Distributed Reset

Anish ARORA Mohamed GOUDA

Department of Computer Sciences, The University of Texas at Austin'

Microelectronics and Computer Technology Corporation, Austin, TX, USA

Abstract

We design a reset subsystem that can be embedded in an arbitrary distributed system in
order to allow the system processes to reset the system when necessary. Our design is layered,
and comprises three main components: a leader election, a spanning tree construction, and a
diffusing computation. Each of these components is self-stabilizing in the following sense. If
the coordination between the up processes in the system is ever lost (due to failures or repairs
of processes and channels) then each component eventually reaches a state where coordination
is regained. This capability makes our reset subsystem very robust: it can tolerate fail-stop
failures and repairs of processes and channels even when a reset is in progress.

Categories and Subject Descriptors: C.2.4 [Computer Communication Systems]: Dis-
tributed Systems—distributed applications, network operating systems ; D.1.3 [Programming
Techniques]: Concurrent Programming ; D.4.5 [Operating Systems]: Reliability—verification,
fault-tolerance ; G.2.2 [Discrete Mathematics]: Graph theory—trees, graph algorithms.

General Terms: Reliability, Algorithms.

Additional Key Words and Phrases: Fault-tolerance, self-stabilization, leader election,

spanning tree, diffusing computation.

tEmail Address: anish@cs.utexas.edu, gouda@cs.utexas.edu

1 Introduction

We describe in this paper how to “augment” an arbitrary distributed system so that each of
its processes can reset the system to a predefined global state, when deemed necessary. The
augmentation does not introduce new processes or new communication channels to the system.
It merely introduces additional modules to the existing processes. The added modules, commu-

nicating with one another over existing channels, comprise what we call the reset subsystem.

Ideally, resetting a distributed system to a given global state implies resuming the execution
of the system starting from the given state. With this characterization, however, each reset
of a distributed system can be achieved only by a “global freeze” of the system. This seems
rather limiting and, in many applications, more strict than needed. Therefore, we adopt the
following, more lax, characterization: resetting a distributed system to a given global state
implies resuming the execution of the system from a global state that is reachable, by some

system computation, from the given global state.

There are many occasions in which it is desirable for some processes in a distributed system to

initiate resets; for example,

e Reconfiguration: When the system is reconfigured, for instance, by adding processes
or channels to it, some process in the system can be signaled to initiate a reset of the
system to an appropriate “initial state”.

e Mode Change : The system can be designed to execute in different modes or phases.
If this is the case, then changing the current mode of execution can be achieved by
resetting the system to an appropriate global state of the next mode.

e (Coordination Loss: When a process observes unexpected behavior from other pro-
cesses, it recognizes that the coordination between the processes in the system has
been lost. In such a situation, coordination can be regained by a reset.

e Periodic Maintenance: The system can be designed such that a designated process
periodically initiates a reset as a precaution, in case the current global state of the

system has deviated from the global system invariant.

As processes and channels can fail while a reset is in progress, we are led to designing a reset
subsystem that is fault-tolerant. In particular, our reset subsystem can tolerate the loss of
coordination between different processes in the system (which may be caused by transient failures
or memory loss) and, also, can tolerate the fail-stop failures and subsequent repairs of processes

and channels.

The ability to regain coordination when lost is achieved by making the reset subsystem self-

stabilizing in the following sense. If the reset subsystem is at a global state in which coordination

1

between processes is lost, then the reset subsystem is guaranteed to reach, within a finite number
of steps, a global state in which coordination is restored. Once coordination is restored, it is
maintained unless a later failure causes it to be lost again, and the cycle repeats [6, 7]. The
ability to tolerate fail-stop failures and subsequent repairs of processes and channels is achieved
by allowing each process and channel in the system to be either “up” or “down” and by ensuring
that the ability of the system to self-stabilize is not affected by which processes or channels are

“up” or “down”.

Our reset subsystem is designed in a simple, modular, and layered manner. The design consists
of three major components: a leader election, a spanning tree construction, and a diffusing
computation. Each of these components is self-stabilizing, can tolerate process and channel
failures and repairs, and admits bounded-space implementations. These features distinguish our
design of these components from earlier designs [1, 9, 10] and redress the following comment
made by Lamport and Lynch [15, page 1193] : “A self-stabilizing algorithm [that translates a
distributed system designed for a fixed but arbitrary network into one that works for a changing
network] using a finite number of identifiers would be quite useful, but we know of no such

algorithm.”

The rest of the paper is organized as follows. In the next section, we describe the layered
structure of our reset subsystem. This structure consists of three layers: a (spanning) tree layer,
a wave layer, and an application layer. These three layers are discussed in Sections 3, 4, and 5
respectively. In Section 6, we discuss implementation issues; in particular, we exhibit bounded,

low atomicity implementations of each layer. Finally, we make concluding remarks in Section 7.

2 Layers of the Reset Subsystem

We make the following assumptions concerning the distributed system to be augmented by our
reset subsystem. The system consists of K processes named P.1, ..., P.K. At each instant, each
process is either up or down , and there is a binary, irreflexive, and symmetric relation defined
over the up processes. We call this relation the adjacency relation. Only adjacent processes can

communicate with one another.

The set of up processes and the adjacency relation defined over them can change with time. For
simplicity, however, we assume that the adjacency relation never partitions the up processes in
the system. (Clearly, if partitioning does occur, then any reset request initiated in a partition

will result in resetting the state of only that partition.)

Each process P.i in the system consists of two modules adj.i and appl.i; see Figure 0a. The task

of module adj.i is to maintain a set N.i of the indices of all up processes adjacent to P.i. (Details

2

of the implementation of adj.i are outside the scope of this paper. One possible implementation,
however, is for each adj.i to communicate periodically with the adj.7 module of every potentially
adjacent process P.j and to employ a timeout to determine whether the index j of process P.j
should be in N.i.) The task of the other module, appl.i, is application specific. To perform its
task, appl.i can communicate with module appl.j, 7 #1%, only if j is in N.i. One state of appl.i is
distinguished. Together, the distinguished states of each appl.i module comprise the predefined
global “reset” state of the distributed system.

Augmenting such a distributed system with a reset subsystem consists of adding two modules,
tree.i and wave.i, to each process P.i in the system; see Figure Ob. The tree.i modules of
adjacent processes communicate in order to maintain a rooted spanning tree that involves all
the up processes in the system. (Henceforth, the two terms “process” and “up process” are
used interchangeably.) The constructed tree is maintained to be consistent with the current
adjacency relation of the system; thus, any changes in the adjacency relation are eventually
followed by corresponding changes in the spanning tree. Each tree.i module keeps the index
of its “father” process, f.7, in the maintained tree; this information is used by the local wave.i

module in executing a distributed reset.

A distributed reset is executed by the wave.i modules in three phases or “waves”. In the first
phase, some appl.i requests a system reset from its local wave.i which forwards the request to
the root of the spanning tree. If other reset requests are made at other processes, then these
requests are also forwarded to the root process. It is convenient to think of all these requests
as forming one “request wave”. In the second phase, module wave.i in the root process receives
the request wave, resets the state of its local appl.i to the state of appl.i in the predefined global
state, and initiates a “reset wave”. The reset wave travels towards the leaves of the spanning
tree and causes the wave.; module of each encountered process to reset the state of its local
appl.j to the state of appl.j in the predefined global state. When the reset wave reaches a leaf
process it is reflected as a “completion wave” that travels back to the root process; this wave
comprises the third phase. Finally, when the completion wave reaches the root, the reset is

complete, and a new request wave can be started whenever some appl.i deems necessary.

From the above description, it follows that the states of different appl.i modules are reset at
different times within the same distributed reset. This can cause a problem if some appl.i whose
state has been reset communicates with an adjacent appl.j whose state has not yet been reset. To
avoid this problem, we provide a session number sn.i in each appl.i. In a global state, where no
distributed reset is in progress, all session numbers are equal. Each reset of the state of appl.i
is accompanied by incrementing sn.;. We then require that no two adjacent appl.i modules
communicate unless they have equal session numbers. This requirement suffices to ensure our

characterization of a distributed reset; that is, a distributed reset to a given global state yields

a global state that is reachable, by some system computation, from the given global state.

The tree.i modules in different processes constitute the tree layer discussed in Section 3. The
wave.i modules constitute the wave layer discussed in Section 4. The appl.i modules constitute

the application layer discussed in Section 5.

2.1 Programming Notation

The program of each process has the form
begin (module) | ... | (module) end
Each module is of the form
module (module name)
var (variable declarations) ;
parameter (parameter declarations) ;
begin
(action) | ... | (action)

end

Thus, a module of a process is defined by a set of variables, a set of parameters, and a set

of actions. Each of these is defined in some detail next.

Each variable in the variable set of a module can be updated (i.e., written) only by modules in
that process; each variable can be read only by modules in that process and modules in adjacent

processes.

Each parameter in the parameter set of a module ranges over a finite domain. The function of
a parameter is to define a set of actions as one parameterized action. For example, let j be a
parameter whose value is 0, 1 or 2; then the parameterized action act.j in the action set of a
module abbreviates the following set of three actions.

act.(j :=0) | act.(j :==1) | act.(j :=2)

Each action in the action set of a module has the form

(guard) — (assignment statement)

A guard is a boolean expression over the variables and parameters in the module, and the
variables of one adjacent process. An assignment statement updates one or more variables in

the module.

The operational semantics for a system of such processes is as follows. A state of the system is
defined by a value for every variable in the processes of the system. An action whose guard is
true at some state of the system is said to be enabled at that state. A computation of the system
is a maximal, fair sequence of system steps: in each step, some action that is enabled at the
current state is executed, thereby yielding the next state in the computation. The maximality
of a computation implies that no computation is a proper prefix of another computation. The
fairness of a computation means that each continuously enabled action is eventually executed

in the computation [12].

3 The Tree Layer

The task of the tree layer is to continually maintain a rooted spanning tree even when there are
changes in the set of up processes or in the adjacency relation. In the solution described below,
we accommodate such changes by ensuring that the tree layer performs its task irrespective of

which state it starts from.

In our solution, the rooted spanning tree is represented by a “father” relation between the
processes. Hach tree.i module maintains a variable f.; whose value denotes the index of the
current father of process P.i. Since the layer can start in any state, the initial graph of the father
relation (induced by the initial values of the f.i variables) may be arbitrary. In particular, the

initial graph may be a forest of rooted trees or it may contain cycles.

For the case where the initial graph is a forest of rooted trees, all trees are collapsed into a
single tree by giving precedence to the tree whose root has the highest index. This is achieved
as follows. Each tree.i module maintains a variable root.i whose value denotes the index of the
current root process of P.i. If root.i is lower than root.j for some adjacent process P.j then

tree.i sets root.i to root.j and makes P.j the father of P.i.

For the case where the initial graph has cycles, each cycle is detected and removed by using
a bound on the length of the path from each process to its root process in the spanning tree.
This is achieved as follows. Each tree.i module maintains a variable d.: whose value denotes the
length of a shortest path from P.i to P.(root.7). To detect a cycle, tree.i sets d.i to be d.(f.1)+1
whenever f.4 € N.i and d.7 < K. The net effect of executing this action is that if a cycle exists
then the d.i value of each process P.; in the cycle gets “bumped up” repeatedly. Eventually,
some d.; exceeds K —1, where K is the maximum possible number of up processes. Since the
length of each path in the adjacency graph is bounded by K—1, the cycle is detected. To remove

a cycle that it has detected, tree.i makes P.i its own father.

Because of our assumption that the initial state is arbitrary, we need to consider all other cases
where the initial values of f.i, root.i and d.i are inconsistent. One possibility is that these initial
values are “locally” inconsistent, that is, one or more of the following hold: root.i < i, f.i = ¢ but
root.i#1 or d.i#0, or f.7 is not 4 nor in N.i. In this case, tree.: makes itself locally consistent

by setting root.i to 4, f.i to ¢ and d.i to 0.

Another possibility is that root.i may be inconsistent with respect to the state of the father
process of P.i, that is, root.i#root.(f.i) may hold. In this last case, tree.i corrects the value of

root.i to that of root.j.

Module tree.: is given in Figure 1.

module tree.i (i:1.. K)
var root.i, fi:1 .. K;
d.i : integer;

parameter j:1. K;
begin
(root.i < i) V
(fi=1 A (rooti#i V d.i#0)) V

(fig (Niu{i}) vV di>K) —+ root.i, fi,d.i :=1,i,0

fi=j ANjJjENI Ndi<KA
(root.i#root.j V d.i#d.j+1) — root.i,d.i ;= root.j,d.j+1

(rooti<root.j N jEN.i AN d.j<K) V
(rooti=root.j N jEN.i AN d.j+1<di) —> root.i,f.i,di:=root.j,j,d.j+1

end

Figure 1: Module tree.:

We show in Appendix A that starting at any state (i.e., one that could have been reached by
any number of changes in the set of up processes and the adjacency relation over them), the

tree layer is guaranteed to eventually reach a state satisfying the state predicate G, where

G = (k=maz{i| Piisup}) A
(Vi:Piisup:
(i=k = (rooti=i A fi=i A di=0)) A
(i#£k = (rooti=k A (3j:j € Ni: fi=jAdi=d.j+lAd.j=min{dj'|j € Ni}))))

At each state in G, for each process P.i, root.i equals the highest index among all up processes,
f-i is such that some shortest path between process P.i and the root process P.(root.i) passes
through the father process P.(f.i), and d.i equals the length of this path. Therefore, a rooted
spanning tree exists. Also, note that each state in G is a fixed-point; i.e., once the tree.: modules

reach a state in GG, no action in any of the tree.i modules is enabled.

Our proof employs the “convergence stair” method [13]: we exhibit a finite sequence of state

predicates H.0, H.1,..., H. K such that

(i) H.0 =true

(il) HK=G

(iii) For each [such that 0<I<K:
H.l is closed under system execution; that is, once H.[holds in an arbitrary system com-
putation, it continues to hold subsequently.

(iv) For each [such that 0<I< K:

Upon starting at an arbitrary state in H.[the system is guaranteed to reach a state in
H.(I+1) .

We also show that convergence to a state in G occurs within O(K + (deg X dia)) rounds, where
deg is the maximum degree of nodes in the adjacency graph, dia is the diameter of the adjacency
graph and, informally speaking, a round is a minimal sequence of system steps wherein each

process attempts to execute at least one action.

We conclude this section with the remark that the problems of leader election and spanning tree
construction have received considerable attention in the literature (see, for example, [15, 16, 17]).
Most of these algorithms are based on the assumption that all processes start execution in some
designated initial state. This restriction is too severe for our purposes, and we have lifted it
by designing the tree layer to be self-stabilizing; i.e., insensitive to the initial state. We note
that a self-stabilizing spanning tree algorithm has been recently described in [9]. However, the
algorithm in [9] is based on the simplifying assumption that, at all times, there exists a special
process which knows that it is the root. We have not made this assumption: if a root process

fails, then the remaining up processes elect a new root.

4 The Wave Layer

As outlined in Section 2, the task of the wave layer is to perform a diffusing computation [10]
in which each appl.i module resets its state. The diffusing computation uses the spanning tree
maintained by the tree layer, and consists of three phases. In the first phase, some appl.i
module requests its local wave.i to initiate a global reset; the request is propagated by the wave
modules along the spanning tree path from process P.i to the tree root P.j. In the second phase,
module wave.j in the tree root resets the state of its local appl.j and initiates a reset wave that
propagates along the tree towards the leaves; whenever the reset wave reaches a process P.k the
local wave.k module resets the state of its local appl.k . In the third phase, after the reset wave
reaches the tree leaves it is reflected as a completion wave that is propagated along the tree to

the root; the diffusing computation is complete when the completion wave reaches the root.

To record its current phase, each wave.i module maintains a variable st.7 that has three possible
values: normal, initiate, and reset. When st.i = normal, module wave.i has propagated the
completion wave of the last diffusing computation and is waiting for the request wave of the next
diffusing computation. When st.i = initiate, module wave.i has propagated the request wave of
the ongoing diffusing computation and is waiting for its reset wave. When st.i = reset, module
wave.i has propagated the reset wave of the ongoing diffusing computation and is waiting for

its completion wave.

Variable st.i is updated as follows. To initiate a new diffusing computation, the local appl.i
module updates st.¢ from normal to initiate. To propagate a request wave, wave.i likewise
updates st.i from normal to initiate. To propagate a reset wave, wave.; updates st.; from a
value other than reset to reset. Lastly, to propagate a completion wave, wave.i updates st.i

from reset to normal.

It is possible for some appl.i to update st.i from normal to initiate before the completion wave
of the last diffusing computation reaches the root process; thus, multiple diffusing computations
can be in progress simultaneously. To distinguish between successive diffusing computations,
each wave.i module maintains an integer variable sn.: denoting the current session number of

wave.i.

Recall that the operation of the wave layer is subject to changes in the set of up processes and
in the adjacency relation. As before, we accommodate such changes by ensuring that the layer
performs its task irrespective of which state it starts from. In our solution, starting from an
arbitrary state, the wave layer is guaranteed to reach a steady state where all the sn.: values
are equal and each st.7 has a value other than reset. In particular, if no diffusing computation

is in progress in a steady state, then all the sn.: values are equal and each st.i has the value

normal. Furthermore, if a diffusing computation is initiated in a steady state where all sn.i
have the value m then it is guaranteed to terminate in a steady state where all sn.s = m+1.
This is achieved by requiring that, during the reset wave, each wave.i module increments sn.:

when it resets the state of the local appl.i module.

Module wave.i is given in Figure 2. The module has five actions. Action (1) propagates the
request wave from a process to its father in the spanning tree. When the request wave reaches
the root process, action (2) starts a reset wave at the root process. Action (3) propagates the
reset wave from the father of a process to the process. Action (4) propagates the completion

wave from the children of a process to the process.

The above four actions of all wave.i modules collectively perform a correct diffusing computation
provided that the wave layer is in a steady state. The steady states of the wave layer are those

where each wave.i satisfies Gd.i,

Gd.i = ((fi=j N st.j#reset) = (st.i#reset Asn.j=sn.i)) A
((fi=j A st.j=reset) = ((sti#reset Asn.j=sn.i+1) V sn.j=sn.i)) .

Action (5) ensures the self-stabilization of the wave layer to steady states.

10

module wave.i (i :1.. K)
var sn.i : integer;
st.i : {normal , initiate , reset};

parameter j:1.. K;

begin
st.i=normal A\ f.j=1i A j € N.i A st.j =1initiate — st.i = initiate (1)
[
sti=initiate A f.i=1i —> st.i,sn.i = reset, sn.i+1 (2)
; {reset appl.i state}
[
stiFreset A fi=j A st.j=reset Asn.i+1=sn.j — st.i,sn.i:=reset,sn.j (3)

; {reset appl.i state}

st.i = reset N\
(VjeEN.i: (f.j=1i) = (st.jF#reset Asni=sn.j)) —> st.i:=normal 4)

-Gd.i — st.i,sn.i = st.j,sn.j (5)

end

Figure 2: Module wave.:

We show in Appendix B that starting at any state, the wave layer is guaranteed to eventually

reach a steady state satisfying (Vi : sn.i=n A st.i#reset) for some integer n. Our proof of this

consists of showing that

(i) Starting at an arbitrary state, the system is guaranteed to reach a state in GD, where
GD = (Vi : (p.i is up) = Gd.i).

(ii) The state predicate GD is closed under system execution.

(iii) Starting at an arbitrary state in GD where the root process P.k has sn.k = n, the system

is guaranteed to reach a state in (Vi : sn.i=n A st.i#reset).

We also show that each diffusing computation that is initiated at a state in GD will terminate;
i.e., starting from a state satisfying (GD A (3i: sn.i=n A st.i=initiate)), for some integer n,

the system is guaranteed to reach a state in (GD A (Vi:sn.i=n+1 A sti#reset)).

11

Lastly, we show that convergence to a GD state occurs within O(ht) rounds and that diffusing
computations terminate within O(min (htxdg,n)) rounds, where ht is the height of the spanning
tree constructed by the tree layer, dg is the maximum degree of nodes in the spanning tree, and

n is the number of up processes in the system.

5 The Application Layer

The application layer in a given distributed system is composed of the appl.i modules as shown
in Figure 0. In this section, we discuss two modifications to the application layer by which our

reset subsystem can be correctly added to the given distributed system.

The first modification is to augment each appl.i module with actions that allow it to request
a distributed reset; as discussed in Section 4, these actions set the variable st.i to initiate and
are enabled when st.i = normal holds and a distributed reset is necessary. The situations in
which distributed resets are necessary are application specific. One such situation, however, is
when the global state of the application layer is erroneous. Erroneous states may be detected
by periodically executing a self-stabilizing global state detection algorithm [8, 14]. Towards this
end, we note that it is possible to implement a self-stabilizing global state detection with minor

modifications to our reset subsystem.

The second modification is to restrict the actions of each appl.i module so that the application
layer can continue its execution while a distributed reset is in progress. (Recall that one objective
of our design is to avoid freezing the execution of the given distributed system while performing
resets.) This modification is based on the observation that, during a distributed reset, appl.i
modules can continue executing their actions as long as there is no communication between
modules one of which has been reset and another which has not been reset. Equivalently, if
appl.i modules communicate they should have the same session number (sn) values. Therefore,
we require that the expression “sn.i=sn.;j” be conjoined to the guard of each appl.i action that
accesses a variable updated by appl.j, 1 # j. The net effect of this modification is that upon
completion of a distributed reset the collective state of all appl.i modules is reachable by some

application layer execution from the given collective state that the appl.i modules are reset to.

6 Implementation Issues

In this section, we discuss two issues related to implementations of modules tree.: and wave.i .
First, we show that the state-space of each process can be bounded and, second, we show how

to refine the “high” atomicity actions employed thus far into “low” atomicity ones.

12

6.1 Bounded-Space Construction

Each tree.i module, i€ {1 ... K}, updates three variables each requiring log K bits. In contrast,
module wave.i uses an unbounded session number variable. A bounded construction is also
possible: wave.i can be transformed by making sn.i of type {0..N—1}, where N is an arbitrary
natural constant greater than 1, and replacing the increment operation in the first action with
an increment operation in modulo N arithmetic. Thus, each wave.i module can be implemented
using a constant number of bits. The proof of correctness of the transformed module is similar

to the proof presented in Appendix B, and is left to the reader.

6.2 Transformation to Read/Write Atomicity

Thus far, our design of the tree.i and wave.i modules has not taken into account any atomicity
constraints. Some actions in these modules are of high atomicity; these actions read variables
updated by other processes and instantaneously write other variables. We now refine our design

so as to implement these modules using low atomicity actions only.

Consider the following transformation. For each variable z.i updated by process P.i, introduce
a local variable Z.5.7 in each process P.j, j #1, that reads x.i. Replace every occurrence of x.7 in
the actions of P.j with Z.j.7, and add the read action Z.j.7 := x.7 to the actions of P.j. Based
on this transformation, read/write atomicity modules for ¢ree.i and wave.i are presented next,

along with proofs of correctness.
The code for read/write atomicity implementation of module tree.i is shown in Figure 3.

We show in Appendix C that starting at any state, the tree layer is guaranteed to eventually
reach a state satisfying the state predicate G, where
G = (root.k=k N fk=k A d.k=0) A
(Vi:i#k = (rooti=k A (3j:j € NiNfi=jA di=d.jHIANd.j=min{d.j'|j' € N.i}))) A
(Vi:je Ni = (rootij=k A fij=fj A dij=d.j))

The structure of our proof is identical to the proof presented in Appendix A; we exhibit a finite
sequence of state predicates H.0,H.1,...,H.K such that

(i) H.0 =true
(il) H.K=gG
(iii) For each [such that 0<I<K:

H.l is closed under system execution; that is, once .l holds in an arbitrary system com-

putation, it continues to hold subsequently.

13

(iv) For each [such that 0<I< K:

Upon starting at an arbitrary state in H.l the system is guaranteed to reach a state in

H.(1+1) .

module tree.i (i:1.. K)

var root.i, fi:1. K;
d.i : integer;
root.i.j, fi.j:1. K;
J.i.j : integer;

parameter j:1.. K, j#i;

begin
(root.i<i) V
(fi=1 A (rooti#iV di#£0)) V

(fid (Niu{i}) Vv di>K) —> root.i, f.i,d.i :=1i,i,0

fi=j AjeNiAdi<KA
(root.i#rooti.j V di#d.i.j+1) —» root.i,d.i := root.i.j,d.i.j+1

(root.i<rooti.j A jEN.i A dij<K) V
(rooti=rooti.j A jEN. A d.ij+1<di) —> root.i, f.i,d.i:=rooti.j,j,dij+1

JEN. A (root.j#rootijV f.j#fi.jVdj#dij)— rooti.j, fi.j,di.j = root.j, f.j,d.j

end

Figure 3: Implementation of tree.; using Read/Write Atomicity

The code for read/write atomicity implementation of module wave.i is shown in Figure 4.

We show in Appendix D that starting at any state, the wave layer is guaranteed to eventually
reach a state satisfying (Vi : sn.i=n A st.i#reset) for some integer n. The structure of our
proof is identical to the proof presented in Appendix B; we exhibit a state predicate GD such
that

(i) Starting at an arbitrary state, the system is guaranteed to reach a state in GD.

(ii) gD is closed under system execution.

14

module wave.i (i:1 .. K)
var st.i : {normal , initiate , reset};
sn.i : integer;
sn.i.j : integer;
st.i.j : {normal , initiate , reset};
parameter j: (1. K), j#1;

begin
st.t = normal A fz] =i A st.i.j = initiate — st.i = initiate
st.i = initiate A fi =i — st.d,sn.i:=reset,sn.i + 1 ; {reset appl.i state}

sti#reset A fi = j Asti.j =reset Asn.i # sn.i.j —> st.i,sn.i:=reset,sn.i.j ; {reset appl.i state}

[
st.i = reset N\
(VjeN.i,(f.i.j=1i)=(st.i.j#reset A sn.i=sn.i.j)) — st.i := normal
[
st.i=sti.jA fi=jAsni#tsnij — 8n.i = §N.i.j
H ~
(fij=1iV fi=j)A(stj#stijVsn.j#snij) — st.i.j,sni.j:=st.j,sn.j
end

Figure 4: Implementation of wave.i using Read/Write Atomicity

(iii) Starting at an arbitrary state in GD where the root process P.k has sn.k = n, the system

is guaranteed to reach a state in (Vi : sn.i=n A st.i#reset).

We also show that each diffusing computation that is initiated at a state in GD will terminate;
i.e., upon starting from a state satisfying (GD A (Fi: sni=n A st.i=initiate)) for some

integer n the system is guaranteed to reach a state in (GD A (Vi: sn.i=n+1 A st.i#reset)).

We note that a similar proof exists for a bounded construction of the low atomicity wave.i
module in which sn.i is replaced with a variable of type {0..N —1}, where N is an arbitrary
natural constant greater than 3, and the increment operation in the first action is replacing with

an increment operation in modulo N arithmetic.

15

7 Conclusions

We have presented algorithms that enable processes in arbitrary distributed systems to perform
distributed resets. These algorithms are novel in that they are self-stabilizing and can tolerate
the fail-stop failures and repairs of arbitrary processes and channels even when a distributed

reset is in progress.

Two comments are in order regarding our choice of fair, nondeterministic interleaving semantics.
First, the requirement of fairness with respect to continuously enabled actions is not necessary,
but is used only in simplifying the proofs of correctness. Second, our design remains correct
even if we weaken the interleaving requirement as follows: in each step, an arbitrary subset of
the processes each execute some enabled action, as long as no two executed actions access the

same shared variable [2, 3, 5].

A comment is also in order regarding our methodology for achieving fault-tolerance in dis-
tributed systems. One way to achieve system fault-tolerance is to ensure that when faults occur
the system continues to satisfy its input-output relation. Systems designed thus “mask” the
effects of faults, and are hence said to be masking fault-tolerant. An alternative way to achieve
system fault-tolerance is to ensure that when faults occur the input-output relation of the sys-
tem is violated only temporarily. In other words, the system is guaranteed to eventually resume
satisfying its input-output relation. In this paper, it is the latter “nonmasking” approach to

fault-tolerance that we have adopted.

We give three reasons for sometimes preferring nonmasking fault-tolerance to masking fault-
tolerance when designing distributed systems. First, in some distributed systems, masking
fault-tolerance may be impossible to achieve. For example, there is no masking fault-tolerant
distributed system whose up processes communicate asynchronously and reach consensus on a
binary value even when one or more of the processes fail [11]. Second, even if it is possible to
implement masking fault-tolerance, the cost of doing so may be prohibitive. For example, the
amount of redundancy or synchronization required may be infeasible to implement. And third,
requiring masking fault-tolerance may be more strict than is desirable. For example, a call-back
telephone service that eventually establishes a connection may be quite useful even if it does not

mask its initial failure to establish a connection.

Of course, to be of practical use, nonmasking fault-tolerant distributed systems should be de-
signed so that the time taken to resume satisfying the desired input-output relation, when faults

occur, is within acceptable bounds.

We envisage several applications of distributed resets where their nonmasking fault-tolerance

is useful. We are currently implementing distributed operating system programs based on dis-

16

tributed resets including, for example, system programs for multiprocess resynchronization. We

are also currently studying reconfiguration protocols for high speed networks.

We note that distributed resets provide a systematic method for making arbitrary distributed
systems self-stabilizing (cf. [14]): application layer modules can be augmented to perform a self-
stabilizing global state detection periodically, and to request a distributed reset upon detecting
erroneous global states thereby making the distributed system self-stabilizing. Distributed resets
can also be used to transform an arbitrary self-stabilizing program into an equivalent self-

stabilizing program implemented in read/write atomicity.

There are several issues that need to be further investigated. One such issue is the transformation
of our read/write atomicity programs (cf. Figures 3 and 4) into message passing programs, and
the analysis of the resulting programs. Note that for message passing programs the predefined
global reset state includes, in addition to the states of each appl.i module, the state of each
channel in the system. Therefore, in addition to resetting the local state of the module appl.i,
each wawve.: module has to send some — possibly empty — sequence of application messages,

each tagged with the new session number, on every outgoing channel of P.i.

Another issue for further study is the design of an efficient mechanism for maintaining a timely
and consistent state of neighboring process indices. A third issue is the security problems
involved in allowing any application process to reset the distributed system, and the protection
mechanism necessary to enforce that application processes interact with the reset subsystem
in the desired manner. Finally, observing that self-stabilizing systems are only one type of
nonmasking fault-tolerant systems, it is desirable to investigate alternative nonmasking fault-
tolerant solutions to the distributed reset problem that are less robust than our self-stabilizing

solutions but are even more efficient.

Acknowledgements
We thank George Varghese for helpful discussions on this paper and the anonymous referees for

their suggestions.

17

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

Y. Afek, B. Awerbuch, and E. Gafni, “Applying static network protocols to dy-
namic networks”, Proceedings of 28th IEEE Symposium on Foundations of Com-
puter Science (1987).

A. Arora, “A foundation of fault-tolerant computing,” Ph.D. Dissertation, The
University of Texas at Austin, December 1992.

A. Arora, P. Attie, M. Evangelist, and M.G. Gouda, “Convergence of iteration

systems”, Distributed Computing, to appear.

A. Arora and M.G. Gouda, “Distributed reset (extended abstract)”, Proceedings of
10th Conference on Foundations of Software Technology and Theoretical Computer
Science, LNCS 472 (1990), pp. 316-331, Springer-Verlag.

J.E. Burns, M.G. Gouda, and R.E. Miller, “On relaxing interleaving assumptions”,
Technical Report GIT-ICS-88/29, School of ICS, Georgia Institute of Technology
(1988).

G.M. Brown, M.G. Gouda, and C.-L. Wu, “Token systems that self-stabilize”,
IEEE Transactions on Computers, Vol. 38, No. 6 (1989), pp. 845-852.

J.E. Burns and J. Pachl, “Uniform self-stabilizing rings”, ACM Transactions on
Programming Languages and Systems, Vol. 11, No. 2 (1989), pp. 330-344.

K.M. Chandy and L. Lamport, “Distributed snapshots: Determining global states
of distributed systems”, ACM Transactions on Computer Systems, Vol. 3, No. 1
(1985), pp. 63-75.

S. Dolev, A. Israeli, and S. Moran, “Self-stabilization of dynamic systems assuming
only read/write atomicity”, Proceedings of the Ninth ACM Symposium on Princi-
ples of Distributed Computing (1990), pp. 103-117.

E.W. Dijkstra, and C.S. Scholten, “Termination detection for diffusing computa-
tions”, Information Processing Letters, Vol. 11, No. 1 (1980), pp. 1-4.

M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus
with one faulty process”, Journal of the ACM, Vol. 32, No. 2 (1985), pp. 374-382.

N. Francez, Fairness, Springer-Verlag, 1986.

M.G. Gouda, and N. Multari, “Stabilizing communication protocols”, IEEE Trans-
actions on Computers, Vol. 40, No. 4 (1991), pp. 448-458.

S. Katz and K. Perry, “Self-stabilizing extensions for message-passing systems”,
Proceedings of the Ninth ACM Symposium on Principles of Distributed Computing
(1990), pp. 91-101.

18

[15]

[16]

[17]

L. Lamport, and L. Lynch, “Distributed computing: models and methods”, Hand-
book of Theoretical Computer Science, Chapter 18, Vol. 2 (1990), pp. 1158-1199,

Elsevier Science Publishers.

R. Perlman, “An algorithm for distributed computation of a spanning tree in an
extended LAN”, Ninth ACM Data Communications Symposium, Vol. 20, No. 7
(1985), pp. 44-52.

W. Tajibnapis, “A correctness proof of a topology information maintenance pro-
tocol for a distributed computer network”, Communications of the ACM, Vol. 20,
No. 7 (1977), pp. 477-485.

19

8 Appendix A

Proof of Correctness for the Tree Layer.

Let dummy variables 7 , j , and j' range over the indices of up processes. Let P.k denote the up
process with highest index amongst all up processes; i.e., k = maz{i | P.i is up} . Let dist.i.j
be the length of the minimal length path from P.i to P.j in the adjacency graph. We define

H.1 = (root.k=k A fk=k ANd.k=0) A (Vi: root.i<k A (dist.i.k>0 = (root.i=k = d.i>0)))

Lemma 1: The set of states H.1 is closed under system execution.

Proof: Our obligation is to show for each state s in H.1 and for each action enabled at s
that executing the assignment statement of the action in s yields a state in H.1. We meet this
obligation by first noting that the variables root.i, f.z and d.: are modified only by the actions
of module tree.i. Second, for i =k, no action of tree.i is enabled at s since (root.k==k A f.k=
k A d.k=0) holds in s. Finally, for i # k, executing the assignment statement of any action of
tree.i that is enabled at s preserves (root.i <k A (dist.i.k>0 = (root.i=k = d.i>0))) since
the value assigned to root.i is at most k, and if that value is identically k then the value assigned
to d.i exceeds 0. O

Lemma 2: Upon starting at an arbitrary state, i.e., a state in H.0, the system is guaranteed

to reach a state in H.1.

Proof: We first show that starting at an arbitrary state s, the system is guaranteed to
reach a state in (Vi : root.i < k). To see this, consider the “variant” function #(s) =
(m(s), md(s),num(s)), where

(m(s), md(s),num(s)) is a sequence of three natural numbers,

m(s) = maz { root.i },

md(s) = K —min { d.i | root.i=m(s) }, and

num(s) =|{i|rooti=m(s) A di=K—md(s) } |

Remark: Our proofs of progress properties will typically involve exhibiting a variant function
whose range is a set of fixed length sequences of natural numbers. We define a lexical ordering
< between such sequences (of length, say, N):
(z.1,2.2,...,2z.N) < (y.1,9.2,...,y.N) =

(Fn:1<n A n<N A zn<yn A (Ym:(1<mAm<n)=z.m=y.m))
Note that < is a well-founded relation; thus, there is no infinitely descending chain of elements

in the range of the variant function. (End of remark.)

Provided k <m(s), the value assigned by # to s is, under system execution, nonincreasing with

#We adopt the convention that upon application to the empty set maz yields 0 and min yields co.

20

respect to <. That is, for arbitrary natural number constants M, M D and NUM the set of
states s’ in (k<M A #(s') < (M,MD,NUM)) is closed under system execution. The last
claim follows from the observation that each action of tree.i assigns to root.i a value that is at
most M, and if that value is identically M then the value assigned to d.i is strictly greater than
K—MD. Moreover, provided k <m(s), the value assigned by # to s is, under system execution,
guaranteed to eventually decrease with respect to <. To see this, consider any process P.i such
that (root.i=m(s) A d.i=K—md(s)). As long as the variant function value does not change,
either the first or the second action of tree.; is enabled. By fairness, we have that continuously
enabled actions are eventually executed; thus, the variant function value eventually decreases
with respect to <. As < is a well-founded relation, the system is guaranteed to eventually reach

a state s in which k& > m(s) and, therefore, (Vi : root.i <k) is true.

Next, from module code, we see that the set of states satisfying (Vi : root.i < k) is closed
under system execution. Now, in an arbitrary state satisfying (Vi : root.i <k) either (root.k =
kE N fk=k A dk=0) holds or the first action of tree.k is enabled. By fairness, we can
conclude that the first action of tree.k will eventually be executed yielding a state in the set
((Vi:rooti <k) A (root.k=k A f.k=k A d.k=0)) which, in turn, is seen to be closed under

system execution.

Finally, for an arbitrary process P.j, j # k, some action of tree.j is necessarily enabled as long
as the system state satisfies ((Vi : root.i < k) A (root.k=k AN f.k=k A dk=0) A (root.j=
kE A d.j=0)). By fairness, some action of tree.j will eventually be executed thereby yielding a
state in ((Vi : root.i <k) A (root.k=k N f.k=k A dk=0) A (root.j=k = d.j#0)). This
set of states is closed under system execution. As the argument holds for an arbitrarily chosen

process P.j, the system is guaranteed to eventually reach a state in H.1. O

Define by induction over [, 1<I< K,
H.(l+1) =HI A
(Vi : distik=1l =
(root.i=k A
(3j:5€Ni: fi=jAdi=d.j+l Adj=min{d.j'|root.j' =k Aj' € Ni}))) A
(Vi: dist.i.k>1 = (root.i=k = d.i>l))

Lemma 3: For each [such that 1</ < K the following proposition holds:

H.(I+1) is closed under system execution.

Proof: We prove by induction on [that
H.(I+1) = (Vi : disti.k=l = d.i=l), and (0)
H.(I+1) is closed under system execution. (1)

21

Base Case: [=0.
Since (Vi : dist.i.k=0 = i=k), and (H.1 = d.k=0), (0) follows. Assertion (1) follows from
Lemma 1.

Induction Step: [>0.

The induction hypothesis is
H.il = (Vi : distik=(l-1) = d.i=(l-1)), and (2)

H.l is closed under system execution. (3)

A proof of (0) follows:
H.(I+1)
= { from the definition of H.(I+1) }
H.(I+1) A H.
= { from (2) and the definition of H.l }
H.(1) A (Vi - (distik=1-1 = di=1-1) A (distik>I-1 = (rooti=k = d.i>I-1)))
= { arithmetic }
H.(+1) A (Vi:distik=1 = min{d.j' | root.j'=k A j' € N.i}=1-1)
= { from the second conjunct of H.(I+1) }
(Vi : distik=l = di=l)

To prove (1), we note that the set of states H.(I+1) is closed under system execution because

e H.l is preserved under system execution according to (3),

o If dist.i.k =1, it follows from (0) that d.s =1[. Also, it follows from H.l that (Vj : (j €
N.i A root.j=k) = (d.j>1—-1)). Thus, no action in module tree.; is enabled and the
second conjunct of H.(I+1) is preserved under system execution, and

o If dist.i.k >, it follows from H.l that (Vj : (j € N4 A disti.k>1 A root.j=k) =
d.j>1—1). Hence, (Vi : dist.i.k >l = (rooti=k = d.i>1)) is preserved under system

execution. O

Lemma 4: For each [such that 1</ <K the following proposition holds:
Upon starting at an arbitrary state in H.[, the system is guaranteed to reach a state in H.(I+1)

Proof: Consider an arbitrary process P.i such that dist.i.k =1[. At each state in H.I, either
(rooti=k A (3j:j€ Ni: fi=j Adi=dj+1 A dj=min{d.j'|root.j’=k N j' € N.i}))
holds or the third action of ¢ree.i is enabled for parameter j such that dist.j.k = (I—1). By
fairness and the fact that H.l is closed under system execution, the third action will be executed
eventually for such a parameter value, thereby establishing H.I A (rooti=k A (3j:j € N.:
fi=j ANdi=d.j+1 A d.j=min{d.j' | root.j’=k A j' € N.i})). This set of states is closed and
no action of tree.i is enabled in it. Since P.i is chosen arbitrarily, we can repeat this argument
to establish that eventually the system is at some state in H.I A (Vi : dist.i.k=1 : (root.i=

22

kAN@Fj:j€NG: fa=j A di=d.j+1 A dj=min{d.j' |root.;’=k A j' € N.i }))).

Next, consider an arbitrary process P.j such that dist.j.k>1[. Recall that, by definition, H.l =
(V4" : dist.jk >1—1 : root.j’ <k A (root.j’ =k = d.j' >1—1)). Thus, if executing some
action sets root.j to k, then d.j is set to a value that is greater than [. Also, if (root.j =
k = d.j>1) does not hold, then the second or third actions of tree.j are continuously enabled
and will eventually be executed due to fairness thereby establishing d.j >1[. Since P.j is chosen
arbitrarily, we can repeat this argument to establish that eventually the system is at a state
where (Vj : dist.j.k>1 : root.j=k = d.j>1) holds, and hence H.(I4+1) holds. O

Theorem 1: {Closure of G}

The set of states G is closed under system execution.

Proof: G = H.K. The theorem follows from Lemma 3. O

Theorem 2: {Convergence to G}

Upon starting at an arbitrary state, the system is guaranteed to reach a state in G.

Proof: By transitivity, using Lemmas 2 and 4, and G = H.K. O

It now remains to analyze the rate of convergence of the system to a state in G. Recall that
in any system computation, the nondeterminism in the choice of actions to be executed is con-
strained only by fairness. Fairness is a lax constraint in that it allows for computations wherein
execution of some actions is attempted infrequently compared to other actions. Consequently,
some computations may converge slowly (for example, the tree layer may converge slowly when
execution of the first action of tree.k is attempted infrequently). To ensure quick convergence, we
therefore propose to implement the following constraint on the choice of actions to be executed.
For each tree.; module, execution of its actions involving neighboring processes is attempted in
an arbitrary but fixed cyclic order; also, execution of the first action of tree.i is attempted once

in every two consecutive attempts at executing actions of tree.i .

Below, we show that the system thus implemented is guaranteed to converge to a state in G
within O(K + (deg X dia)) rounds, where deg is the maximum degree of nodes in the adjacency
graph, dia is the diameter of the adjacency graph, and a round of a computation is a minimal
sequence of steps S such that each process in the system that is enabled at some state along S

executes at least one action in S .

First, we show by induction that after r rounds (0 < r < K) in a computation, if process
P.(root.i) is down then d.i is at least 7. The base case (r=0) is trivially true. For the induction
step (r>0), we observe that P.(root.i) is down iff the action that last updated the state of P.i
involved accessing the state of a neighbor j such that P.(root.j) was down; thus d.i was set to

a value at least r. Hence, after K rounds, if P.(root.7) is down then d.i is at least K. It now

23

follows from the actions of tree.i that after K+1 rounds, P.(root.i) is up for each process i.

Next, we show that after degxdia more rounds, a state in G is reached. From the constraint on
execution of actions, it follows that once a state is reached where for root.i for each process P.i
is up then within the next 2 rounds a state is reached where f.k=k A d.k=0 A root.k=Fk holds.
Subsequently, within the next 2 x deg rounds, each neighboring process P.i updates its state
based on the state of P.k, and thus f.i=k A d.i=1 A root.i=Fk holds. Repeating this argument

dia times, it follows that the system state is in G within deg X dia rounds.

Hence, the convergence rate is O(K + (deg X dia)) rounds.

9 Appendix B

Proof of Correctness for the Wave Layer.

Let dummy variables 7 , 5 and j' range over the indices of up processes, and n range over
the integers. Let P.k denote the up process with highest index amongst all up processes; i.e.,

k = max{i | P.i is up}.

Theorem 3: {Closure of GD}

The set of states GD is closed under the execution of the system.

Proof: The variables st.i and sn.i of an arbitrary process P.i are modified only by

(T1) the actions of module wave.i, and

(T2) the action(s) of module appl.i that atomically change st.i from normal to initiate, and
do not change sn.i.

Therefore, to prove that GD is closed under system execution, it suffices to show that for each

action a of type (T1) or (T2) the following Hoare triples hold:

{GD A (guard-of-a)} (assignment-statement-of-a) {Gd.i} , (0)
and for all j/ such that f.j;'=1
{GD A (guard-of-a)} (assignment-statement-of-a) {Gd.j'} . (1)

We meet this obligation by considering the following cases:

e Executing the first action of wave.; maintains the relation st.i #reset and does not change
sn.i. From this (0) and (1) follow. The same argument applies to all actions of type (T2).

e The second action of wave.i is enabled for i =k only. Gd.k is trivially true. Hence, (0)
follows. The precondition of the Hoare triple in (1) implies that (st.j' #reset A sn.k=
sn.j'). Thus, (st.k =reset A st.j' #reset A sn.k=sn.j’+1) holds upon executing the
second action, thereby establishing (1).

e Upon executing the third action, (st.(f.i) =reset A sn.(f.i)=sn.i) holds. Therefore, (0)

24

is valid. Also, the precondition of the Hoare triple in (1) implies (st.j' #reset A sn.i=
sn.j’ A sn.(f.i)=sn.i+1) and so (st.i=reset A st.j'#reset A sn.i=sn.j'+1) holds in
the postcondition. This validates (1).

e When the fourth action is enabled, (st.(f.i) =reset A sn.(f.i)=sn.i) is necessarily true.
Upon execution, this action leaves sn.i unchanged. Thus, (0) is true. For (1), we note that
the precondition of the Hoare triple in (1) implies (st.j' #reset A sn.i=sn.j'). From this,
Gd.j' is seen to hold upon executing this action.

e The fifth action is not enabled at any state of GD. In this final case, (0) and (1) are

trivially true. O

Theorem 4: {Convergence to GD}

Upon starting at an arbitrary state, the system is guaranteed to reach a state in GD.

Proof: Let s denote the system state. Let anc.i.j denote the predicate that P.j is an ancestor
of P.i in the spanning tree. We define a variant function f :

#(s) = K—|{i|Gdi A (Vj:anci.j = Gd.j holds at s)} |
Elements in the range of {§ are related by the well-founded relation < that we introduced previ-

ously.

Observe that the set of states (Gd.i A (Vj : anc.i.j = Gd.j)) is closed for each choice of
node i. (The proof for this observation is essentially the same as the proof of Theorem 3 and is
left to the reader.) It follows from this observation that the f(s) is nonincreasing under system

execution.

As long as s is not a steady state, there exists a node i such that (-=Gd.iA(Vj : anc.i.j = Gd.j))
holds. Furthermore, as long as s satisfies (-Gd.i A (V] : anc.i.j : Gd.j)), the fifth action of wave.i
is continuously enabled. Hence, by fairness, the system is guaranteed to eventually reach a state
where (Gd.i A (Vj:anc.i.j = Gd.j)) holds. In other words, fi(s) is guaranteed to eventually
decrease under system execution. And thus the system is guaranteed to eventually reach a state
in GD. O

From the proof of Theorem 4, it follows that if each process attempts to execute the fifth action
of wave.i once in every two consecutive execution attempts, then the rate of convergence of
the system to a state in GD is 2x ht rounds, where ht denoted the height of the spanning tree
constructed by the tree layer. Thus, the system can be implemented to ensure O(ht) convergence
to a state in GD.

The next two theorems imply that each distributed reset requested at a state in GD is performed

correctly.

25

Theorem 5: Upon starting at an arbitrary state in (GD A sn.k=mn), the system is guaranteed
to reach a state in (GD A (Vi:sni=n A st.i#reset)).

Proof: Let s be a system state in (GD A sn.k=n). We consider two cases:

e ((GD A sn.k=mn) A st.k#reset) holds in s:
From GD, the state s is seen to already satisfy (GD A (Vi: sni=n A st.i#reset)).

e ((GD A sn.k=mn) A st.k=reset) holds in s:
The proof is by structural induction on the height of node k in the spanning tree. Note that

the only action of P.k which can be enabled at a state in (st.k=reset A sn.k=mn) is its fourth

action.

Base Case: (k is a leaf.)

If k£ is a leaf then the fourth action of process wave.k is enabled at every state in (st.k =
reset A sn.k=n). By fairness, the fourth action is eventually executed and the resulting state
satisfies (st.k#reset A sn.k=n).

Induction Step: (The height of node k exceeds 0.)
Let P.j be an arbitrary process such that f.j=k. We consider three cases:
e (GD A st.j#reset A\ sn.j=n):
Since the system state satisfies (st.k =reset A sn.k=n), the third and fifth actions of wave.j

are not enabled. The second and fourth actions of wave.j are not enabled either. Therefore,
as long as (st.k=reset A sn.k=n) holds, the system state satisfies (st.j #reset A sn.j=n).
e (GD A st.j=reset N\ sn.j=n):

Since the system state satisfies (st.k=reset A sn.k=n), the fourth action of wave.j is the

only one that can be enabled as long as the system state is in (st.j=reset A sn.j=n). By
the inductive hypothesis, the system is guaranteed to eventually reach a state that satisfies
(st.j#reset A sn.j=n), at which point the previous case applies.

e (GD A sn.j#n):

The third action of wave.j is enabled continuously as long as sn.j # n holds. No other

enabled action of P.j falsifies sn.j#n. By fairness, the third action of wave.j is eventually

executed, yielding a state in which one of the previous two cases applies.

Since the argument presented above holds for an arbitrary choice of j, we conclude that the
system is guaranteed to reach a state in which (Vj e N.k: (f.j=k) = (sn.k=sn.j A st.j#
reset)) holds. The fourth action of wave.k is then enabled continuously and, by fairness, it is
eventually executed thereby yielding a state in (sn.k=n A st.k#reset). The previous case now

applies. m|

26

Theorem 6: Upon starting from a state in (GD A (i : sn.i=n A st.i=initiate)), the system
is guaranteed to reach a state in (GD A (Vi: sn.i=n+1 A sti#reset)).

Proof: Let s be a system state in (GD A (3i: sni=n A st.i=initiate)). We consider two

cases:

e sn.k=n-+1 holds in s:

The result follows directly from Theorem 5.

e sn.k=n holds in s:
In this case, (GD A (Vi: sni=n) A (3i: st.i=1nitiate)), holds at s. Due to the previous case,

it suffices for us to show that the system is guaranteed to reach a state in (GD A sn.k=n+1).

Consider the variant function §(s) = (di(s),li(s),In(s)), where
(di(s),li(s),In(s)) is a sequence of natural numbers,
di(s) = min { d.i | st.i=initiate},
li(s) = K —| {1]| sti=initiate} |, and
In(s) =K —| {i| sti=normal} |.
Elements in the range of § are related by the well-founded relation < that we introduced previ-

ously.

If di(s) > 0 then the value assigned by § to the system state is, under system execution,
decreasing with respect to <. To see this, note that the second, third and the fifth actions
of wave.i cannot be enabled at s. Executing the first action or an action of type (T2) decreases
li(s) and does not increase di(s). Finally, the fourth action preserves di(s) and li(s) but decreases
In(s). Thus, the system is guaranteed to reach a state in which di(s)=0; that is, st.k=1initiate
holds. When st.k =initiate, the second action of wave.k is enabled and remains enabled until,

by fairness, it is eventually executed to yield a state that satisfies (GD A sn.k=n-+1). O

Lastly, we analyze the time taken to complete a distributed reset. Observe that a request
wave reaches the root within ht rounds. Also, a reset wave propagates from the root to the
leaves within ht rounds. Since each node has to wait for messages from each of its children
in a completion wave, the completion wave propagates from the leaves to the root within min
(dgxht,n), where dg is the maximum degree of nodes in the spanning tree and n is the number
of up processes. Thus, a distributed reset initiated at any state in GD is completed within
O('min (dgxht,n)) rounds.

27

10 Appendix C

Sketch of Correctness Proof for the Low Atomicity Tree Layer.
Define H.1= (root.k=k N f.k=k A d.k=0) A
(Vi: adj.ik : (root.ik=root.k A fik=fk A dik=d.k) A
(Vi,j: rooti<k A (j € Ni = root.i.j<k) A
((root.i=k A dist.i.k>0) = d.i>0)) A
((j € Ni A rootij=k A dist.j.k>0) = d.i.j>0))

Lemma 5: The set of states H.1 is closed under system execution. O

Lemma 6: Upon starting at an arbitrary state, i.e., a state in 7{.0, the system is guaranteed

to reach a state in H.1. O

Define, by induction, for [>0,

H.(I+1) =
HI A
(Vi : distik=1 =

root.i==k A
(3j:jeNi: fi=j A di=dj+1 A dj=min{ d.j' | root.j'=k A j' € Ni}) A
(Vj: j€N.i: (root.ji=rooti A f.ji=fi A dji=di))) A

(Vi: (rooti=k A dist.i.k>l) = di>l) A

(Vi,j: (adjji A root.ji=Fk A distik>l) = d.ji>l)

Lemma 7: For each [such that 1</ <K the following proposition holds:

H.(l+1) is closed under system execution. O

Lemma 8: For each [such that 1</ < K the following proposition holds:
Upon starting at an arbitrary state in 7./, the system is guaranteed to reach a state in #.(I41).
a

Proofs of Lemmata 5-8 appear in [2].

Theorem 7: {Closure of G}
The set of states G is closed under system execution.
Proof: G = H.K. The theorem follows from Lemma 7. O

Theorem 8: {Convergence to G}
Upon starting at an arbitrary state, the system is guaranteed to reach a state in G.

Proof: By transitivity, using Lemmas 6 and 8, and G = H.K. i

28

11 Appendix D

Sketch of Correctness Proof for the Low Atomicity Wave Layer.

Define
Gdi= ((fi=j N st.j#reset) =
(st.iZreset A sn.j=sn.i A st.ji#reset A sni=sn.i.j N sn.i=sn.j.i))
A
((fi=37 A st.j=reset A st.i.j#reset) =
(st.iZreset Asn.j=sni+1 A st.jitreset A sni=sn.i.j A sn.i=sn.j.i))
A
((fi=j A st.j=reset A st.i.j=reset) =
((sti#reset Asn.j=sn.i+1 A st.ji#treset A
(sn.i=sn.i.j V sn.i+1=sn.i.j) A sn.i=sn.j.i)
\%
(sn.j=sn.i A\ sn.i.j=sn.i A
(st.ji=reset = sn.j.i=sn.i) A
((st.ji#reset A sti=reset) = sn.i=sn.ji+1) A
((st.ji#reset A sti#reset) = (sn.i=sn.j.i V sn.i=sn.ji+1))))

and

GD = (Vi:Gd.i)

Theorem 9: {Closure of GD}

The set of states GD is closed under the execution of the system. O

Theorem 10: {Convergence to GD}

Upon starting at an arbitrary state, the system is guaranteed to reach a state in GD. O

Theorem 11: Upon starting at an arbitrary state in (GD A sn.k=n), the system is guaranteed
to reach a state in (GD A (Vi:sn.i=n A sti#reset)). O

Theorem 12: Upon starting from a state in (GD A (i : sn.i=n A st.i = initiate)),
the system is guaranteed to reach a state in (GD A (Vi:sn.i=n+1 A st.i#reset)). O

Proofs of Theorems 9-12 appear in [2].

29

