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Abstract

Masking fault-tolerance guarantees that programs continually satisfy their specifi-
cation in the presence of faults. By way of contrast, nonmasking fault-tolerance does
not guarantee as much: it merely guarantees that when faults stop occurring, pro-
gram executions converge to states from where programs continually (re)satisfy their
specification.

We present in this paper a component based method for the design of masking fault-
tolerant programs. In this method, components are added to a fault-intolerant program
in a stepwise manner, first, to transform a fault-intolerant program into a nonmask-
ing fault-tolerant one and, then, to enhance the fault-tolerance from nonmasking to
masking. We illustrate the method by designing programs for agreement in the pres-
ence of Byzantine faults, data transfer in the presence of message loss, triple modulo
redundancy in the presence of input corruption, and mutual exclusion in the presence
of process fail-stops. These examples also serve to demonstrate that the method accom-
modates a variety of fault-classes, it provides alternative designs for programs usually
designed with extant design methods, and it offers the potential for improved masking
fault-tolerant programs.
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1 Introduction

In this paper, we present a new method for the design of “masking” fault-tolerant systems [1-4].
We focus our attention on masking fault-tolerance because it is often a desirable —if not an ideal—
property for system design: Masking the effects of faults ensures that a system always satisfies its
problem specification and, hence, users of the system always observe expected behavior. By the
same token, when the users of the system are other systems, the design of these other systems

becomes simpler.

To motivate the design method, we note that designers of masking fault-tolerant systems often
face the potentially conflicting constraints of maximizing reliability while minimizing overhead.
As a result, designers reject methods that yield complex designs, since the complexity itself may
result in reduced reliability. Moreover, they reject methods that yield inefficient implementations,
since system users are generally unwilling to pay a significant cost in price or performance for the
sake of masking fault-tolerance. Therefore, a key goal for our method is to yield wellstructured
—and hence more reliable— systems, while still offering the potential for efficient implementation.
Other goals of the method include the ability to deal with a variety of fault-classes and the ability
to provide designs —albeit alternative ones— for systems which are typically designed by using
classical methods for masking fault-tolerance such as replication, exception handling, and recovery
blocks.

With these goals in mind, our method is based on the use of components that add tolerance prop-
erties to a fault-intolerant system. Component based design yields systems that are wellstructured
and, moreover, maintainable, reusable, and extensible. It also divides the design complexity into
that of designing relatively simpler components and that of adding the components to the fault-
intolerant system. And, by focusing attention on the efficient implementation of the components
themselves, it offers the potential for the resulting system to be efficiently implemented.

To manage the complexity of adding components to a system, the method proceeds in a stepwise
fashion. More specifically, instead of adding the components, which will satisfy the problem spec-
ification in the presence of faults, all at once, the method adds components in two stages. In the
first stage, the method merely adds components for nonmasking fault-tolerance. By nonmasking
fault-tolerance we mean that, when faults stop occurring, the system execution eventually reaches a
“good” state from where the system continually (re)satisfies its problem specification. Viewing the
problem specification as consisting of a safety specification and a liveness specification (see Section
2 for a precise description of safety and liveness specifications), it follows that in a nonmasking
fault-tolerant system the liveness specification is satisfied starting from every state, but the safety
specification is guaranteed only starting from good states and not necessarily from other states
that are reached in the presence of faults. Therefore, in the second stage, the fault-tolerance of
the system is enhanced from nonmasking to masking, by adding components that ensure that the
safety specification is satisfied in all states reached in the presence of faults.



We call the components added in the first stage correctors and those added in the second stage
detectors. Efficient implementation of correctors and detectors is important, as noted above, for
offering the potential for efficient masking fault-tolerant implementations.

As in any component based design, to prove the correctness of the resulting composite system,
we need to ensure that the components do not interfere with each other, i.e., they continue to
accomplish their task even if they are executed concurrently with the other components. To this
end, in the first stage, we ensure that fault-intolerant system and the correctors added to it do
not interfere with each other. And, in the second stage, we ensure that the resulting nonmasking
fault-tolerant system and the detectors added to it do not interfere with each other.

To demonstrate that our method accommodates a variety of fault-classes, we use the method to
design programs that are masking fault-tolerant to Byzantine faults, input corruption, message
loss, and fail-stop failures. More specifically, we design: (1) a Byzantine agreement program whose
processes are subject to Byzantine faults; (2) an alternating-bit data transfer program whose chan-
nel messages may be lost; (3) a triple modulo redundancy (T'M R) program whose inputs may be
corrupted; and (4) a new token-based mutual exclusion program whose processes may fail-stop in
a detectable manner.

The T'M R and Byzantine agreement examples also serve to provide alternative designs for programs
usually associated with the method of replication. The alternating-bit protocol example serves
to provide an alternative design for a program usually associated with the method of exception
handling or that of rollback recovery. And, in contrast to the TM R example where attention is
not focussed on the addition of efficient components (i.e., the components are more redundant than
need be), our case study in mutual exclusion serves to demonstrate that the method enables the
design of improved programs.

We proceed as follows. First, in Section 2, we recall a formal definition of programs, faults, and
what it means for programs to be masking or nonmasking fault-tolerant. Then, in Section 3, we
present our two-stage method for design of masking fault-tolerance. Next, in Section 4, we illustrate
the method by designing standard masking fault-tolerant programs for Byzantine agreement, data
transfer, and TM R. In Section 5, we present our case study in the design of masking fault-tolerant
token-based mutual exclusion. Finally, we compare our method with extant methods for designing
masking fault-tolerant programs and make concluding remarks in Section 6.

2 Programs, Faults, and Masking and Nonmasking Tolerances

In this section, we recall formal definitions of masking and nonmasking fault-tolerance of programs
[5], in order to characterize a relationship between these two tolerance types and to motivate our
design method, which is presented in Section 3.

Programs. A program p is defined recursively to consist of a (possibly empty) program ¢, a set
of “superposition variables”, and a set of “superposition actions”. The superposition variables of p
are disjoint from the remaining variables of p, namely the variables of ¢. Each superposition action



of p has one of two forms:
(name) :: (guard) — (statement) , or

(name) :: (action of ¢) || (statement)

A guard is a boolean expression over the variables of p. Thus, the evaluating a guard may involve
accessing the variables of q. Note that there is a guard in each action of p: in particular, the guard
of the actions of the second (i.e., ||) form is that of the corresponding action of gq. A statement
is an atomic, terminating update of zero or more of the superposition variables of p. Thus, the
superposition actions of the first form do not update the variables of g, whereas those of the second
may since they are based on an action of q. Note that, since statements of p do not update the
variables of ¢, the only actions of p that update the variables of ¢ are the actions of q.

Thus, programs are designed by superposition of variables and actions on underlying programs [6].
Superposition actions may access, but not update, the underlying variables, whereas underlying
actions may not access or update the superposition variables. Operationally speaking, the superpo-
sition actions of the first form execute independently (asynchronously) of other actions and those
of the second form execute in parallel (synchronously) with the underlying action they are based
upon.

State. A state of a program p is defined by a value for each variable of p, chosen from the predefined
domain of the variable. A “state predicate” of p is a boolean expression over the variables of p. An
action of p is enabled at a state iff its guard is true at that state. We use the term “S state” to
denote a state that satisfies a state predicate S.

Closure. An action “preserves” a state predicate S iff in any state where S holds and the action
is enabled, executing all of the statements in the action instantaneously in parallel yields a state
where S holds. S is “closed” in a set of actions iff each action in that set preserves S.

It follows from this definition that if S is closed in (the actions of) p then executing any sequence
of actions of p starting from a state where S holds yields a state where S holds.

Computation. A computation of p is a fair, maximal sequence of steps; in every step, an action of p
that is enabled in the current state is chosen and all of its statements are instantaneously executed
in parallel. (Recall that actions of the second form consist of multiple statement composed in
parallel.) Fairness of the sequence means that each action in p that is continuously enabled along
the states in the sequence is eventually chosen for execution. Maximality of the sequence means
that if the sequence is finite then the guard of each action in p is false in the final state. Note that
the set of computations is suffix closed.

Invariant. An invariant of p is a state predicate S such that S is closed in p and every computation
of p starting from a state in S satisfies the problem specification of p. Informally, the invariant of a
program includes the states reached in the fault-free execution of p. Note that p may have multiple
invariants.

Informally, the problem specification of p consists of a safety specification and a liveness specification
[7]. A safety specification identifies a set of “bad” finite computation prefixes that should not appear



in any program computation. Dually, a liveness specification identifies a set of “good” computation
suffixes such that every computation has a suffix that is in this set. Hence, a program computation
satisfies the problem specification iff it satisfies the safety specification and the liveness specification
in that specification.

(Remark: Our definition of liveness is stronger than Alpern and Schneider’s definition [7]: the
two definitions become identical if the liveness specification is fusion closed; i.e., if computations
(o, z,7y) and (B, z, §) satisfy the liveness specification then computations («, z, ) and (3, z,) also
satisfy the liveness specification, where «, 8 are finite computation prefixes, 7y, are computation
suffixes, and z is a program state.)

Techniques for the design of an invariant of the program have been articulated by Dijkstra [8],
using the notion of auxiliary variables, and by Gries [9], using the heuristics of state predicate
ballooning and shrinking. Techniques for the mechanical calculation of an invariant predicate have
been discussed by Alpern and Schneider [10].

Convergence. A state predicate ) “converges to” R in p iff Q and R are closed in p and, starting
from any state where @) holds, every computation of p has a state where R holds. Note that the
converges-to relation is transitive.

Lemma 2.1. If @) converges to R in p and every computation of p starting from states where
R holds satisfies a liveness specification, then every computation of p starting from states where
holds satisfies that liveness specification.

Proof.  Consider a computation ¢ of p starting from a @ state. Since ) converges to R in p, ¢
has a suffix ¢; starting from an R state. Since every computation of p starting from an R state
satisfies the liveness specification, ¢; has a suffix ¢y that is identified by the liveness specification.
Since co is also a suffix of ¢, it follows that ¢ also satisfies the liveness specification. Thus, every
computation of p starting form a ) state satisfies that liveness specification. O

Faults. The faults that a program is subject to are systematically represented by actions whose
execution perturbs the program state. We emphasize that such representation is possible notwith-
standing the type of the faults —be they stuck-at, crash, fail-stop, omission, timing, performance,
or Byzantine—, their nature —be they permanent, transient, or intermittent—, their observability
—Dbe they detectable or not—, or their repairability —be they correctable or not.

In some cases, such representation of faults introduces auxiliary variables. For example, to represent
a fail-stop fault as a state perturbation, we introduce an auxiliary variable up. Each action is
restricted to execute only when up is true. The fail-stop fault is represented by the action that
changes up from true to false, thereby disabling all the actions in a detectable manner. Moreover,
the repair of a fail-stopped program can be represented by the fault action that changes up from
false to true. In other words, fail-stop and repair faults are respectively represented by the fault
actions:

Fail-stop :: up — up := false

Repair :: —~up —> up = true



To represent a Byzantine fault as a state perturbation, we introduce an auxiliary variable b. The
specified actions of the program are restricted to execute only when b is false, i.e., the program
is non-Byzantine. If b is true, i.e., the program is Byzantine, the program is allowed to execute
actions that can change its state arbitrarily. Thus, the Byzantine fault is represented by the action
that changes b from false to true, thereby enabling the program to enter a mode where it executes
actions that change its state arbitrarily. In other words, Byzantine fault is represented by the fault
action:

Byzantine :: —b — b := true

Fault-span. A fault-span of program p for a fault-class F' is a predicate T such that T is closed in
p and F. Informally, the fault-span includes the set of states that p reaches when executed in the
presence of actions in F'. Note that p may multiple have fault-spans for F'.

If program p with invariant S is subject to a fault-class F', the resulting states of p may no longer
satisfy S. However, these states satisfy fault-span of p, say T. Moreover, every state in S also
satisfies T'.

Fault-Tolerance: Masking and Nonmasking. We are now ready to give a formal definition
of fault-tolerance [5]. Instantiations of this definition yield definitions of masking and nonmasking
fault-tolerance.

Let p be a program, F' be a set of fault actions, and S be an invariant of p. We say that “p is
F-tolerant for S” iff there exists a state predicate T' of p such that the following three conditions
hold:

e Inclusion: T<S

e Closure: T is closed in p and F

e Convergence: T converges to S in p

This definition may be understood as follows. At any state where the invariant, S, holds, executing
an action in p yields a state where S continues to hold, but executing an action in F' may yield
a state where S does not hold. Nonetheless, the following three facts are true about this last
state : (i) T, the fault-span, holds, (ii) subsequent execution of actions in p and F' yields states
where T holds, and (iii) when actions in F' stop executing, subsequent execution of actions in p
alone eventually yields a state where S holds, from which point the program resumes its intended
execution.

When the definition is instantiated so that the fault-span T is identical to the invariant S, we get
that p is masking F-tolerant for S. And when the definition is instantiated so that 7" differs from
S, we get that p is nonmasking F-fault-tolerant for S.

In the rest of this paper, the predicate S, denotes an invariant of program p. Moreover, the
predicate T, denotes a fault-span predicate for a program p that is F-tolerant for S,. Finally,
when the fault-class F is clear from the context, we omit mentioning F'; thus, “masking tolerant”
abbreviates “masking F'-tolerant”.



3 A Method for Designing Masking Tolerance

From the definitions in the previous section, we observe that masking and nonmasking fault-
tolerance are related as follows.

Theorem 3.1. For a program p,

If there exists S, and T}, such that p is nonmasking F-tolerant for S, and
every computation of p starting from a state where 7}, holds satisfies the
safety specification of p

Then there exists S}, such that p is masking F-tolerant for S,.

Proof.  Let Spp, Ty, be state predicates satisfying the antecedent. Then every computation of p
starting from a state where S;,;, holds satisfies its problem specification, and starting from a state
where T, holds satisfies its safety specification. It follows from Lemma 2.1 that every computation
of p starting from a T;,, state satisfies its problem specification. Thus, choosing S, =T, satisfies
the consequent. O

The Method. Theorem 3.1 suggests that an intolerant program can be made masking tolerant
in two stages: In the first stage, the intolerant program is transformed into one that is nonmasking
tolerant, for the invariant and fault-span say Sy, and T}, respectively. In the second stage, the
tolerance of resulting program is enhanced from nonmasking to masking, as follows. The non-
masking tolerant program is transformed so that every computation upon starting from a state
where Tp,; holds, in addition to eventually reaching a state where Sy, holds, also satisfies the safety
specification of the problem at hand.

We address the details of both stages, next.

Stage 1. For a fault-intolerant program, say p, the problem specification is satisfied by compu-
tations of p that start at a state where its invariant holds but not necessarily by those that start at
a state where its fault-span holds. Hence, to add nonmasking tolerance to p, a program component
is added to p that restores it from fault-span states to invariant states.

We call the program component added to p for nonmasking tolerance a corrector. Wellknown
examples of correctors include reset procedures, rollback-recovery, forward recovery, error correction
codes, constraint (re)satisfaction, exception handlers, and alternate procedures in recovery blocks.
The design of correctors has been studied extensively, and we do not discuss it further here, except
to note that correctors can be designed in a stepwise and hierarchical fashion.

Specifically, a large corrector can be designed by parallel and/or sequential composition of small
correctors. One simple parallel composition strategy is to superpose small correctors on others.
An alternative composition strategy, due to Arora, Gouda, and Varghese [11], is to order the small
correctors in a linear manner (or, more generally, a well-founded manner) such that each corrector
does not interfere with the recovery task of the correctors lower than it in the chosen ordering. For
a detailed discussion of corrector compositions, we refer the reader to [12].



Stage 2. For a nonmasking program, say np, even though the problem specification is satisfied
after computations of np converge to invariant states, the safety specification need not be satisfied
in all computations of np that start at fault-span states. Therefore, in the second stage, we restrict
the actions of np so that the safety specification is preserved during the convergence of computations
of np to invariant states. By Theorem 3.1, it follows that the resulting program is masking tolerant.

To see that restriction of actions of np is sufficient for preserving safety during convergence, recall
that the safety specification essentially rules out certain finite prefixes of computation of np. Now
consider any prefix of a computation of np that is not ruled out by the safety specification: Execution
of an action following this prefix increases the length of the computation prefix by one. As long
as the elongated prefix is not one of the prefixes ruled out by the safety specification, safety is not
violated. In other words, it suffices that whenever an action is executed, the resulting prefix be one
that is not ruled out by the safety specification.

It follows that there exists, for each action of np, a set of computation prefixes for which execution
of that action preserves the safety specification. Assuming the existence of auxiliary state (which
in the worst case would record the history of the computation steps), there therefore exists, for
each action of np, a state predicate— which we call the safe predicate of that action —that is true
in exactly those states where the execution of the action preserves safety.

The restriction of the actions of np so as to enhance the tolerance of np to masking can now be
stated precisely. Each action of mp is restricted to execute only when its safe predicate holds.
Moreover, for each action of np, the detection of its safe predicate may require the addition of a
program component to np.

We call a program component added to np for detecting that the safe predicate of an action
holds a detector. Wellknown examples of detectors include snapshot procedures, acceptance tests,
error detection codes, consistency checkers, watchdog programs, snooper programs, and exception
conditions. Analogous to the compositional design of large detectors, large detectors can be designed
in a stepwise and hierarchical fashion, by parallel and/or sequential composition of small detectors.

Thus, in sum, the second stage adds at most one detector per action of np and restricts each action
of np to execute only when the detector of that action witnesses that its safe predicate holds.
Before concluding our discussion of this stage, we make two experimental observations about its
application in practice:

1. The safe predicate of several program actions is the trivially detected state predicate true;
and

2. The safe predicate of most other actions requires only simple detector components, which
introduce only little additional state to check the safe predicate.

Observation (1) follows from the fact that the actions of masking tolerant programs can be con-
ceptually characterized as either “critical” or “noncritical”, with respect to the safety specification.
Critical actions are those actions whose execution in the presence of faults can violate the safety
specification; hence, only they require non-trivial safe predicates. In other words, the safe predicate



of all non-critical actions is merely true.

For example, in terminating programs, e.g. feed-forward circuits or database transactions, only
the actions that produce an output or commit a result are critical. In reactive programs, e.g.
operating systems or plant controllers, only the actions that control progress while maintaining
safety are critical. In the rich class of “total” programs for distributed systems [13], e.g. distributed
consensus, infima finding, garbage collection, global function computation, reset, routing, snapshot,
and termination detection, only the “decider” actions that declare the outcome of the computation
are critical.

Observation (2) follows from the fact that conventional specification languages typically yield safety
specifications that are tested on the current state only or on the current computation step only;
i.e., the set of finite prefixes that their safety specifications rule out can be deduced from the last
or their last two states of computation prefixes. Thus, most safety specifications in practice do not
require maintenance of unbounded “history” variables for detection of the safe predicates of each
action.

Verification obligations. The addition of corrector and detector components as described
above may add variables and actions to an intolerant program and, hence, the invariant and the
fault-span of the resulting program may be different from those of the original program. The
addition of corrector and detector components thus creates some verification obligations for the
designer.

Specifically, when a corrector is added to an intolerant program, the designer has to ensure that the
corrector actions and the intolerant program actions do not interfere with each other. That is, even
if the corrector and the fault-intolerant program execute concurrently, both accomplish their tasks:
The corrector restores the intolerant program to a state from where the problem specification of the
intolerant program is (re)satisfied. And starting from such a state the intolerant program satisfies
its problem specification.

Similar obligations are created, when detectors are added to a nonmasking program. Even if the
detectors and the nonmasking program are executed concurrently, the designer has to ensure that
the detector components and the components of the nonmasking program all accomplish their
respective tasks.

Another set of verification obligations is due to the fact that the corrector and detector components
are themselves subject to the faults that the intolerant program is subject to. Hence, the designer
is obliged to show that these components accomplish their task in spite of faults. More precisely,
the corrector tolerates the faults by ensuring that when fault actions stop executing it eventually
restores the program state as desired. In other words, the corrector is itself nonmasking tolerant to
the faults. And each detector tolerates the faults by never falsely witnessing its detection predicate,
even in the presence of the faults. In other words, each detector is itself masking tolerant to the
faults. As can be expected, our two-stage design method can itself be used to design masking
tolerance in the detectors, if their original design did not yield masking tolerant detectors.



Adding detectors components by superposition. One way of simplifying the verification
obligations is to add components to a program by superposing them on the program: if a program
p is designed by a superposition on the program ¢, then it is trivially true that p does not interfere
with ¢ (although the converse need not be true, i.e., ¢ may interfere with p).

In particular, superposition is wellsuited for the addition of detector components to a nonmasking
tolerant program, np, in Stage 2, since detectors need only to read (but not update) the state
of np. (It is for this reason that we’ve stated the definition of programs in Section 2 in terms
of superposition.) Thus, the detectors do not interfere with the tasks of the corrector and the
underlying program components in np.

When superposition is used, the verification of the converse obligation, i.e. that np does not
interfere with the detectors, may be handled as follows. Ensure that the corrector in np terminates
after it restores np to an invariant state and that as long as it has not terminated it prevents
the detectors from witnessing their safe predicate. Aborting the detectors during the execution of
the corrector guarantees that the detectors never witness their safe predicate incorrectly, and the
eventual termination of the corrector guarantees that eventually detectors are not prevented from
witnessing their safe predicate.

More specifically, the simplified verification obligations resulting from superposition are explained
from Theorems 3.2 and 3.3. Let program p be designed by superposition on ¢ such that T, = Tj,
and S, = S.

Theorem 3.2. If ¢ is nonmasking F-tolerant for S, then T}, converges to S, in p. O

Theorem 3.3. If ¢ is nonmasking F-tolerant for S, then

(Tp N Sq converges to S, inp) = (T, converges to S, in p)

Proof:  Since ¢ is nonmasking fault-tolerant, Tj, converges to S, in ¢g. Since p is designed by a
superposition on g, it follows that (7, A T, converges to T, A Sy). Since the converges-to relation
is transitive and (T, A S, converges to S, A Sy), it follows that (T, A T; converges to S, A Sy), i.e.,
T, converges to S, in p. O

Theorems 3.2 and 3.3 imply that if p is designed by superposition on a nonmasking tolerant program
g, then to reason about p, it suffices to assume that q always satisfies its invariant Sy, even in the
presence of faults. For a discussion of alternative strategies for verifying interference freedom, we
refer the reader to [12].

4 Design Examples

In this section, we demonstrate that our method is wellsuited for the design of classical examples
of masking tolerance, which span a variety of fault-classes. Specifically, our examples of masking
tolerance achieve Byzantine agreement in the presence of Byzantine failure, data transfer in the
presence of message loss in network channels, and triple modulo redundancy (TMR) in the presence



of input corruption.

Notation. For convenience in presenting these designs, we will partition the actions of a program
into “processes”.

4.1 Example 1 : Byzantine agreement

Recall the Byzantine agreement problem: A unique process, the general, g, asserts a binary value
d.g. Every process j in the system is required to eventually finalize its decision such that the
following two conditions hold: (1) if ¢ is non-Byzantine, the final decision reached by every non-
Byzantine process is identical to d.g; and (2) even if g is Byzantine, the final decisions reached by
all non-Byzantine processes are identical.

Faults corrupt processes permanently and undetectably such that the corrupted processes are
Byzantine. It is wellknown that masking tolerant Byzantine agreement is possible iff there are
at least 3f+1 processes, where f is the number of Byzantine processes [14]. For ease of exposition,
we will restrict our attention to the case where the total number of processes (including g) is 4 and,
hence, f is 1.

As prescribed by our method, we will design the masking tolerant solution to the Byzantine agree-
ment problem in two stages. Starting with an intolerant program for Byzantine agreement, we will
first transform that program to add nonmasking tolerance, and subsequently enhance the tolerance
to masking.

Intolerant Byzantine agreement. The following simple program suffices for agreement but
not for tolerance to faults: Process g is assumed to have a prior:i finalized its decision d.g. Each
process j other than g receives the value d.g from process g and then finalizes its decision to that
value. To this end, the program maintains two variables for each process j: a boolean f.j that is
true iff § has finalized its decision, and d.j whose value denotes the decision of j.

The program has three actions for each process j. The first action, IB1, copies d.g into the decision
variable d.j: to denote that 7 has not yet copied d.g, we add a special value 1 to the domain of
d.j; thus, j copies d.g only if d.j is L. The second action, /B2, finalizes the decision j: if j has
copied d.g, j finalizes its decision by truthifying f.j. These two actions are executed by j only if
it is non-Byzantine. The third action, I B3, is executed by j only if it is Byzantine: this action
nondeterministically changes d.j to either 0 or 1 and f.j to either true or false. Formally, the
actions of the intolerant program, I B, are as follows:

IB1: =bj AN j#g Ndj=1 — d.j:=d.g
IB2: =bj AN j#g AN dj#L — f.7 :=true
IB3:b.j — d.j, f.g =17
Invariant. In program IB, when any non-Byzantine process finalizes its decision, d.j # L.
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Moreover, if g is non-Byzantine, it has a priori finalized its decision, and the final decision of each
non-Byzantine process is identical to d.g. Finally, if g is Byzantine, the intolerant program works
correctly if it starts in a state where all processes have correctly finalized their decisions. Hence,
the invariant of program IB is Stp, where

Sip=(Nj:-bj:fj = dj#L) A
(mb.g = (fg Ndg#L AN (Vj:-bj:dj#£L = dj=dg))) A
(b.g = Vj,k:=bjA-bk:fj A dj=d.k))

Remark. A formula (Vj : R.j : X.j) may be read as for all j (in this case j is a process) if R.j
is true then so is X.j. If R.j is true, i.e., the predicate X.j is true for all processes, we omit R.j.
Similarly, a formula (35 : R.j : X.j) may be read as there exists a process where both R.j and X.j
are true. This notation is from [15]

Fault Actions.  The faults in this example make one process Byzantine, provided that no other
process is Byzantine. As discussed in Section 2, these faults would be represented by the following
fault action at each j :

(Vk 2 —b.k) — b.j := true

Nonmasking tolerant Byzantine agreement. Program IB is intolerant because if g becomes
Byzantine before all processes have finalized their decisions, g may keep changing its d.g arbitrarily
and hence the final decisions reached by the non-Byzantine processes may differ. We now add
nonmasking tolerance to I B so that eventually the decisions reached by all non-Byzantine processes
are identical.

Since I B eventually reaches a state where the decisions of all processes differ from L (i.e., are 0 or
1), it follows that eventually the decisions of at least two of the three processes other than g will
be identical. Hence, if all of these processes ensure that their decision is the same as that of the
majority, the resulting program will be nonmasking tolerant.

Our nonmasking tolerant program consists of four actions for each process j: the first three are
identical to the actions of 1B, and the fourth action, N B4, changes the decision of j to the majority
of the three processes. Formally, the actions of the nonmasking program, N B, are as follows:

NB1: IB1
NB2: IB2
NB3: IB3

N B4 :: majdefined A d.j Amaj — d.j := maj

where, majdefined = (5, k:j#k N j#£g N k#g:dj=dk N dj#1)
maj = (majority j: j#g:d.j)
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Invariant and fault-span.  As in program IB, in program N B, when any non-Byzantine process
finalizes its decision, d.j # 1. Also, if ¢ remains non-Byzantine, all other non-Byzantine processes
reach the same decision value as process g. Hence, the fault-span of NB, Txp is:

Thp = (V_] :=b.g: fj = dj;éJ_) A
(=b.g = (fg ANdg#L AN (Vj:=bj:dj#L = dj=d.g)))

and the invariant, Syp, is the same as that of IB, i.e.,
Sng =SB

Enhancing the tolerance to masking. Program N B is not yet masking tolerant as a non-
Byzantine j may first finalize its decision incorrectly, and only later correct its decision to that of
the majority of the other processes. Hence, to enhance the tolerance of NB to masking, it suffices
that j finalize its decision only when d.j is the same as the majority.

The masking program thus consists of four actions at each process j: the three actions are identical
to actions NB1, NB3 and N B4, and the fourth action, M B2 is restricted so that j finalizes its
decision only when d.j is the same as the majority. Formally, the actions of the masking program,
M B, are as follows:

MB1: NB1
MB2:: =bj A d.j# L A majdefined A d.j=maj — f-7 :=true
MB3:: NB3
MB4:: NB4

Invariant.  The fault-span of the nonmasking program, Txp, is implied by the invariant, Sy,
of the masking program. Also, in Sy, g, j finalizes its decision only when d.j is the same as that of
the majority. Thus, Spsp is:

Sup = Tnp N (Vj:-bj: f.j = d.j=maj)

Theorem 4.1 The Byzantine agreement program M B is masking fault-tolerant for invariant Sy p.

4.2 Example 2 : Data transfer

Recall the data transfer problem: An infinite input array at a sender process is to be copied, one
array item at a time, into an infinite output array at a receiver process. The sender and receiver
communicate via a bidirectional channel that can hold at most one message in each direction at a
time. It is required that each input array item be copied into the output array exactly once and
in the same order as sent. Moreover, eventually the number of items copied by the receiver should
grow unboundedly.
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Data transfer is subject to the faults that lose channel messages.

As before, we will design the masking tolerance for data transfer in two stages. The resulting
program is the wellknown alternating-bit protocol.

Intolerant program. Iteratively, a simple loop is followed: sender s sends a copy of one array
item to receiver r. Upon receiving this item, r sends an acknowledgment to s, which enables the
next array item to be sent by s and so on. To this end, the program maintains binary variables rs
in s and rr in 7; s is 1 if s has received an acknowledgment for the last item it sent, and rr is 1 if
the r has received an item but has not yet sent an acknowledgment.

The 0 or 1 items in transit from s to r are denoted by the sequence cs, and the 0 or 1 acknowledg-
ments in transit from r to s are denoted by the sequence cr. Finally, the index in the input array
corresponding to the item that s will send next is denoted by ns, and the index in the output array
corresponding to the item that r last received is denoted by nr.

The intolerant program contains four actions, the first two in s and the last two in r. By ID1,
s send an item to r, and by ID2, s receives an acknowledgment from r. By ID3, r receives an
item from s, and by I D4, r sends an acknowledgment to s. Formally, the actions of the intolerant
program, I D, are as follows (where cl1;c2 denotes concatenation of sequences ¢l and ¢2):

ID1:rs=1 — rs,cs := 0, cs; (ns)

ID2 :: cr#() — rs,cer,ns = 1,tail(cr),ns + 1
ID3 :: cs#() — cs,rr,nr = tail(cs), 1, head(cs)
ID4 ::rr=1 — rr,cs = 0,cr; (nr)

Invariant.  When r receives an item, nr =ns holds, and this equation continues to hold until s
receives an acknowledgment. When s receives an acknowledgment, ns is exactly one larger than
nr and this equation continues to hold until r receives the next item. Also, if ¢s is nonempty,
cs contains only one item, (ns). Finally, in any state, exactly one of the four actions is enabled.
Hence, the invariant of program ID is, S;p, where

Sip=((rr=1V cr#()) = nr=ns) A ((rs=1V cs#() = nr=ns—1) A
(es=() V es=(ns)) A (les|+|er|+rs+rr = 1)

Fault Actions. The faults in this example lose either an item sent from s to r or an acknowledgment
sent from r to s. The corresponding fault actions are as follows:

cs#() — cs = tail(cs)

er#() — cr = tail(er)
Nonmasking tolerant program. Program ID is intolerant as it deadlocks when a fault
loses an item or an acknowledgment. Hence, we add nonmasking tolerance to this fault by adding

an action by which s detects that an item or acknowledgment has been lost and recovers ID by

retransmitting the item.
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Thus, the nonmasking program consists of five actions; four actions are identical to the actions of
program ID, and the fifth action retransmits the last item that was sent. This action is executed
when both channels, cs and cr, are empty, and rs and rr are both zero. In practice, this action
can be implemented by waiting for a some predetermined timeout so that the source can be sure
that either the item or the acknowledgment is lost, but we present only the abstract version of the
action. Formally, the actions of the nonmasking program, N D, are as follows:

ND1: ID1
ND2 :: ID2
ND5::cs=() N ecr={) A rs=0 A rr=0 — cs = cs;(ns)

ND3 :: ID3
ND4 :: ID4

Fault-span and invariant. If an item or an acknowledgment is lost, the program reaches a state
where cs and cr are empty and rs and rr are both equal to zero. Also, even in the presence of
faults, if cs is nonempty, it contains exactly the item whose index in the input array is (ns). Thus,
the fault-span of the nonmasking program is

Tnp = (es=() V es=(ns)) AN (les|+|er|+rs+rr < 1)

and the invariant is the same as the invariant of ID, i.e.,

Snp = S1p

Enhancing the tolerance to masking. Program ND is not yet masking tolerant, since r may
receive duplicate items if an acknowledgment from r to s is lost. Hence, to enhance the tolerance
to masking, we need to restrict the action 7D3 so that r copies an item into the output array iff it
is not a duplicate.

Upon receiving an item, if r checks that nr is exactly one less than the index number received with
the item, r will receive every item exactly once. Thus, we can enhance its tolerance to masking
by adding such a check to program ND. However, this check forces the size of the message sent
from the s to r to grow unboundedly. But we can exploit the fact that in N D, ns and nr differ by
atmost 1, in order to simulate this check by sending only a single bit with the item as follows.

Process s adds one bit, bs, to every item it sends such that the bit values added to two consecutive
items are different and the bit values added to an item and its duplicates are the same. Thus, to
detect that a message is duplicate, » maintains a bit, br, that denotes the sequence number of the
last message it received. It follows that an item received by r is a duplicate iff br is the same as
the sequence number in that message.

The masking program consists of five actions. These actions are as follows:
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MD1: rs=1 — rs,cs = 0,cs;(ns, bs)
MD2 :: cr#() — rs,cry,ns,bs := 1,tail(cr),ns + 1,bs ® 1
MD5 :es=() N er=() A
rs=0 A rr=0 — ¢s := cs;(ns,bs)
MD3 :: cs#() — if ((head(cs))2 #br) then nr,br := (head(cs))1, (head(cs))2;
cs,rr = tail(cs), 1;
MDA4::rr=1 — rr,cs := 0,cr; (nr,br)

Invariant. In any state reached in the presence of program and fault actions, if ¢s is nonempty,
cs has exactly one item, (ns, bs). Also, bs is the same as (ns mod 2), br is the same as (nr mod 2),
and exactly of the five actions is enabled. Finally, nr is the same as ns or nr is one less than ns.
Thus, the invariant of the masking program is Sy;p, where

Sup = (cs=() V es=(ns,bs)) AN (les|+|er|+rs+rr < 1) A
bs=(nsmod?2) A br=(nrmod2) A (nr=ns V nr=ns—1)

Theorem 4.2. The alternating-bit program, M D, is masking tolerant for invariant Sy p.

4.3 Example 3 : TMR

Recall TMR: Three processes share an output, out. A binary value is input to in.j, for each of
process j. It is required that the output be set to this binary value.

Faults corrupt the input value of any one of the three processes.

Intolerant TMR. In the absence of faults, it suffices that out be set to in.j, for any process j.
Hence, the actions of program IR in each process j are as follows (where out=_L denotes that the
output has not yet been set):

IR1: out=1 — out :=1in.j

Fault actions.  In this example, the faults corrupt the input value in.j of at most one process.
They are represented by the following fault actions, one for each j (where k also ranges over the
processes):

(Vk ::in.j=in.k) — in.j =7

Nonmasking TMR. Program IR is intolerant since out may be set incorrectly from a corrupted
in.j. Therefore, to add nonmasking tolerance to I R, we add a corrector that eventually corrects
out. Since at most one in.j is corrupted, the correct output can differ from at most one in.j. Hence,
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if out differs from the in.j of two processes, the corrector resets out to the in.j value of those two.
Thus, the nonmasking program, N R, consists of two actions in each process j: action NVR1 is the
same as IR1 and action N R2 is the corrector. Formally, these two actions are as follows (where &
denotes modulo 3 addition):

NR1:: out=1 — out :=1in.j
NR2: out#inj A (inj=in.(j&1) V inj=in.(j®2)) — out := in.j

Enhancing the tolerance to masking. Program NR is not yet masking tolerant since out
may be set incorrectly before being corrected. Therefore, to enhance the tolerance to masking, we
restrict the action NR1 so that the output is always set to an uncorrupted in.j. A safe predicate
for this restriction of action NR1 is ((in.j=in.(j ®1) V (in.j=in.(j ®2)). Restricting action
N R1 with this safe predicate yields a stronger version of action NR2, thus the resulting masking
tolerant program M R consists of only one action for each j:

MR1:: out#ing A (inj=in.(j®1) V inj=in.(j d2)) — out :=in.j

Invariant. In program MR, if out is equal to in.j for some j, then there exists another process
whose input value is the same as in.j. Hence, the invariant of program MR is, Sjsr, where

Sur = (out=in.j = (out=in.(j®1) V out=1in.(jH2))

Theorem 4.3 The triple modulo redundancy program M R is masking tolerant for invariant Sysg.

5 Case Study : Mutual Exclusion

In this section, we design a new and improved masking tolerant solution for the mutual exclusion
problem using our two-stage method. Recall the mutual exclusion problem: Multiple processes
may each access their critical sections provided that at any time at most one process is accessing
its critical section. Moreover, no process should wait forever to access its critical section, assuming
that each process leaves its critical section in finite time.

We assume that the processes have unique integer ids. At any instant, each process is either “up”
or “down”. Only up processes can execute program actions. Actions executed by an up process
j may involve communication only with up processes connected to j via channels. Channels are
bidirectional.

A fault fail-stops one of the processes, i.e., renders an up process down. Fail-stops may occur in
any (finite) number, in any order, at any time, and at any process as long as the set of up processes
remain connected.

One class of solutions for mutual exclusions is based on tokens. In token-based solutions, a unique
token is circulated between processes, and a process enters its critical section only if (but not
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necessarily if) it has the token. To ensure that no process waits forever for the token, a fair
strategy is chosen by which if any process requests access to its critical section then it eventually
receives the token. An elegant token-based program is independently due to Raymond [16] and
Snepscheut [17]; this program uses a fixed tree to circulate the token.

The case study is organized as follows. In Section 5.1, we recall (an abstract version of) the
intolerant mutual exclusion program of Raymond and Snepscheut. In Section 5.2, we transform
this fault-intolerant program into a nonmasking tolerant one by adding correctors. Finally, in
Section 5.3, we enhance the tolerance to masking by adding detectors. The resulting solution is
compared with other masking tolerant token-based mutual exclusion solutions in the next section.

5.1 The Fault-Intolerant Program

The processes are organized in a tree. Each process j maintains a variable P.j, to denote the parent
of 7 in this tree; a variable h.j, to denote the holder process of j which is a neighbor of j in the
direction of the process with the token; and a variable Request.j, to denote the set of requests that
were received from the neighbors of j in the tree and that are pending at j.

The program consists of three actions for each process, the first for making or propagating to the
holder process a request for getting the token; the second for transmitting the token to satisfy a
pending request from a neighbor; and the third for accessing the critical section when holding the
token. The actions are as follows:

IM1:  hj#j A j¢&Request(h.j) — Request.(h.j) := Request.(h.j) U {j}
IM2:: hk=k A j€Requestk A — h.k,h.j :==3,7;

(Pj=k vV Pk=j) Request.k :== Request.k — {j}
NM3: hj=j — access critical section

These actions maintain the holder relation so that it forms a directed tree rooted at the process
that has the token. The holder relation, moreover, conforms to the parent tree; i.e., if k is the
holder of j then j and k are adjacent in the tree.

Srvm = h.j € ({j,P.j}Uch.j) A
(j#Pj = ((h.j=Pj V h.(Pj)=j) N —(hj=P.j AN h(Pj)=j)) A
the graph of the parent relation forms a tree

Remark. Note that action IM1 is executed either to request a token for j itself or to propagate
the request of a descendent process of j in the holder tree. Therefore, upon receiving a token, j
may decide to itself enter the critical section or to propagate the token to one of its children; and
it is not essential that j enters the critical section infinitely often. We have abstracted away the
strategy by which j takes this decision. We have also abstracted away the fair strategy by which j
decides to which of its children in holder tree it should transmit the token to. The details of these
strategies are local to each process and irrelevant for our purposes.
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5.2 A Nonmasking Tolerant Version

In the presence of faults, the parent tree used by IM may become partitioned. As a result, the
holder relation may also become inconsistent. Moreover, the token circulated by IM may be lost,
e.g., when the process that has the token (i.e., whose holder equals itself) fail-stops. Hence, to add
nonmasking tolerance to fail-stops, we need to add a corrector that restores the parent tree and
the holder tree. We build this corrector by superposing two correctors: NT which corrects the
parent tree and N H which corrects the holder tree. In particular, we ensure that in the presence
of fail-stops eventually the parent tree is constructed, the holder relation is identical to the parent
relation and, hence, the root process has the token.

5.2.1 Designing a Corrector NT for the parent Tree

For a corrector that reconstructs the parent tree, we reuse Arora’s program [18] for tree main-
tenance. This program allows faults to yield program states where there are multiple trees and
unrooted trees. Continued execution of the program ensures convergence to a fixpoint state where
there is exactly one rooted spanning tree.

To deal with multiple trees, the program has actions that merge trees. The merge actions use an
integer variable root.j, denoting the id of the process that j believes to be its tree root, as follows.
A process j merges into the tree of a neighboring process k& when root.k >root.j. Upon merging, j
sets root.j to be equal to root.k and P.j to be k. Also, j aligns its holder relation along the parent
relation by setting h.j to k. Observe that, by merging thus, no cycles are formed and the root value
of each process remains at most the root value of its parent. When no merge actions are enabled,
it follows that all rooted processes have the same root value.

To deal with unrooted trees, the program has actions that inform all processes in unrooted trees
that they have no root process. These actions use a variable col.j, denoting the color of j, as
follows. When a process detects that its parent has failed or the color of its parent is red, the
process sets its color to red. When a leaf process obtains the color red, it separates from its tree
and resets its color to green, thus forming a tree consisting only of itself. When a leaf separates
from its tree, it aligns its holder relation along the parent relation by setting its holder to itself.
Formally, the actions of the corrector NT for process j are as follows (Adj.j denotes the set of up
neighbors of process j):

NT1 :: COl.j:green/\
(P.j¢ Adj.jU{j} V col.(P.j)=red) — col.j :=red

NT2:: col.j=redN
(Vk : ke Adj.j : P.k#j) — col.j, P.j,root.j, h.j := green, , 7, ]

NT3:: keAdj.j AN root.j<root.k A
col.j=green A col.k=green — P.j,root.j, h.j :== k,root.k, k
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Fault-span and Invariant. In the presence of faults, the actions of NT preserve the acyclicity
of the graph of the parent relation as well as the fact that the root value of each process is at most
the root value of its parent. They also preserve the fact that if a process is colored red then its
parent is also colored red. Thus, the fault-span of corrector NT' is the predicate Tn1, where

Tnt = the graph of the parent relation is a forest A
(Vj:up.j: (col.j=red = (Pj&Adj.ju{j} V col.(P.j)=red)) A
(Pj=j = root.j=3) N (Pj#j = root.j>j) A
(PjeAdjj = (root.j<root.(P.j) V col.(P.j)=red)))

In the absence of faults, the graph of parent relation forms a rooted spanning tree. In particular,
the root values of all processes are identical. Furthermore, if a process is colored red then all its
children are colored red, i.e., all processes in any unrooted tree are colored red. Finally, all processes
are colored green, i.e., no process is in an unrooted tree. Thus, the invariant of corrector NT' is the
predicate Sy, where

Syt =Tnt A (Vj:up.j: (col.j=red < (P.j¢Adj.jU{j} V col.(P.j)=red)) A
(col.j=green) N (Vk:k € Adj.j: root.j=root.k))

Remark. Henceforth, for brevity, we use the term ch.j to denote the children of j; the term j is a
root to denote that the parent of j is j, col.j is green, and j is up; and the term nbrs(X) to denote
the set of processes adjacent to processes in the set of processes X (including X). Formally,

ch.j={k: Pk=j}—{j}.
jis aroot = (Pj=j Acol.j=green A up.j)
nbrs(X) = (XU{l: @3m:me X Al € Adj.m)})

5.2.2 Designing a Corrector NH for the holder Tree

After the parent tree is reconstructed, the holder relation may still be inconsistent, in two ways. (1)
The holder of j need not be adjacent to j in the parent tree, or (2) the holder of j may be adjacent
to j in the tree but the holder relation forms a cycle. Hence, the corrector N H that restores the
holder relation consists of two actions: Action NH1 corrects the holder of j; when (1) holds, by
setting h.j to P.j. Action NH2 corrects the holder of j when (2) holds: if the parent of & is 7,
holder of j is k and the holder of k is j, 7 breaks this cycle by setting h.j to P.j. The net effect
of executing these actions is that eventually the holder relation is identical to the parent relation
and, hence, the root process has the token.

NH1: ((hj € ({j,PjYUchg)) V (Pj#j A hj#Pj A h(Pj)#5))  — hj:=Pj

NH2: hj=k A hk=j A j#k A Pj=k — h.j:=Pj
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Fault-Span and Invariant. The corrector NH ensures that the holder of j is adjacent to
J in the parent tree and for every edge (j, P.j) in the parent tree, either h.j is the same as P.j,
or h.(P.j) is the same as j, but not both. Thus, NH corrects the program to a state where
Sy = (Vj:up.j: Syg1.J A Snme-j) is satisfied, where

Svm-j = (hj € ({§,PjtUchj) N (j#Pj = (hj=PjV h(Pj)=j))
Snm2-j = ([ #Pj = -(hj=P.j A h(Pj)=j))

5.2.3 Adding the corrector : Verifying interference freedom

As described earlier, the corrector we add to I'M is built by superposing two correctors N1 and
NH. NH updates only the holder relation and NT' does not read the holder relation. Therefore,
N H does not interfere with NT. Also, after NT reconstructs the tree and satisfies Sy7, none of
its actions are enabled. Therefore, NT does not interfere with N H.

IM updates variables that are not read by NT. Therefore, IM does not interfere with NT.
Also, N H reconstructs the holder relation by satisfying the predicates Syp1.7 and Sy ps-j for each
process j, both of which are respectively preserved by IM. Therefore, IM does not interfere with
N H. Finally, after the tree and the holder relation is reconstructed and (Sy A Snyg) is satisfied,
actions of NT and N H are disabled. Therefore, NT and NH do not interfere with IM.

It follows that the corrector consisting of both NT and N H ensures that a state satisfying (Syr A
Sng) is reached, even when executed concurrently with IM. Since (Sxyv A Sy =  Siu), we
may add the corrector to IM to obtain the nonmasking tolerant program N M, whose actions at
process j are as follows:

NM1: IM1
NM2: IM2
NM3:: IM3
NM4:: NT1
NM5: NT2
NM6: NT3

NMT7: NH1
NM8: NH2

Fault-Span and Invariant. The invariant of program N M is the conjunction of Sy, and
Snu- Thus, the invariant of NM is
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The fault-span of program N M is equal the Ty, i.e.,
Tny = Tt

Theorem 5.1. The mutual exclusion program NM is nonmasking fault-tolerant for Syps.

5.3 Enhancing the Tolerance to Masking

Actions NM5, NM7 and NM8 can affect the safety of program execution only when the process
executing them sets the holder to itself, thereby generating a new token. The safe predicate that
should hold before generation of the a token is therefore the condition “no process has a token”.
Towards detection of this safe predicate, we exploit the fact that N M is nonmasking tolerant: if
the token is lost, NM eventually converges to a state where the graph of the parent relation is a
rooted tree and the holder of each processes is its parent and, hence, it suffices to check whether
the program is at such a state. To perform this check, we let j initiate a diffusing computation
whenever j executes action NM5, NM7 or NMS8. Only when j completes the diffusing computation
successfully, does it safely generate a token.

Actions NM2 and NM3, which respectively let process k transmit a token to process j and
let j enter its critical section, can affect the safety of program execution only if they involve a
spurious token generated in the presence of fail-stops. The safe predicate that should hold before
these actions execute would certify that the token is not spurious. Towards detection of this safe
predicate, we exploit the fact that fail-stops are detectable faults, and hence we can let the fail-stop
of a process force its neighboring processes to participate in a diffusing computation. Recalling
from above that a new token is safely generated only after a diffusing computation completes, we
can define the safe predicate for NM2 to be defined to be “k is not participating in a diffusing
computation” and for action NM3 to be “j is not participating in a diffusing computation”.

Observe that the safe predicate detection to be performed for the first set of actions (NM5, NM7,
and N M38) is global, in that it involves the state of all processes, whereas the safe predicate detection
to be performed for the second set of actions (NM2 and NM3) is local. We will design a separate
detector for each set of actions, such that superposition of these detectors on N M yields a masking
fault-tolerant program.

5.3.1 Designing the Global Detector, GD

As discussed above, the global detector, GD, uses a diffusing computation to check if some pro-
cess has a token. Only a root process can initiate a diffusing computation. Upon initiation, the
root propagates the diffusing computation to all of its children. Each child likewise propagates
the computation to its children, and so on. It is convenient to think of these propagations as a
propagation wave. When a leaf process receives the propagation wave, it completes and responds to
its parent. Upon receiving responses from all its children, the parent of the leaf likewise completes
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and responds to its parent, and so on. It is convenient to think of these completions as a completion
wave. In the completion wave, a process responds to its parent with a result denoting whether the
subtree rooted at that process has a token. Thus, when the root receives a completion wave, it can
decide whether some process has a token by inspecting the result.

The diffusing computation is complicated by the following situations: multiple (root) processes may
initiate a diffusing computation concurrently, processes may fail-stop while the diffusing computa-
tion is in progress, and a process may receive a token after responding to its parent in a diffusing
computation that it does not have the token.

To deal with concurrent initiators, we let only the diffusing computation of the highest id process to
complete successfully; those of the others are aborted, by forcing them to complete with the result
false. Specifically, if a process propagating a diffusing computation observes another diffusing
computation initiated by a higher id process, it starts propagating the latter and aborts the former
diffusing computation by setting the result of its former parent (the process from it received the
former diffusing computation) to false. This ensures that the former parent completes the diffusing
computation of the lower id process with the result false.

To deal with the fail-stop of a process, we abort any diffusing diffusing computations that the
neighboring processes may be propagating: Specifically, if j is waiting for a reply from k to complete
in a diffusing computation and k fail-stops then j cannot decide if some descendent of k£ has a token.
Hence, upon detecting the fail-stop of &, j aborts its diffusing computation by setting its result to
false.

Finally, to deal with the potential race condition where a diffusing computation “misses” a token
because the token is sent to some process that has already completed in the diffusing computation
with the result true, we ensure that even if this occurs the diffusing computation completes at the
initiator only with the result false. Towards this end, we modify the global detector as follows:
A process completes in a diffusing computation with the result true only if all its neighbors have
propagated that diffusing computation. And, the variable result is maintained to be false if the
process ever had a token since the last diffusing computation was propagated. To see why this
modification works, consider the first process, say j, that receives a token after it has completed in
a diffusing computation with the result true. Let [ denote the process that sent the token to j. It
follows that [ has at least propagated the diffusing computation and its result is false. Moreover,
since j is the first process to receive a token after completing the diffusing computation with the
result true, [ can only complete that diffusing computation with the result false. Since the result
of [ is propagated towards the initiator of the diffusing computation in the completion wave, the
initiator is guaranteed to complete the diffusing computation with the result false.

In sum, the diffusing computation deals with each of these complications via an abort mechanism
that, by setting the result of the appropriate processes to false, fails the appropriate diffusing

computations.

When the initiator of a diffusing computation completes with the result false, it starts yet another
diffusing computation. Towards this end, the diffusing computation provides an initiation mech-
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anism that lets a root process initiate a new diffusing computation. To distinguish between the
different computations initiated by some process, we let each process maintain a sequence number
that is incremented in every diffusing computation. Furthermore, when a process propagates a new
diffusing computation, it resets its result to true provided that it does not have the token.

From the above discussion, process j needs to maintain a phase, phase.j, a sequence number, sn.j,
and a result, res.j. The phase of j is either prop or comp and denotes whether j is propagating
a diffusing computation or it has completed its diffusing computation. The sequence number of
j distinguishes between successive diffusing computations initiated by a root process. Finally, the
result of j denotes whether j completed its diffusing computation correctly or it aborted its diffusing
computation.

Actions for the global detector. The global detector consists of four actions, viz INIT, PROP,
COMP, and ABORT.

INIT lets process j initiate a diffusing computation by incrementing its sequence number. We
specify here only the statement of I NIT'; the conditions under which j executes INIT are specified
later.

PROP lets j propagate a diffusing computation when j and P.j are in the same tree and sn.j is
different from sn.(P.j). If the holder relation of j is aligned along the parent relation and P.j is in
the propagate phase, j propagates that diffusing computation and sets its result to true. Otherwise,
j completes that diffusing computation with the result false.

COMP lets j complete a diffusing computation if all children have completed the diffusing com-
putation and all neighbors have propagated or completed that diffusing computation. The result
computed by j is set to true iff the result returned by all its children is true, all neighbors of j have
propagated that diffusing computation, and the result of j is true. If the root completes a diffusing
computation with the result true, the safe predicate has been detected and the root process can
proceed to safely generate a new token and, consequently, change its result to false.

ABORT lets j complete a diffusing computation prematurely with the result false. When j aborts
a diffusing computation, j also sets the result of its parent to false to ensure that the parent of j
completes its diffusing computation with the result false. We specify here only the statement of
ABORT; the conditions under which j executes ABORT are specified later. Formally, the actions
of detector GD for process j are as follows:
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INIT(j):: if (P.j=}j) then phase.j, sn.j, res.j:=prop,newseq(), true
PROP(j) :: root.j=root.(P.j) A sn.j#sn.(P.j) — sn.j:=sn.(P.j);
if (phase.(P.j)=prop A (h.j=P.j))
phase.j, res.j := prop, true
else res.j := false

COMP(j) :: phase.j=prop A —r res.j = (Vk: k€ Adj.jU {j} : res.k);
(Vk : k € Adj.j : root.j =root.k N\ phase.j :=comp;
sn.j=sn.k) A if (Pj=j A —res.j) then INIT(j);
(Vk : kech.j : phase.j #prop) else if (P.j=j A res.j) then res.j:= false

ABORT(j) ::phase.j, res.j := comp, false; if (P.j€ Adj.j) then res.(P.j) := false

Remark. In the ABORT action, j synchronously updates its parent’s states in addition to its
own. This action can be refined, since the parent of j completes its diffusing computation only
after 7 completes its diffusing computation, so that j only updates its own state and P.j reads the
state of j later.

Fault Actions. When a process fail-stops, all of its neighbors abort any diffusing computation
that they are propagating. Moreover, if the initiator aborts its diffusing computation it initiates a
new one. Hence, the fault action is

failstop::  up.j — wup.j:= false;(||1:1 € Adj.ju{j} : ABORT(l); INIT(I))

Invariant. We relegate the invariant Sgp of the global detector to Appendix Al.

5.3.2 Designing the Local Detector LD

The safe predicate for action NM2 is “k is not participating in a diffusing computation”; that
is, phase.k = comp. The safe predicate for action NM3 is “j is not participating in a diffusing
computation”; that is, phase.k=comp. Therefore, these actions are modified as follows:

LD1:: hk=k A j€Request.k A — h.k,hj == 34,7;
(Pj=k vV Pk=j) A phase.k=comp Request.k := Request.k — {j}
LD2: h.j=j A phase.j=comp — access critical section
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5.3.3 Adding the detectors : Verifying interference Freedom

Actions NM5, NM7, and N M8 are restricted to execute INIT, to initiate a diffusing computation
whose successful completion, i.e. execution of COM P with result true will generate a new token.
And, as described above, actions NM2 and N M3 are restricted with the local detectors, to obtain
LD1 and LD2, respectively. We still need to verify that the composition is free from interference.

Note that the global detector, GD, does not update the variables that are updated by NM. It
follows that G D is a superposition on N M and, hence, GD does not interfere with N M. To ensure
that NM does not interfere with GD, we restrict all actions of NM, other than NM5, NM7, and
NMS8, to execute ABORT. (The alert reader will note that this last restriction is overkill: some
actions of NM need not be thus restricted, but we leave that optimization as an exercise for the
reader.) As long as the correctors of NM are executing, GD is safely aborted. Once the correctors
of NM terminate, their terminal actions will initiate a new diffusing computation and GD will
make progress. Hence, NM does not interfere with GD. Also, execution of GD eventually reaches
a state where the phase of all processes is comp. Thus, LD does not interfere with N M, and since
LD detects the safe predicate atomically, it is not interfered by NM and GD.

Formally, the actions of the resulting masking tolerant program M M are as follows:

MM1 :: IM1 || ABORT(j)
MM?2 :: LD1 || ABORT(j)
MMS3 :: LD2 || ABORT(j)
MM4 :: NM4 || ABORT(j)
MMS5 :: NM5 || INIT(j)
MMG6 :: NM6 | ABORT(j)
MMT :: NM7T || INIT(j)
MMS :: NM8 || INIT(j)
MM) = PROP(j)

MM10::  COMP(j)

Fault Actions. The fault action is identical to the fault action described in Section 5.3.1.

Invariant. The invariant of program MM is the conjunction of Txys and Sgp. Thus, the
invariant of M M is

Sum = (Inm N Scp)
Theorem 6.3. The mutual exclusion program M M is masking tolerant for Spsp;.

Remark. A leader election program can be easily extracted from our mutual exclusion case study.
To this end, we drop the variables h and Request from program M M. Thus, the resulting program
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consists of the corrector NT (actions M M4—6) and the detector GD (actions M M9 and M M10).
In this program, a process is a leader iff it is a root and its phase is comp. This program is derived
by adding detector GD to the nonmasking tolerant program NT'. The detailed design of such a
leader election program is presented in [23,24].

6 Discussion and Concluding Remarks

In this paper, we presented a compositional method for designing masking fault-tolerant programs.
First, by corrector composition, a nonmasking fault-tolerant program was designed to ensure that,
once faults stopped executing, the program eventually reached a state from where the problem
specification was satisfied. Then, by detector composition, the program was augmented to ensure
that, even in the presence of the faults, the program always satisfied its safety specification.

We demonstrated the method by designing classical examples of masking fault-tolerant programs.
Notably, the examples covered a variety of fault-classes including Byzantine faults, message faults,
input faults and processor fail-stops and repairs. Also, they illustrated the generality of the method,
in terms of its ability to provide alternative designs for programs usually associated with other well-
known design methods for masking fault-tolerance: Specifically, the TMR and Byzantine examples
are usually associated with the method of replication or, more generally, the state-machine-approach
for designing client-server programs [19]. The alternating-bit protocol example is usually associated
with the method of exception handling or that of rollback-recovery —with the “timeout” action,
M D5, being the exception-handler or recovery-procedure.

We found that judicious use of this method offers the potential for the design of improved masking
tolerant solutions, measured in terms of the scope of fault-classes that are masked and/or the
performance of the resulting programs. This is because, in contrast to some of the wellknown
design methods, the method is not committed to the overhead of replication; instead, it encourages
the design of minimal components for achieving the required tolerance. And, in contrast to the
sometimes ad hoc treatment of exception-handling and recovery procedures, it focuses attention on
the systematic resolution of the interference between underlying program and the added tolerance
components.

One example of an improved masking tolerant solution designed using the method is our token-
based mutual exclusion program. In terms of performance, in the absence of faults, our program
performs exactly as its fault-intolerant version (due to Raymond [16] and Snepscheut [17]) and
thus incurs no extra overhead in this case. By way of contrast, the acyclic-graph-based programs of
Dhamdhere and Kulkarni [20] and Chang, Singhal, and Liu [21] incur time overhead for providing
fault-tolerance, even in the absence of faults. Also, in the tree based program of Agrawal and
Abbadi [22], the amount of work performed for each critical section may increase when processes
fail (especially when the failed processes are close to the tree root); in our program, failure of a
process causes an overhead only during the convergence phase, but not after the program converges.
Moreover, in terms of tolerance, our program is more tolerant than that of [20] (which is intolerant
to the fail-stop of the process that holds the token), and [22] (which in the worst case is intolerant
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to more than log n process fail-stops).

We note in passing that our mutual exclusion program can be systematically extended to tolerate
process repairs as well as channel failures and repairs. Also, it can be systematically transformed
so that processes cannot access the state of their neighbors atomically but only via asynchronous
message passing. For other examples of improved solutions designed using the method, the inter-
ested reader is referred to our designs for leader election [23, 24], termination detection [23, 24],
and distributed reset [25].

We also note that although superposition was used for detector composition in each of our example
designs, superposition is only one of the possible strategies for detector composition. The advantage
of superposing the detectors on the underlying nonmasking tolerant program is the immediate
guarantee that the detectors did not interfere with the closure and convergence properties of the
underlying program.

One useful extension of the method would be to design programs that are nonmasking tolerant to
one fault-class and masking tolerant to another or, more generally, that possess multiple tolerance
properties (see [12, 26, 25]). The design of such multitolerant programs is motivated by the insight
that the fault-span of a program need not be unique [5]. Hence, multiple fault-spans may be
associated with a program, for instance, if the program is subject to multiple fault-classes. It
follows that the program can be nonmasking tolerant to one of these fault-classes and masking
tolerant to another. More generally, we find that multitolerance has several practical applications
[12].

Another useful extension would be to augment the method to allow “tolerance refinement”, i.e., to
allow refinement of a tolerant program from an abstract level to a concrete level while preserving

” considered

its tolerance property. Tolerance refinement is orthogonal to the “tolerance addition’
in the paper, which adds the desired masking tolerance directly at any desired (but fixed) level of
implementation. With this extension we could, for instance, refine our mutual exclusion program so
that neighboring processes communicate only via asynchronous message passing within the scope

of the method itself.

Finally, alternative design methods based on detector and corrector compositions would be worth
studying. An alternative stepwise method would be to first perform detector composition and
then perform corrector composition, which we view as designing masking tolerance via fail-safe
tolerance [12]. Another alternative (but not stepwise) method would be to compose detectors and
correctors simultaneously. It would be especially interesting to compare these methods with respect
to design-complexity versus performance-complexity tradeoffs.

Acknowledgments. We are grateful to Ted Herman for helpful comments on a preliminary
version of this paper and thank the anonymous referees for their detailed, constructive suggestions.
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Appendix

A1l : Correctness of Program MM

Invariant for the global detector, GD : To characterize the invariant Sgp, we first define the
auxiliary variables pc.j.k, des.j.k and Ilres.j.k as follows:

pc.j.k = the set of processes to whom j propagated the current diffusing computation of k.
des.j.k = {j} U (Ul:1l€pcjk:des.l.k)
Ires.j.k = the result of j when it completed it current diffusing computation of k.

By definition, when k initiates a new diffusing computation, pc.j.k is set to the empty set. If
[ is a child of 7 and [ propagates the current diffusing computation of k for the first time, [
is added to pc.j.k. Intuitively, des.j.k is the set of processes that received the latest diffusing
computation initiated by k via j. The value of Ires.j.k is undefined, true, or false. When k
initiates a new diffusing computation, Ires.j.k is set to undefined. When j completes the current
diffusing computation of £ for the first time, if j completes it with the result true, lres.j.k is set to
true. If j sets its result to false while propagating the current diffusing computation of k, lres.j.k
is set to false. Observe that by definition, [res.j.k cannot change from true to false, and vice versa.

Using these auxiliary variables, we proceed to define the invariant Sgp for the detector GD. Observe
that 7 propagates a diffusing computation of k only if the id of j is less than that of k. Moreover,
if 7 moves to a different tree or j fails, j sets the result of its old parent to false. Also, when j
propagates its diffusing computation it sets its result to true only if its holder relation is aligned
along the parent relation. Thus, the predicate Sgp1 is in Sgp, where

Sep1 = (j€des.k.k = ((j<k) AN (lres.j.k=false = (Il:j€edes.l.k: —res.l)))) A
(phase.j=prop = h.j= P.j)

Suppose that 7 has propagated the current diffusing computation of k. If j changes its root value or
sequence number, or if j fails, then j ensures that its parent will abort that diffusing computation.
Thus, the predicate Sgpo is in Sgp, where

Sapo = jEdes.k.k N lres.j.kF-true A

(root.j#k vV jé&(pc.(P.j).kU{j}) V
Pj¢ (Adj.j U{j}) V sn.j#sn.k) = (3l:j€desl.k N j#l:lres.l.k= false)

When j propagates a diffusing computation of k& and sets its result to true, 7 does not have a
token. If j receives a token before completing that diffusing computation, j aborts that diffusing
computation. When j completes its diffusing computation, it checks that all its neighbors have
propagated that diffusing computation. Thus, if j receives a token from its neighbor, say I, [
aborts that diffusing computation. It follows that if j receives a token after propagating a diffusing
computation, there exists some process / that has completed that diffusing computation with the
result false. Thus, the predicate Sgps is in Sgp, where
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Seps = (j €des.k.k N phase.k=prop) = ((h.j=P.j) N (P.j#j V phase.j=prop)) V
(3l :ledes.k.k : lresl.k= false)

When j propagates the current diffusing computation of &, pc.j.k is empty. A process is added to
pc.j.k only if it is a child of j. And, if a child of 7 moves to a different tree or fails, j aborts its
diffusing computation. Thus, the predicate Sgp4 is in Sgp, where

Saps = (J € des.k.k A phase.j=prop) = ((pc.j.k Cch.j) vV (3l:j€edes.l.k:lres.l.k=false))

When j propagates the current diffusing computation of k, root.j is the same as k, sn.j is the same
as sn.k, and res.j is true. Thus, the predicate Sgps is in Sgp, where

Saps = (kis a root A root.j=k A sn.j=sn.k A res.j) = j€Edes.k.k

When j completes its diffusing computation with the result true, it detects that all its descendents
(des.j.k) have completed that diffusing computation with the result true and the neighbors of its
descendents (nbrs(des.j.k)) have propagated that diffusing computation. Thus, the predicate Sgps
is in Sgp, where

Saps = (root.j=k N sn.j=sn.k A
phase.j=comp A lres.j.k=true) = (((VI : 1€ des.j.k : lres.l.k=true) A
(nbrs(des.j.k) C des.k.k)))
\%
(Jl: jedes.l.k : lresl.k= false)

Finally, in any state, at most one process has a token, i.e., the predicate Sgp7 is in Sgp, where
Sep7 = (h.j=3j A phase.j=comp N h.k=k A phase.k=comp) = j=k

From the above description, the predicates Sgpi1 7 are in Sgp. We now define Sgp as

Sep = (V5,k :: Sgp1 A Sagp2 A Sapz A Seps N Saps N Sgps N Sapr)

Proof of Correctness.

We need to prove that no process has a token when a root k completes the diffusing computation
with the result true. Towards this end, we use the predicates Sgps and Sgpg. The predicate Sgpg
is used to show that when k£ completes its diffusing computation, all processes participated in that
diffusing computation. The predicate Sgps is used to show in a state where the k can complete its
diffusing computation with the result true, no can be accessing its critical section.

If k£ has completed its diffusing computation with the result true, from Sgpg, we have
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(((Vl : ledes.k.k : lres.l.k=true) A (nbrs(des.k.k) C des.k.k))
V (3l : kedes.l.k:lres.l.k= false))
= { by definition of des.k.k }
(((V1:ledes.k.k : lres.l.k= true) A (nbrs(des.k.k) C des.k.k)) V lres.k.k=false)
= { by definition of des.k.k and Sgp1 }
(((Vl :ledes.k.k : lres.l.k= true) A (nbrs(des.k.k) C des.k.k)) V -res.k.k)

= { when k completes its diffusing computation with the result true, res.k is true. }
(((Vl : ledes.k.k : lres.l.k= true) A (nbrs(des.k.k) C des.k.k))
= { since the graph of processes remains connected }

((Vl:ledes.k.k : lres.l.k=true) A (Vl:l€edes.k.k))
= { by predicate calculus }
(V1 :: lres.l.k=true) A (Vl:ledes.k.k))
= { by predicate calculus }
((=(A :: lres.l.k= false)) A (VI ::ledes.k.k))
= { by Saps }
(Vi (hj=Pj) N (Pj#j V phase.j=prop))
= { from guard of action NM3 }
(Vg :: j cannot be accessing its critical section)

A2 : Correctness of Nonmasking Tolerance of Mutual Exclusion Program

Theorem 5.1. The mutual exclusion program NM is nonmasking tolerant for Sy .

Proof. We need to prove that T converges to Syar. Our proof of convergence is in three
stages (recall from Section 5.2 that Syar = (Snt A (V5 :: Svm1; A Snm24))):

1. TNy converges to SNT
2. SNT converges to St A (Vj:: Snuij)
3. St AN (Vj:: Svuij) converges to SN

Proof of Stage 1:  Follows immediately from the convergence of Arora’s nonmasking tree program
[18], i.e., Tnp (= TnT) converges to Syr.

Proof of Stage 2:  Consider the set of processes X = {j: -Snyp1,}. Action NMT7 is enabled at
these processes. When a process executes NM7 the cardinality of the set X decreases. No action
increases the cardinality of X. When the cardinality of the set X is zero, (Vj :: Syg1.;) holds.
Thus, Sy1 converges to Sy A (V] :: SNHl.j)-

Proof of Stage 3: Let d.j denote the distance of j from the root of the tree. Consider the variant
function (3" 7 : =Snm2, : d.j). At any state if Sygo; is not satisfied, action NM8 is enabled at
process j. When j executes action NM8, the value of the variant function decreases. Since, the
value of the variant function is nonnegative, and non-increasing, eventually the program reaches a
state where (Vj :: Sypo.;) holds, ie., Syr A (Vj 2 Sym1.j) converges to Sy
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