T is used to t ransmit reads

and updates. If the data structure can be updated

asynchronously or the caller has obtained mutual

exclusion, C B C A S T is used instead.

3.7. Detecting and reacting to failures

ISIS 2 provides a site-monitoring facility that can

trigger actions when a site or process fails or a site

recovers. Site and process failures are clean events in

]S]$2: once a failure is signaled, all interested

processes will observe it, and all see the same

sequence of failures and recoveries. The failed entity

will have to undergo recovery even if it was actually

experiencing a transient communication problem that

looked like a failure. The 1S1S2 failure detector
adaptively adjusts the timeout interval to avoid treat-

ing an overloaded site as having failed.

3.8. Recovery and reconfiguration

Recovery manager. This tool will restart

processes after they fail, or if a site recovers. The

recovery manager runs an algorithm similar to the

one in [Skeen] to distinguish the total failure of a pro-

cess group from the partial failure of a member, and

will advise the recovering process either to restart the

129

group (if it was one of the last to fail) or to wait for it

to restar t elsewhere and then rejoin. The recovery

manager can be used with the replication tool to

obtain a simple mechanism for restarting services

that main ta in replicated data.

Sta te t ransfer , This tool provides a way to join

a pre-existing group of processes, transferring state

from the operational processes to the one that wants

to join. The application must be able to encode its

state into a series of variable sized blocks of data.

The tool transfers successive blocks, using ISIS 2 mes-

sages for small transfers and TCP channels for large

ones. The transfer is virtually synchronous with

respect to incoming requests to the group. Up to the

ins tant before the join occurs, the old set of members

continue to receive requests and the new one does not.

Then, the join takes place and the next request is

received by the new member too, and only after it has

received the state that was current at the time of the

join. Process migration can thus be performed by

s tar t ing a process that will join the group and then

arranging for some other member to drop out of the

group as soon as the transfer completes. Clients will

see this as an atomic event. If a state transfer is

interrupted by a failure, it is restarted automatically,

either from the point of interruption or from the

beginning. Most of the tools, such as the

configuration tool, the replicated data tool, and the

semaphore tool, automatically transfer their internal

states when this facility is in use.

3 .9 . N e w s s e r v i c e

This service allows processes to enroll in a

system-wide news facility. Each subscriber receives a

copy of any messages having a "subject" for which it

has enrolled in the order they were posted. Although

modeled after net-news, the news service is an active

enti ty that informs processes immediately on learning

of an event about which they have expressed interest.

3 .10 . Protect ion

A protection tool is provided that, if desired, will

validate all incoming messages using the sender

address. Messages that arrive from an unknown or

untrus ted client will be presented to a user-specified

routine that must determine the appropriate action to

take based on the sender and the message contents.

This works because ISIS2 ensures that a sender's

address cannot be forged. Group membership changes

are similarly validated before a process is allowed to

join or to receive a state transfer. Provided that

clients work only through the toolkit, 1S1S 2 cannot be

corrupted by the actions of an erroneous user pro-

gram.

3 .11 . A d d i t i o n a l tools

Several tools are now being designed and will be

implemented later this year. We plan to add a real

t ime facility to 1SIS2. The tool would provide for

clock synchronization within site clusters, scheduling

actions at predetermined global times, and reconcilia-

tion of sensor readings (the tool will act as a

database, collecting timestamped sensor values and

reporting the set of sensor values read during a given

time interval). We have also designed a transactional

facility, providing a simple subroutine interface

implement ing the nested transaction constructs

beg in , commit , and a bo r t [Moss], which the user

simply includes in his or her code. Transactional

access to stable storage and 2-phase locks will be pro-

vided, using the algorithms (and much of the code!)

reported in [Joseph] [Birman-b]. Finally, in

[Birman-d] we describe a very high level tool that

supports bulletin boards of the sort used in many

artificial intelligence applications. Unlike the news

service, the bulletin board facility is linked directly

into its clients and does not exist as a separate entity;

it is intended for high performance shared data

management. Processes can read and post messages

on one or more shared bulletin boards, and these

operations are implemented using the multicast prim-

itives.

4. Misce l l aneous system-level facil it ies

The remaining sections of this paper focus on

some examples. To understand them, it will be help-

ful to have a picture of the overall 1SIS 2 architecture,

i l lustrated in Figure 1. As the figure shows, the sys-

tem is organized around a protocols process which

implements the multicast primitives, handles process

group addressing and does all inter-site communica-

tion. This process maintains process group member-

ship views, using a cache for groups not resident at

the site. Client programs are linked directly to what-

ever tools they employ. A set of service processes han-

dle service-specific databases. Several services exist at

each site: the remote execution service, the recovery

manager, and the news service.

130

Cl,entp Oroo.l wdatabaso I R~ecovery actions database-~

~ eeoa
Broadcast tasks and
address resolution tasks

~ ili~!iiii~ ~ ~ D Intsrsite layer
P packets

Figure 1: ISIS system architecture

4.1. R u n t i m e f a c i l i t i e s

All processes in the system have access to the fol-

lowing run time support facilities.

Message subsys tem. In 181S2, a message is

represented as a symbol table containing multiple

fields, each having a name, type, and variable length

data. Fields can be inserted and deleted at will, and

special system fields carry information such as the

address of the sender of a message (this cannot be

forged), the session-id number used to match a reply

with a pending call, etc. A field can even contain

another message.

Tasks. ISIS2 implements a light-weight task

facility permitt ing a single process to execute multi-

ple concurrent tasks with no changes to the operating

system. Tasks have stack areas of fixed but large
size, and are implemented using a coroutine mechan-

ism.

Addresses . ISIS 2 supports a highly encoded pro-

cess addressing scheme that represents addresses

using an 8-byte identifier. Group addresses can be

used in any context where a process address is accept-

able, and a way to map symbolic names to group

addresses is provided.

Ent r ies . Each process using 1S1S 2 binds routines

to any entry point on which it will receive messages.

Entry points are known to callers through 1-byte

identifiers. Some entry points are generic ones used

by the toolkit, for example the entry used to join a

process group, and the one used by the system to

report a group membership change. When a message

arrives, a new task is started up corresponding to the

entry point in its destination address, and the mes-

sage is passed to this task for processing.

Fil ters. Messages arriving in a client are passed

through a series of filters. A filter is a software pro-

cedure that will be given an opportunity to examine

each arriving message. For example, the protection

facility uses a filter to validate incoming messages.

The last filter is the one that creates new tasks.

4 .2 . M a c h i n e I n d e p e n d e n c e a n d s c a l i n g .

ISIS 2 currently runs on 4.3BSD UNIX systems (it

is operational on DEC, SUN, and GOULD versions of

the system). We hope to port it to non-UNiX systems

in the future. 1SIS2 currently implements a non-

hierarchical protocol suite. Although these would

scale smoothly up to groups of 32 or 64 sites, the

extensions reported in [Birman-a] will be needed in

much larger networks.

5. A t o o l k i t a p p l i c a t i o n

One of our goals in developing the toolkit was to

support the stepwise development of distributed appli-

cation software. To see how the toolkit makes possi-

ble such an approach, we now present an example: a

"twenty questions" program that was one of the first

operational 1SIS2 applications. The program plays a

guessing game in which a caller issues up to 20 ques-

tions about an unknown category of objects ("cars",

"planes", etc) and then must guess the category based

on the answers. Only questions that can be answered

yes, no, or sometimes are permitted.

Twenty questions may seem to be a frivolous

application, but in fact it is illustrative of a large

class of serious ones. Our program works by parti-

t ioning a replicated database among several processes

and supporting queries on it. It divides the responsi-

bility for handling queries among the processes,

which requires that each incoming request be handled

consistently. The program supports dynamic updates,

tolerates failures, and can dynamically reassign the

workload decomposition. As noted in the introduc-

tion, an application like this one would be exception-

ally difficult to develop in most settings. In 1SIS 2, the

first 5 steps described below were completed in one

day, required only 450 lines of code (in C) for the

twenty-questions service and 150 for the interactive

front end. This includes all code, even comments,

that constitute the two programs, but excludes the

131

toolkit routines the application employs. It was

nearly bug-free from the outset. We now enumerate

the stages in developing this program.

S t e p 1. N o n - d i s t r i b u t e d v e r s i o n .

We started by designing a non-distributed twenty

questions program with a static database, consisting

of a back-end program that reads the database and a

front-end program that interacts with users, the

front-end does RPC's to pass queries to the back-end.

The database is organized as a relation; the first 11

lines of the one we use for demonstrations are as fol-

lows:

object co lor size price m a k e model
car red small 5 Wonka Toy
car yellow tiny 6 Matel Toy
car black compact 4995 Hyundai Excel
car tan wagon 6199 Nissan Sentra
car green sedan 10659 Ford Taurus
car blue compact 5799 Honda Civic
car white wagon 15243 Ford Taurus
ear blue sport 18499 Nissan 300ZX
car blue sport 26775 Porche 944
car white sport 35000 Mercedes 300D

A query specifies an item, a value, and a rela-

tional operator, for example price >9000 or color =red.

The answer to such a query would be yes, no, or some-

times. Obviously, a real database would have several

kinds of objects, and the game would start by picking

the object using a random number generator. All

queries would be implicitly qualified by this (secret)

number.

Implementing this program in the ISIS 2 system

is straightforward. A main procedure initializes the

program (by reading the database), declares the entry

that will respond to queries, and then runs the light-

weight task subsystem. As each query arrives, a

lightweight task is created to respond to it.

S t e p 2. D i s t r i b u t e d v e r s i o n .

A distributed twenty questions program would

replicate the database among members of a process

group that makes up the twenty questions "service."

S a y that there are NMEMBERS such processes. There

are two options. We could divide the work vertically,
with each process being responsible for one or more

columns of the database, or we could do so horizontally,

with each process being responsible for one or more

rows. We decided to provide both options, and to

extend the query interface to specify which option i s

to be used. A vertical mode query looks just like the

ones described above. We adopted the rule that a

query referencing column C of the database should be

handled by member C mod NMEMBERS. A horizontal

mode query is prefixed by a *, e.g. *price >9000. All

the members respond to such a query, with member

M basing its response on the rows R in the database

satisfying R rood NMEMBERS =M. For the above

database, if NMEMBERS =5, the query *price >9000

would re turn the following set of replies:

I no i sometimes I somet es I somet es L yes i

Notice that both kinds of query require a well

known ordering on the members of the service.

This extension requires minor changes to the

front end program, since it must know how many

replies to wait for, viz. 1 in the vertical case, and ALL

in the horizontal case (or NMEMBERS, if this is

known). The extension to the back end program

involves adding an argument to the program which,

when the program is run, indicates if it should "join"

the service or "create" it. The creator first reads the

database and creates a process group with symbolic

name "twenty". A joining member calls the toolkit

routine join_and_xfer(gid,credentials) which requests

permission to join the specified group (the gid is

obtained by calling pg_lookup("twenty")). The current

state of the group is then transferred to the process

that is joining -- in our case, the contents of the data-

base.

Each time a process joins the group or fails, the

operational members will need to know about this.

He~nce, all members monitor the membership data

structure. This is done by a call to a system pro-

cedure pg_monitor(routine), where routine is the pro-

cedure to invoke each time such a change occurs.

Because members are listed in order of decreasing age

within this structure, and all see the same sequence

of changes, and see those changes in the same order

relative to arriving requests, a member's index in this

list can be taken as its member number. By so doing,

each incoming request can be handled in a consistent

manner by all the members, provided that

N M E M B E R S processes are actually operational.

This solution assumes that NMEMBERS processes

are operational. In a vertical mode query, if fewer

than NMEMBERS processes belong to the group when

it arrives, a caller, who will have requested one

response, might get no responses and hang if the pro-

cess responsible for sending the response fails. In our

version, we corrected this problem by having non-

respondents send null replies, thus informing the sys-

tem that they will not send a true reply to the mes-

132

sage in question. Instead of hanging, the caller will

now obtain an error code from the multicast it used to

issue the query, and will have to reissue its request.

We could also have had the respondent send copies of

its replies to the other members of the service, using

an approach not unlike the coordinator-cohort one

described earlier. However, this approach would be

more complex.

A different kind of incorrect behavior occurs if a

a horizontal query is handled using the above algo-

r i thm when the number of processes drops below

N M E M B E R S . Here, the caller will not get the correct
number of responses, and will thus only learn about

some rows of the database. In our solution, the caller

iterates unti l it receives the expected number of

responses. A more complex alternative would be to

use a coordinator-cohort scheme under which some

representative of the service would compute and

re turn the entire vector of responses.

Step 3. Automatic member restart.

An easy extension to the above solution is to

have the oldest member of the service start new

members up at an appropriate site until the number

of operational ones reaches NMEMBERS. If the oldest

member fails while doing this restart, a surviving

member could take over and reissue the restart.

Notice that this involves a potential race condition

that could result in extra group members beyond the

number intended. This can be corrected by having

cohorts spy on the restart process, but we chose not to

do so, for reasons described below.

Step 4. Hot standby processes.

The extra group member "problem" can be turned

to our advantage. The idea is to have

N M E M B E R S + N S T A N D B Y processes (or more) opera-

tional group members whenever possible. Standbys

would join the group, but send null replies to all

incoming requests, thus a client will be oblivious to

their existence. On the other hand, should a member

fail, the standbys will recompute their ranking along

with all the other members, and decide whether to

function as a real member. This results in a very

rapid transfer of responsibilities.

Step 5. Dynamically updating the database.

Having arrived at a workable distributed twenty

quest ions program, we can now extend it to support

dynamic updates to the database. One could make

the rule that only existing members can issue

updates, or that only specially designated clients can

do so (this can be enforced using the 1SIS 2 protection

tool), or that any client can do updates.

Clearly, we need to arrange for updates that are

virtually synchronous relative to queries, hence we

must pick the appropriate protocol for sending queries

and updates. One option is to implement both queries

and updates using ABCAST. The alternative is to

implement queries with CBCAST and updates with

GBCAST, or vice versa. The choice should be based on

the relative frequency of these operations. For exam-

ple, if it can be predicted that most requests will be

queries, one would use CBCAST to t ransmit queries,

and GBCAST for updates. This is how our version

works. Having made this decision, one might want to

use the replicated data tool to maintain the twenty

questions database, specifying the kind of multicast to

use for updates and queries Cread" operations). The

changes needed to make this conversion are minimal.

Step 6. Restarting from total failures.

Our solution is tolerant of partial failures, but

not total ones. An easy way to extend it would be to

activate the logging option in the replicated data tool,

which will now maintain checkpoints and logs from

which the database state could be recovered. One

must also register the twenty questions service with

the "recovery manager" at those sites where the ser-

vice can be restarted after failure, and call the log-

recovery routine during recovery, when the original

version of the program would have read the database

from disk.

Step 7. Dynamic load balancing.

If desired, it would be straightforward to use the

configuration tool to change the rule for assigning

numbers to members at run time. Such a change

might be used to dynamically shuffle the members

when a site becomes overloaded and unresponsive (an

overloaded member could also just drop out!).

Summary.

Virtual synchrony was useful in several ways in

the above solution. The most obvious benefit was the

clean decomposition of this distributed program into

aspects that could be solved relatively independently

from one another. Virtual synchrony also permitted

us to design the distributed algorithm using simple

assumptions about how a set of processes would react

to an event that all observe. For example, we did this

when we based the response of member M on the

133

value of M: obviously, such an approach only works if

each process knows its relative number and the

number ing is the same when each sees a given

request. We were able to write a fault-tolerant distri-

buted program in one day. When run on 4 SUN 3/50

workstations using a 10-Mbit ethernet and with

members at all sites, it supports an aggregate of 30

queries or 5 replicated updates per second. We know

of no alternative distributed programming methodol-

ogy in which this would have been possible.

The solution also illustrates some of the limits to

the methodology in its present realization. For exam-

ple, if a process takes an external action after receiv-

ing a message, it is hard to deduce the status of the

action if a failure occurs before the action completes.

Eventually, we hope to identify paradigms for prob-

lems like this, and to package solutions as tools.

Moreover, correct behavior of the twenty-questions

service when dynamic updates are being done
requires that the appropriate broadcast primitive be

used 'by clients when t ransmit t ing update and query

requests. A programming error in one of many

clients could violate such a rule, affecting other

clients. A "type checking" mechanism seems to be

needed for verifying the compliance of clients with

the requirements of services they exploit.

6. I n s i d e t h e c o o r d i n a t o r - c o h o r t t o o l

This section focuses on the internal structure of

the coordinator-cohort tool. It is a relatively simple

tool, and we present it primarily to demystify the

internals of the toolkit. A seemingly more complex

tool, the state transfer facility, is basically just an

encapsulation of this method into a special interface.

As described in Section 3, this tool enables a

group of processes to use the coordinator-cohort stra:

tegy to respond to a message sent to the group by a

caller. This approach is meaningful only when more

than one member of the group is capable of perform-

ing the action requested by the caller, so that at least

one cohort can take over should the coordinator fail.

The caller simply does a group RPC, and waits for one

reply. When the group members receive a message,

they each use the same deterministic algorithm to

determine a subset of the group members, plist, that

will actually participate in this coordinator-cohort

computation. This list depends on the action to be

taken, since some members may be incapable of per-

forming some requests (say, if they do not have access

to necessary data). The members in plist then each

call the toolkit routine

coord_cohort(msg, gid, plist, action, got_reply),
where msg is the incoming message, gid is the group-

id for the group, action is the routine that processes

the request, and got._reply is a routine that, in a

cohort, will be called when the coordinator completes

its action and replies to the caller. Non-participants

issue null replies to the request.

The toolkit routine itself behaves as follows.

When called, it examines msg to determine the site-id

of the caller. It then calls pg_lookup (gid) to find the

current membership of the group, and scans plist to

find an operational process that resides at that site.

If there is one, it is assumed to be the coordinator for

this computation (if there is more than one such pro-

cess, the first is chosen). If there is no process at that

site, the caller's site-id is used as a "random" index

into plist, and the first operational process, in a circu-

lar scan, is chosen. Notice that because all the parti-

cipants use the same plist and see the same group

membership, all will agree on the same value for the

coordinator, without any additional communication

among the group members. The other processes in

plist are the cohorts, and the remaining members of

the group are non-participants.

If a member determines that it is the coordinator,

it then calls the routine action. When it returns, it

multicasts the result not just to the caller, but also to

the generic entry point GENERIC_CC~EPLY in each

of the cohorts. The computation then terminates in

the coordinator.

The cohorts, meanwhile, call the routine

pg_monitor(gid) to monitor the status of the group.

Should the coordinator fail before sending a reply, all

cohorts learn of this and, again without interacting,

use the same algorithm as above to pick a new coordi-

nator and monitor its progress. If the coordinator

succeeds in sending a reply to the caller, the

GENERIC_CC__REPLY entry in each of the cohorts will

be called. It first deactivates the monitor, then calls
got~'eply, passing "a pointer to the result and its

length as arguments. This terminates the cohort

algorithm.

What about the case where all recipients fail

before the computation terminates? Here, the caller

will receive an error code, since the group RPC will

detect that no possible respondents are still opera-

tional. Because non-participants send null replies,

this works even when a subset of the group members

134

TABLE I -- MULTICAST OVERHEAD FOR SELECTED TOOLS

Tool Description Multicasts required
Group RPC

nreps = mcast(dests,msg,nwant,answers,wbo) Multicast, collect nwant replies See Figure 2.
reply(msg,answ,alen) Normal or null reply to msg. 1 async CBCAST (1 dest)
reply_cc(msg,cc_dests,answ,alen) Reply, with copies. 1 async CBCAST

Process groups
gid = pg_createCsymbolic name")
gid = pg_lookup("symbolic name")
pg_addmember(who,gid)
pg_leave(gid)
pg_join(gid,credentials)
pg~ill(gid,signal_no)
pg m onitor(gid,mroutine)
pg_m sg_verify(vroutine)
pg_join_verify(vroutine)

Create process group
Lookup group address
Add member (done by member)
Leave group
Request to be added
Send UNIX signal
mroutine monitors membership
vroutine validates messages
vroutine validates joins

I local RPC
i local RPC [+ i CBCAST, I reply]
1 GBCAST
1 GBCAST
1 CBCAST, I pg-addmemb, I reply
1 ABCAST
1 local RPC per change
No cost
No cost

State transfer
join_and~xfer(gid,credentials,sroutine) Join, sroutine accepts state 1 pg-join + 1 TCP transfer

Coordinator-cohort
coord-cohort(msg,gid,plist,action,got-res) See section 6. 1 CBCAST to invoke, 1 to reply

Replicated data
update(gid,args) Update replicated data 1 async CBCAST or 1 ABCAST
read(gid,args) Read-only access by manager No cost
read(gid,args) Read-only access by other clients CBCAST + 1 reply

Synchronization
P(gid,sname,free_on.-failure) Obtain mutual exclusion 1 ABCAST, all replies
V(gid,sname) Release mutual exclusion 1 async CBCAST

Configuration
conf_update(item,value,len) Update configution 1 GBCAST
conf-read(item,&value,&len) Read configuration No cost

News
subscribe("subject",read_routine) Register with service 1 local RPC per posting
post-newsCsubject",msg) Post a news message 1 async CBCAST or ABCAST

run the algorithm. Finally, we note that the tool can

be invoked reentrantly, provided that appropriate

care is taken in the action routine if the computation

will require mutual exclusion on any resources.

The cost of the approach is low. Instead of an

RPC to the single destination that will respond, the

caller used a broadcast. However, the caller will

often have received its reply and resumed computa-

tion before the original RPC even reaches the remote

cohorts, since local communication is faster and the

tool is biased towards picking a local coordinator.

Thus, any overhead associated with the tool is pri-

marily a background one.

7. P e r f o r m a n c e

Table I summarizes communication overhead, in

multicasts, of the major toolkit routines cited in Sec-

tion 3. Figure 2 shows the throughput in bytes per

second for asynchronous CBCAST's (where the sender

continues execution without requesting a reply), and

the latency seen by the sender for CBCAST, A B C A S T

and GBCAST invocations in which one reply is needed

and comes from a local process. This latency meas-

ures the delay between when the sender invokes the

primitive and when the desired reply is received.

ExcePt for CBCAST, the primitives give similar
behavior when all destinations reply. Asynchronous

multicasts and multicasts with. a local destination

resulted in much more efficient CPU utilization: loads

of 95% to 98% were observed on the sending site in

these tests, compared with 30% to 35% when running

a protocol like A B C A S T that must wait for messages

from remote sites. The remote sites, if otherwise idle,

typically showed loads of 20% or less. The sharp rise

in latency between message sizes of lkbytes and

10kbytes occurs because large inter-site messages are

fragmented into 4kbyte packets.

Figure 3 focuses on the actual costs associated

with sending an A B C A S T in the system. The figure

reveals just how expensive message passing can be, in

comparison with all other aspects of a distributed pro-

tocol. The link delays shown are for a single traversal

o f the link: 10ms to traverse a link within a site, and

16ms to send an intersite packet. Thus the latency

before an A B C A S T delivery occurs at a remote desti-

nation is 70ms -- 3 inter-site messages are sent.

CBCAST sends 1 inter-site message, and GBCAST

sends 3 or 5, depending on how it is used.

135

bytes/see

100K

80K

60K

40K

20K

1

2 dests

100 1OO0 10000
i i i i

throughput (asynd'u'onous)

500

400

300

200

1OO

2

1 dest

10 1OO 1OO0 10000
P a c k e t ~ , ; , ,

ABCASr latency (sender)

500

400

300

200

100

-4

1 dest

10 100 1000 10OO0
i I i i

CBCAST latency (sender)

500

400

300

200

100

~ 4

2
1 dest

10 100 1OO0 10000
l~ae, ket size ~ ~ t i

latency (sender)

F igure 2: T h r o u g h p u t for b r o a d c a s t primit ives

packet I/O

all other

Q Dest Processes
lOms~v

Source L 16 m s C p e ~ s i t e B
Process ~ p e r m s g ~

site C
10 m y i' ', I ~

~ l ,' ,, ms ~ " - - ~ , ,Om~
L_~ / , ~-, ~ []

Dest.Processes ,/ '~ site D

~ Message memory mgt.
ii!i!i

~ l ~ : : ~ \ other msg edit
t.Sms

protocol, addressing algorith m

F igu re 3: B r e a k d o w n of ABCAST execut ion t ime

136

In the future, we plan a much more detailed

study of performance, including a study of how the

protocols will perform on a system subjected to a uni-

form load from multiple sites, and how the system

performance changes with scale. The initial version

of the system has not been operational long enough to

permit careful tuning, hence the figures reported

above should be understood to be preliminary ones,

and are likely to be reduced by optimizations.

8. S t a t u s

I S I S 2 has now been operational for six months,

and is increasingly robust. Working in collaboration

with other academic researchers at Cornell and with

industrial research and development teams, we are

now beginning to develop 1SIS2 based application

software. Nonetheless, many questions remain open,

and substantial changes and extensions to the system

will be needed before we consider it complete. For

example, although the present system is clearly capa-

ble of addressing many aspects of the factory automa-

tion example (Sec. 1), it remains to be shown that a

very large system could really be built using our

approach. A pragmatic problem that this raises is

that I S I S 2 will have to coexist with many existing

systems, such as the Manufacturing Automation Pro-

tocol (MAP), with a variety of databases, and may

have to be ported to different kinds of hardware.

At a conceptual level, we are just learning how to

infer the choice of protocol from context [Schmuck].

We have largely overlooked real time issues, and

extremely demanding real time scheduling con-

s traints are probably incompatible with the I S I S 2 sys-

tem. Likewise, the most appropriate way to deal with

network partit ioning remains a pressing problem.

Despite these limitations, we are convinced that

the virtually synchronous approach represents a con-

ceptual breakthrough. Having tried to build robust

distributed software using other methodologies and

failed, we have now succeeded using this approach.

As this technology becomes widely available and the

remaining limitations are overcome, it could funda-

mentally change the way we formulate and solve dis-

tributed computing problems.

9. A c k n o w l e d g e m e n t s

Yu-Jen Hsiao undertook the performance studies

reported above. In addition to the theoretical work

cited earlier, Frank Schmuck implemented the

recovery manager currently used in I S I S 2 and has

become increasingly involved in all aspects of system

design. Keith Marzullo, Sam Toueg, and John Warne

all made insightful suggestions about the virtual syn-

chrony approach, for which we are grateful. Finally,

we thank the SOSP program committee. In particu-

lar, Ozalp Babaoglu and Alfred Spector have provided

invaluable guidance and assistance throughout the

revision process, for which we are deeply indebted.

10. R e f e r e n c e s
[Babaoglu] Babaoglu, O, and Drummond, R. Streets of Byzan-

tium: Network architectures for fast reliable broadcasts.
IEEE TSE SE-11, 6 (June 1985), 546-554.

[Birrell] Birrell, A., Nelson, B. Implementing remote procedure
calls. ACM Transactions on Computer Systems 2, 1 (Feb.
1984), 39-59.

[Birman-a] Birman, K. and Joseph, T. Reliable communication
in the presence of failures. ACM Transactions on Com-
puter Systems 5, 1 (Feb. 1987).

[Birman-b] Birman, K. Replication and fault-tolerance in the
ISIS system. Proc. lOth ACM SIGOPS Symposium on
Operating Systems Principles. Oreas Island, Washington,
Dec. 1985, 79-86.

[Birman-c] Birman, K., Joseph, T. and Schmuck, F. ISIS Sys-
tem Documentation, Release I. Available as TR-87-849,
Department of Computer Science, Cornell University, July
1987.

[Birman-d] Birman, K. and Joseph, T. Programming with
shared bulletin boards in asynchronous distributed sys-
tems. Dept. of Computer Science TR-86-772, Cornell
University (August 1986; Revised December 1986).

[Chang] Chang, J, Maxemchuk, N. Reliable broadcast protocols.
ACM Transactions on Computing Systems 2, 3 (Aug. 1984),
251-273.

[Cheriton] Cheriton, D. and Zwaenepoel, W. Distributed pro-
cess groups in the V kernel. ACM Transactions on Com-
puter Systems 3, 2 (May. 1985), 77-107.

[Cooper] Cooper, E. Replicated distributed programs. Proc.
10th ACM SIGOPS Symposium on Operating Systems
Principles. Orcas Island, Washington, Dec. 1985, 63-78.

[Cristian] Cristian, F., Aghili, H., Strong, R., Dolev, D. Atomic
broadcast: From simple message diffusion to Byzantine
agreement. IBM Technical Report RJ 4540 (48668)
12/10/84.

[Gifford] Gifford, D. Weighted voting for replicated data. Prac.
7th ACM SIGOPS Symposium on Operating Systems Prin-
ciples. December 1979.

[Herlihy] Herlihy, M. Replication methods for abstract data
types. Ph.D. thesis, Dept. of Computer Science, MIT (LCS
84-319), May 1984.

[Jefferson] Jefferson, D. Virtual time. USC Technical report
TR-83-213, University of Southern California, Los Angeles,
May 1983.

[Joseph] Joseph, T. and Birman, K. Low cost management of
replicated data in fault-tolerant distributed systems. ACM
Transactions on Computing Systems 4, 1 (Feb. 1986), 54-
70.

137

[Lamport-a] Lamport, L. Using time instead of timeout for
fault-tolerance in distributed systems. ACM TOPLAS 6, 2
(April 1984), 254-280.

[Lamport-b] Lamport, L. Time, clocks, and the ordering of
events in a distributed system. CACM 21, 7, July 1978,
558-565.

[Liskov] Liskov, B., Ladin, R. High Available Distributed
Servers and Fault Tolerant Garbage Collection. Proc 5th
ACM SIGACT/SIGOPS Symposium on Principles of Distri-
buted Computing, Aug. 1986, 40-51.

[Moss] Moss, E. Nested transactions: An approach to reliable,
distributed computing. Ph.D. thesis, MIT Dept of EECS,
TR 260, April 1981.

[Peterson] Peterson, L. Preserving context information in an
IPC abstraction. Proc. 6th Symposium on Reliability in
Distributed Software and Database Systems, March 1987,
22-31.

[Schneider-a] Schneider, F. Synchronization in distributed pro-
grams. ACM TOPLAS 4, 2 (April 1982), 179-195.

[Schneider-b] Schneider, F., Gries, D., Schlicting, R. Reliable
broadcast protocols. Science of Computer Programming 3,
2 (March 1984).

[Schmuck] Schmuck, F. Picking the cheapest broadcast proto-
cols in a distributed program. Ph.D. thesis, Cornell Univ.
Dept. of Computer Science, (expected) Dec. 1987.

[Skeen] Skeen, D. Determining the last process to fail. ACM
Transactions on Computing Systems 3, 1, Feb. 1985.15-30.

[Strom] Strom, R. and Yemini, S. Optimistic recovery in distri-
buted systems. ACM Transactions on Computing Systems
3, 3 (April 1985), 204-226.

138

