
Detectors and Correctors:

A Theory of Fault-Tolerance Components
1

Anish Arora Sandeep S. Kulkarni

Department of Computer and Information Science

The Ohio State University

Columbus, Ohio 43210 USA

Abstract

In this paper, we show that two types of tolerance components, namely detectors

and correctors, appear in a rich class of fault-tolerant systems. This class includes

systems designed using the wellknown techniques of encapsulation and re�nement,

as well as systems designed using extant fault-tolerance methods such as replication

and the state-machine approach. Our demonstration is via a theory of detectors and

correctors, which characterizes the particular role of these components in achieving

various types of fault-tolerance. Based on this theory and on our experience with

using these components in designs, we suggest that detectors and correctors provide

a powerful basis for e�cient, component-based design of fault-tolerance.

Keywords : Composition, Fault environment, Tolerance components, Tolerance

design

1 A preliminary version of this paper appeared as [6].

Email: fanish,kulkarnig@cis.ohio-state.edu ; Web: http://www.cis.ohio-state.edu/f~anish,~kulkarni g;
Tel: +1-614-292-1836 ; Fax: +1-614-292-2911 ; Research supported in part by
an Ameritech Faculty Fellowship, NSA Grant MDA904-96-1-0111, NSF Grant CCR-93-08640, and
OSU Grant 221506

1 Introduction

The thesis of this paper is : A fault-tolerant system consists of a fault-intolerant system and

a set of fault-tolerance components. We illustrate this thesis by exhibiting the two primitive

components, namely detectors and correctors, that provide a basis for achieving the di�erent

types of fault-tolerance properties for a rich class of computing systems.

Intuitively, a detector is a system component that \detects" whether some state predicate is

true at the system state. Well-known examples of detectors include comparators, error detec-

tion codes, consistency checkers, watchdog programs, snoopers, alarms, snapshot procedures,

acceptance tests, and exception conditions.

Likewise, a corrector is a system component that detects whether some state predicate is true

at the system state and that \corrects" the system state in order to truthify that state predicate

whenever it is false. Well-known examples of correctors include voters, error correction codes,

reset procedures, rollback recovery, rollforward recovery, constraint (re)satisfaction, exception

handlers, and alternate procedures in recovery blocks.

To justify that detectors and correctors form a basis set of components for achieving fault-

tolerance properties, we consider the following questions.

1. Given a fault-tolerant system, does it contain detectors and correctors components?

2. Given a fault-intolerant system, do there exist detectors and correctors components whose

composition with the system yields a fault-tolerant version of the system?

In previous work [4], we have answered Question 2 a�rmatively, by presenting methods for

transforming a fault-intolerant system into a fault-tolerant one. Given a fault-intolerant pro-

gram, these methods show how to calculate the components required for achieving fault-

tolerance, how to construct them hierarchically and distributively, and how to compose them

with the given fault-intolerant program. We have applied these methods in designing fault-

tolerant programs for various problems such as barrier computations, repetitive Byzantine

agreement, leader election, mutual exclusion, tree maintenance, distributed reset termination

detection and bounded-space network management [10, 11, 5]. (See

http://www.cis.ohio-state.edu/�anish for additional references.) These designs are dis-

tinguished from existing solutions in multiple ways: in most cases, they are the �rst solutions

that satisfy multiple fault-tolerance properties for the respective problems, all of them are

at least as e�cient as the existing solutions, and they are more e�cient |in terms of time-

complexity and/or space-complexity| than existing solutions.

In this paper, we focus our attention on Question 1, and provide two sorts of results. Our �rst

set of results identify a rich class of fault-tolerant systems that contain detectors and correctors.

More speci�cally, these results provide a theory of detectors and correctors that characterizes

their respective roles in achieving fault-tolerance. The main results of this theory are as follows:

(i) If a program satis�es a \safety" speci�cation, then it contains detectors. A consequence

of this result is that \fail-safe" tolerant programs contain fail-safe tolerant detectors. (ii) If a

program eventually satis�es both the safety and the \liveness" of a problem speci�cation, then

it contains correctors. A consequence of this result is that \nonmasking" tolerant programs

1

contain nonmasking correctors. (iii) \Masking" tolerant programs contain masking tolerant

detectors and correctors. (Each of the terms within quotes is de�ned formally in the next

section.)

Our second set of results pertain to extant methods for designing fault-tolerance (e.g., repli-

cation based voting, Schneider's state machine approach [14], Randell's recovery blocks [13],

checkpointing and recovery, and exception handling). More speci�cally, they demonstrate (a)

that systems designed using replication-based voting and Schneider's state machine approach

contain detectors and correctors and (b) how the same systems can be alternatively designed

with the direct use of detectors and correctors. We conclude that the use of detectors and

correctors generalizes extant methods, and also argue that their use o�ers the potential for

designing more e�cient fault-tolerant systems and systems that tolerate multiple types of

faults.

The rest of the paper is organized as follows: In Section 2, we give formal de�nitions of

the concepts we need for formulating our results. We develop, in Section 3, the theory of

detectors, and show their role in the design of fail-safe tolerance. We continue, in Section

4, with the theory of correctors, showing their role in the design of nonmasking tolerance.

Then, in Section 5, we show the role of both detectors and correctors in the design of masking

tolerance. Moving on to extant design methods, in Section 6, we give illustrative examples that

show that programs designed using extant design methods contain detectors and correctors.

Finally, we make concluding remarks in Section 7.

2 Preliminaries

In this section, we give formal de�nitions of programs, problem speci�cations, faults, and

fault-tolerances. The formalization of programs is a standard one and borrows from work by

Chandy and Misra [8], that of speci�cations is adapted from Alpern and Schneider [2], that of

faults is adapted from earlier work of the �rst author with Mohamed Gouda [3], and that of

fault-tolerance speci�cations is original.

2.1 Programs

De�nition. A program is a set of variables and a �nite set of actions. Each variable has a

prede�ned nonempty domain. Each action has a unique name, and is of the form:

hnamei :: hguardi �! hstatementi

The guard of each action is a boolean expression over the program variables. The statement

of each action is such that its execution atomically and instantaneously updates zero or more

program variables.

Let p, q and p
0 be programs.

De�nition (State). A state of p is de�ned by a value for each variable of p, chosen from

the prede�ned domain of the variable.

De�nition (State predicate). A state predicate of p is a boolean expression over the

variables of p .

Note that a state predicate may be characterized by the set of all states in which its boolean

expression is true. We therefore use sets of states and state predicates interchangeably. Thus,

conjunction, disjunction and negation of sets is the same as the conjunction, disjunction and

2

negation of the respective state predicates.

De�nition (Enabled). An action of p is enabled in a state i� its guard is true in that state.

2.1.1 Program Compositions

De�nition ([] Composition). The parallel composition of p and q, denoted as p [] q, is a

program whose actions are the union of the actions of p and that of q .

De�nition (^ Composition). Let Z be a state predicate of p. The restriction of p by

Z, denoted as Z ^ p, is a program whose actions are of the form Z ^ g �! st, for each action

g �! st of p .

De�nition (; Composition). Let Z be a state predicate of p [] q. The sequential

composition of p and q with respect to Z, denoted as p ;Z q, is p [] (Z ^ q) .

Notation. We use ^ composition for actions as well, i.e., if ac is an action of the form

g �! st, then Z ^ ac denotes the action Z ^ g �! st . Also, in a `; composition' when the

predicate Z is clear from the context, we write p; q to mean p ;Z q .

De�nition (Computation). A computation of p is a fair, maximal sequences of states

s0; s1; ::: such that for each j, j > 0, sj is obtained from state sj�1 by executing an action of

p that is enabled in the state sj�1. Fairness of the sequence means that each action in p that

is continuously enabled along the states in the sequence is eventually chosen for execution.

Maximality of the sequence means that if the sequence is �nite then the guard of each action

in p is false in the �nal state.

Let S be a state predicate.

De�nition (S-computations). The S-computations of p, denoted as p j S, is the set of

computations of p that start in a state where S is true.

De�nition (Encapsulates). p
0 encapsulates p i� each action in p

0 that updates variables

of p is of the form g ^ g
0 �! stjjst0, where g �! st is an action of p and st

0 does not update

variables of p, and an action of the form g ^ g
0 �! stjjst0, is executed only when its guard,

g ^ g
0, is true, and to execute this action st and st

0 are atomically executed. (Note that st0

may read variables used in st; in this case, the values of the variables in the initial state are

used in the execution of st0 .)

2.2 Problem Speci�cation

De�nition. A problem speci�cation is a set of sequences of states that is su�x closed and

fusion closed. Su�x closure of the set means that if a state sequence � is in that set then so

are all the su�xes of �. Fusion closure of the set means that if state sequences h�; x; i and
h�; x; �i are in that set then so are the state sequences h�; x; �i and h�; x; i, where � and �

are �nite pre�xes of state sequences, and � are su�xes of state sequences, and x is a program

state.

Note that the state sequences in a problem speci�cation may be �nite or in�nite. Following

Alpern and Schneider [2], it can be shown that any problem speci�cation is the intersection of

some \safety" speci�cation that is su�x closed and fusion closed and some \liveness" speci�-

cation, de�ned next.

3

De�nition (Safety). A safety speci�cation is a set of state sequences that meets the

following condition: for each state sequence � not in that set, there exists a pre�x � of �, such

that for all state sequences �, �� is not in that set (where �� denotes the concatenation of �

and �).

De�nition (Liveness). A liveness speci�cation is a set of state sequences that meets the

following condition: for each �nite state sequence � there exists a state sequence � such that

�� is in that set.

De�ned below are some examples of problem speci�cations, namely, generalized pairs, closures,

and converges to. For these examples, let S and R be state predicates.

De�nition (Generalized Pairs). The generalized pair (fSg; fRg) is a set of state se-

quences, s0; s1; ::: such that for each j; j � 0, if S is true at sj then R is true at sj+1.

De�nition (Closure). The closure of S, cl(S), is the set of all state sequences s0; s1; :::

where for each j; j � 0, if S is true at sj then S is true at each k; k � j.

De�nition (Converges to). S converges to R is the set of all state sequences s0; s1; ::: in

the intersection of cl(S) and cl(R) such that if there exists i; i � 0, for which S is true at si
then there exists k, k� i, for which R is true at sk.

Note that (fSg; fSg) = cl(S) = S converges to S.

Notation. We use S
� to denote a �nite sequence of states where S is true in each state.

Thus, (true)� denotes an arbitrary �nite sequence of states. Also, if � is a �nite sequence of

states and � is a sequence of states, then �� is concatenation of � and � . And, if � is a set

of �nite sequence of states and � is a set of sequence of states, then �� = f �� : � 2 � and

� 2 � g .

2.2.1 Program Correctness with respect to a Problem Speci�cation

Let SPEC be a problem speci�cation.

De�nition (Projection). The projection of a state of p0 on p (respectively SPEC) is a

state obtained by considering only the variables of p (respectively SPEC).

De�nition (Projection). The projection of a computation of p0 on p (respectively SPEC)

is a sequence of states obtained by projecting each state in that computation on p (respectively

SPEC) .

De�nition (Re�nes). p
0 re�nes p (respectively SPEC) from S i� the following two

conditions hold:

� S is closed in p
0, and

� For every computation of p0 that starts in a state where S is true, the projection of that

computation on p (respectively SPEC) is a computation of p (respectively SPEC).

Notation. We use `a computation of p is in SPEC' to mean the projection of that computation

on SPEC is in SPEC. Also, if c is a computation of p, we use the term `c 2 SPEC' to mean

that the projection of c on SPEC is in SPEC.

De�nition (Violates). p violates SPEC from S i� it is not the case that p re�nes SPEC

from S .

4

De�nition (Maintains). Let � be a pre�x of a computation of p. The pre�x � maintains

SPEC i� there exists a sequence of states � such that �� 2 SPEC.

For convenience in reasoning about programs that re�ne special cases of problem speci�cations,

we introduce the following notational abbreviations.

De�nition (Generalized Hoare-triples). fSg p fRg i� p re�nes the generalized pair

(fSg; fRg) from true.

De�nition (Closed in p). S is closed in p i� p re�nes cl(S) from true.

Note that it is trivially true that the state predicates true and false are closed in p.

De�nition (Converges to in p). S converges to R in p i� p re�nes S converges to R from

true.

Informally speaking, proving the correctness of p with respect to SPEC involves showing that

p re�nes SPEC from some state predicate S. (Of course, to be useful, the predicate S should

not be false.) We call such a state predicate S an invariant of p. Invariants enable proofs of

program correctness that eschew operational arguments about long (sub)sequences of states,

and are thus methodologically advantageous.

De�nition (Invariant). S is an invariant of p for SPEC i� p re�nes SPEC from S.

One way to calculate an invariant of p is to characterize the set of states that are reachable

under execution of p starting from some designated \initial" states. Experience shows, however,

that for ease of proofs of program correctness one may prefer to use invariants of p that properly

include such a reachable set of states. This is a key reason why we have not included initial

states in the de�nition of programs.

Notation. Henceforth, whenever the problem speci�cation is clear from the context, we will

omit it; thus, \S is an invariant of p" abbreviates \S is an invariant of p for SPEC ".

2.3 Faults

The faults that a program is subject to are systematically represented by actions whose execu-

tion perturbs the program state. We emphasize that such representation is possible notwith-

standing the type of the faults (be they stuck-at, crash, fail-stop, omission, timing, perfor-

mance, or Byzantine), the nature of the faults (be they permanent, transient, or intermittent),

or the ability of the program to observe the e�ects of the faults (be they detectable or unde-

tectable).

De�nition (Fault-class). A fault-class for p is a set of actions over the variables of p.

Let SPEC be a problem speci�cation, T be a state predicate, S an invariant of p, and F a

fault-class for p.

De�nition. (Computation in the presence of faults). A computation of p in the pres-

ence of F is a sequence of states s0; s1; ::: that is p-fair and p-maximal such that for each j; j > 0,

sj is obtained from sj�1 by executing an action of p or an action of F that is enabled in sj�1, and

jfj : sj is obtained from sj�1 by executing an action of Fgj is �nite. By p-fairness, we mean

that for each action of p that is continuously enabled along the states in the sequence is even-

tually chosen for execution. And, by p-maximality, we mean that if the sequence is �nite then

5

the guard of each action in p is false in the �nal state.

Notation. We overload [] for combining programs and faults. More speci�cally, we use the

notation p [] F to mean the union of actions of p and F . However, a computation of p [] F is

only p-fair and p-maximal.

De�nition (Preserves). An action ac preserves a state predicate T i� execution of ac in

any state where T is true results in a state where T is true.

De�nition (Fault-span). T is an F -span of p from S i� S) T , T is closed in p, and each

action of F preserves T .

Thus, at each state where an invariant S of p is true, an F -span T of p from S is also true.

Also, like S, T is also closed in p. Moreover, if any action in F is executed in a state where T

is true, the resulting state is also one where T is true. It follows that for all computations of p

that start at states where S is true, T is a boundary in the state space of p up to which (but

not beyond which) the state of p may be perturbed by the occurrence of the actions in F .

Notation. Henceforth, we will ambiguously abbreviate the phrase \each action in F preserves

T" by \T is closed in F". And, whenever the program p is clear from the context, we will

omit it; thus, \S is an invariant" abbreviates \S is an invariant of p" and \F is a fault-class"

abbreviates \F is a fault-class for p".

2.4 Fault-Tolerance Speci�cations

In the absence of faults, a program should re�ne its problem speci�cation. In the presence

of faults, however, it may not re�ne its speci�cation, it may re�ne some (possibly) weaker

`tolerance speci�cation'. Below, we de�ne some tolerance speci�cations that occur often in

practice.

De�nition (Masking tolerance speci�cation of SPEC). The masking tolerance speci-

�cation of SPEC is SPEC.

De�nition (Fail-safe tolerance speci�cation of SPEC). The fail-safe tolerance speci-

�cation of SPEC is the smallest safety speci�cation containing SPEC.

De�nition (Nonmasking tolerance speci�cation of SPEC). The nonmasking tolerance

speci�cation of SPEC is (true)�SPEC.

Using these de�nitions, we are now ready to de�ne what it means for a program to tolerate a

fault-class F . With the intuition that a program is F -tolerant to SPEC if it re�nes SPEC in

the absence of faults and it re�nes a tolerance speci�cation of SPEC in the presence of F ,

we de�ne `F -tolerant to SPEC from S' as follows:

De�nition (F -tolerant for SPEC from S). p is masking F -tolerant to SPEC from S

(respectively nonmasking F -tolerant to SPEC from S or fail-safe F -tolerant to SPEC from

S) i� the following two conditions hold:

� p re�nes SPEC from S, and

� there exists T such that T (S and p [] F re�nes the masking tolerance speci�cation

of SPEC from T (respectively the nonmasking tolerance speci�cation of SPEC from

T or the fail-safe tolerance speci�cation of SPEC from T) .

6

The type of tolerance characterizes extent to which the program re�nes SPEC in the presence

of faults. Of the three, masking is the strictest type of tolerance: computations of the program

in the presence of faults are always in SPEC. Fail-safe is less strict than masking: compu-

tations of the program in the presence of faults are in the minimal safety speci�cation that

contains SPEC. Nonmasking is also less strict than masking: computations of the program

in the presence of faults have a su�x in SPEC.

Notation. In the sequel, whenever the speci�cation SPEC and the invariant S are clear

from the context, we omit them; thus, \masking F -tolerant" abbreviates \masking F -tolerant

for SPEC from S", and so on.

2.5 A Note on Assumptions

For the reader's convenience, we reiterate and justify the assumptions made in this paper and

provide an argument for their non-restrictiveness.

Assumption 1 : Problem speci�cations are su�x closed and fusion closed.

Su�x closure allows nonmasking tolerance to capture the intuition that the execution of a

nonmasking tolerant program has a su�x in the problem speci�cation. Without this assump-

tion, to achieve nonmasking tolerance, the program would have to be restored to initial states

in the problem speci�cation, and restoring the program to an initial state may not always

be desirable. Su�x closure and fusion closure also simplify the presentation of detectors and

correctors. More speci�cally, they are used to show the existence of detection predicates used

in detectors and of invariant predicates used in the correctors.

This assumption is not restrictive in the following sense: Given a set of sequences L that is not

su�x closed and/or fusion closed, it is possible (by adding \history" variables) to construct

a set L0 such that for a program p, all computations of p that start at some \initial states"

are in L i� p re�nes L0 from some state predicate. Thus, if the given speci�cation is not su�x

closed or fusion closed it is still possible to determine the detection predicates and the invariant

predicates, although they may depend on the added history variables.

Assumption 2 : The number of fault occurrences in a computation is �nite.

This assumption shows up in the de�nition of `a computation in the presence of faults'. The

motivation behind this assumption is that it is in general impossible to guarantee liveness if

faults occur forever. The results from our theory are applicable if eventually faults stop for a

long enough time for the program to make progress.

This assumption is not restrictive in the following sense: If a fault happens in�nitely often and

the liveness condition at hand can still be satis�ed then we can get around this assumption by

treating the fault actions as program actions.

3 Detectors and Their Role in Fail-Safe Tolerance

In this section, we introduce the �rst of the two tolerance components, detectors. Below, we

de�ne detectors formally and develop their theory. Subsequently, we present a simple memory

access example to illustrate an instance of detectors. (As mentioned in the introduction,

7

methods for the hierarchical and distributed construction of detectors and methods for adding

detectors to a fault-intolerant program are presented in [4].)

3.1 De�nition

Let X and Z be state predicates. Let `Z detects X' be the problem speci�cation that is the

set of all sequences, s0; s1; ::: satisfying the following three conditions:

� (Safeness) For each i; i � 0, if Z is true at si then X is also true at si. (In other words,

Z) X at si.)

� (Progress) For each i; i � 0, if X is true at si then there exists k; k � i, such that Z is

true at sk or X is false at sk.

� (Stability) For each i; i � 0, if Z is true at si then Z is true at si+1 or X is false at si+1.

(In other words, (fZg; fZ _ :Xg) is true.)

De�nition (detector). Z detects X in d from U i� d re�nes `Z detects X' from U .

A detector d is used to check whether its \detection predicate", X, is true. Since d satis�es

Progress from U , it follows that if U ^ X is true continuously, d eventually detects this fact

and truthi�es Z. Since d satis�es Safeness from U , it follows that d never lets Z witness X

incorrectly. Moreover, since d satis�es Stability from U , it follows that once Z is truthi�ed, it

continues to be true unless X is falsi�ed, i.e., fU ^ Zg d fZ _ :Xg.

De�nition (tolerant detector). d is a fail-safe (respectively nonmasking or masking)

tolerant detector for `Z detects X' from U i� d re�nes the fail-safe (respectively nonmasking

or masking) tolerance speci�cation of Z detects X from U .

Remark. If the detection predicateX is closed in d, our de�nition of the detects relation reduces

to one given by Chandy and Misra [8]. We have considered this more general de�nition to

accommodate the case |which occurs for instance in nonmasking tolerance| whereX denotes

that \something bad has happened"; in this case, X is not supposed to be closed since it has

to be subsequently corrected. (End of Remark.)

3.2 Theory of Detectors

We show (1) if a program re�nes a safety speci�cation then it contains detectors, and (2) if a

program is fail-safe F -tolerant then it contains fail-safe tolerant detectors.

Our proof is organized as follows: �rst, Lemma 3.1 shows that if two pre�xes of a computation

maintain a safety speci�cation then so does their concatenation. Then, Lemma 3.2 shows

that the violation of a safety speci�cation can be detected from the current state, independent

of how that state is reached. Subsequently, Theorem 3.3 shows that for each action of the

program, there exists a set of states from where execution of that action maintains the given

safety speci�cation. Finally, using Theorem 3.3, Theorems 3.4 and 3.6 respectively show (1)

and (2) .

Throughout this section, let p be a program, SPEC be a problem speci�cation, SSPEC be

the minimal safety speci�cation that contains SPEC, � be a pre�x of a computation, � be a

�nite su�x of a computation, s and s
0 be states, and X be a state predicate.

8

Lemma 3.1

If

� �s maintains SPEC, and

� s� maintains SPEC

then

� �s� maintains SPEC .

Proof.

�s maintains SPEC ^ s� maintains SPEC

= f by de�nition of maintains g
(9� : �s� 2 SPEC) ^ (9�0 : s��0 2 SPEC)

) f by fusion closure of SPEC g
(9�0 : �s��0 2 SPEC)

= f by de�nition of maintains g
�s� maintains SPEC

Lemma 3.2

If

� �s maintains SPEC

then

� �ss
0 maintains SPEC i� ss

0 maintains SPEC .

Proof. If part:

�ss
0 maintains SPEC

= f by de�nition of maintains g
(9� : �ss0� 2 SPEC)

) f by su�x closure of SPEC g
(9� : ss0� 2 SPEC)

= f by de�nition of maintains g
ss

0 maintains SPEC

Only if part:

ss
0 maintains SPEC ^ �s maintains SPEC

) f by Lemma 3.1 g
�ss

0 maintains SPEC

Theorem 3.3 For each action ac of p there exists a predicate such that execution of ac in a

state where that predicate is true maintains SPEC.

Proof. Consider a pre�x of a computation, say �s, that maintains SPEC. Execution of ac

maintains SPEC i� the extended pre�x �ss0, after execution of ac maintains SPEC. In other

words, there exists a set of pre�xes of computation, say PREF , from which execution of ac

maintains SPEC.

From Lemma 3.2, it follows that the extended pre�x �ss
0 maintains SPEC i� ss

0 maintains

SPEC. Thus, the execution of ac maintains SPEC i� it executes in a state that is in the set

fs : 9� : �s 2 PREF g. The predicate characterized by this set of states su�ces as a witness

for the theorem.

9

De�nition (detection predicate). We say that X is a detection predicate of action ac for

SPEC i� execution of ac in any state where X is true maintains SPEC.

Note that the existence of detection predicates follows from Theorem 3.3, and that an action

may have multiple detection predicates. Also, if sf is a detection predicate of ac for SPEC

and X) sf , then X is also a detection predicate of ac for SPEC. And, if sf1 and sf2 are

detection predicates of ac for SPEC then so is sf1 _ sf2. Thus, there exists a weakest safe

predicate for each action.

Using the de�nition of detection predicates, we are now ready to show that if a program re�nes

a safety speci�cation then it contains detectors. The intuition is that if program p
0 is designed

by transforming p so as to satisfy SSPEC, then the transformation must have added a detector

for each action of p, i.e., p0 must contain a detector for each action of p . We formulate this,

in Theorem 3.4, for the case where the transformation uses encapsulation and re�nement.

Typically, the detector components used in p
0 will be smaller (in terms of actions/state tran-

sitions, etc.) than p
0. However, for p0 to re�ne SSPEC the components used in p

0 must not

interfere with each other. If a component of p0 re�nes the detector speci�cation and the other

components in p
0 do not interfere with it then p

0 will also re�ne the detector speci�cation.

Therefore, in Theorem 3.4 we show that p0 itself re�nes the speci�cation of a detector.

Theorem 3.4 (Programs that re�ne a safety speci�cation contain detectors).

If

� p
0 re�nes p from S,

� p
0 encapsulates p, and

� p
0 re�nes SSPEC from S

then

� (8ac : ac is an action of p : p0 is a detector of a detection predicate of ac) .

Proof. Let sf be the weakest detection predicate for ac . Since p0 encapsulates p, if ac is of

the form g �! st, p0contains an action, say ac
0, of the form g ^ g

0 �! stjjst0 .

Let Z = g ^ g0, and let

X = g ^ sf^

(:fs : s is a state of p0 : Z is false in state s, g ^ sf is true in state s, and

there exists a transition (s0; s) of p0 such that Z is true in state s0 g) ^

(:fs : s is a state of p0 : Z is false in state s, g is true in state s,

there exists another action, say ac1, of p and states, say s0; s1 of p0 such that

(s; s0) is a transition of ac, (s; s1) is a transition of ac1, and

the projection of s0 and s1 on p is same. g).

Since X) sf , whenever X is true, execution of ac maintains SSPEC. It follows that X is a

safe predicate of ac .

We now show that p0 re�nes Z detects X from S .

By de�nition of Z, Z) g . Since p0 re�nes SSPEC from S, whenever ac is executed in a

state where S is true, its execution is safe. Since sf is the weakest detection predicate of ac,

S ^ Z) sf . Also, Z implies the remaining two predicates in X . Thus, Safeness is satis�ed.

10

Consider any computation, say c
0, of p0 which starts in a state where S is true and X is

true in each state in c
0 : By de�nition of X, g is true in each state in c

0 . Now, consider the

computation, say c, obtained by projecting c0 on p : Since p0 re�nes p from S, c is a computation

of p . In c, g is continuously true. Therefore, by fairness, action ac must eventually execute.

Let s denote the state where action ac executes in c, and let s0 denote the corresponding state

in c
0 . Consider the action executed by p

0 in state s0: it is either ac0 or an action ac10 which is

based on action ac1 of p such that executing ac and ac1 have the same e�ect on variables of p

from state s . In the former case, Z is true in state s0 . And, in the latter case, either Z is true

in the state s0 or the fourth conjunct in X is false in the state s0 . Thus, Progress is satis�ed.

Starting from a state where Z is true, if p0 has a transition to a state where Z is false, then in

that state the third conjunct in X is false. It follows that Stability is satis�ed.

Remark. Henceforth, to show that p0 contains detectors (respectively correctors), we will

show that p0 itself re�nes the corresponding detector (respectively corrector) speci�cations.

Observe that in Theorem 3.4 `p0 re�nes p from S' is used only to show the Progress of the

detector. It follows that if only encapsulation is used then p
0 continues to satisfy Safeness and

Stability. Thus, we have

Lemma 3.5

If

� p
0 encapsulates p, and

� p
0 re�nes SSPEC from S

then

� (8 ac : ac is an action of p : p0 is a fail-safe tolerant detector of a detection predicate of ac) .

Proof. We use the same de�nition of Z and X as in the proof of Theorem 3.4, and show

that p0 re�nes the fail-safe tolerance speci�cation of `Z detects X' from S . We leave it to the

reader to verify that the proof of Safeness and Stability in Theorem 3.4 can be used, verbatim,

to prove that p0 satis�es Safeness and Stability.

We now use Theorem 3.4 and Lemma 3.5 to show that if a fail-safe F -tolerant program p
0 is

designed by using encapsulation and re�nement from program p then p
0 contains a fail-safe

tolerant detector for each action of p .

Theorem 3.6 (Fail-safe F -tolerant programs contain fail-safe tolerant detectors).

If
� p re�nes SPEC from S,
� p0 re�nes p from R, where R) S

� p0 encapsulates p, and
� p0[]F re�nes SSPEC from T , where T (R

then
� p0 is fail-safe F -tolerant for SPEC from R, and
� (8 ac : ac is an action of p : p0 is a fail-safe F -tolerant detector of a detection predicate of ac) .

Proof. Part 1: fail-safe F -tolerance to SPEC . Since p
0 re�nes p from R, R is closed

11

in p
0 and for every computation of p0 that starts in a state where R is true, the projection

of that computation on p is a computation of p. Also, since p re�nes SPEC from S and

R) S, for every computation of p that starts in a state where R is true, the projection of that

computation on SPEC is in SPEC. It follows that for every computation of p0 that starts in

a state where R is true, the projection of that computation on SPEC is in SPEC. Thus, p0

re�nes SPEC from R .

Since R) T and T is closed in p0[]F , in the presence of F , p0 is perturbed only to states where

T is true. From these states, p0 re�nes the safety speci�cation of SPEC, namely SSPEC. It

follows that p0 is fail-safe F -tolerant for SPEC from R .

Part 2: detector. Let sf be the weakest detection predicate for ac . Since p0 encapsulates p,

if ac is of the form g �! st, p0contains an action, say ac
0, of the form g ^ g

0 �! stjjst0 .

Let Z = g ^ g0, and let

X = g ^ sf^

(:fs : s is a state of p0 : Z is false in state s, g ^ sf is true in state s, and

there exists a transition (s0; s) of p0 or F such that Z is true in state s0 g) ^

(:fs : s is a state of p0 : Z is false in state s, g is true in state s,

there exists another action, say ac1, of p and states, say s0; s1 of p0 such that

(s; s0) is a transition of ac, (s; s1) is a transition of ac1, and

the projection of s0 and s1 on p is same. g).

Since X) sf , whenever X is true, execution of ac maintains SSPEC. It follows that X is a

safe predicate of ac .

We now show that p0 is fail-safe F -tolerant for Z detects X from R and the F -span of p0 is

T . To this end, we �rst show that p0 re�nes Z detects X from R . Then, we show that p0[]F

re�nes the fail-safe tolerance speci�cation of Z detects X from T .

For the �rst part, since R) T , we observe that p0 re�nes SSPEC from R . Therefore, by

Theorem 3.4, it follows that p0 re�nes Z detects X from R .

For the second part, we need to show that a computation of p0[]F satis�es Safeness and Stability.

This proof is identical to the proof of Safeness and Stability in Theorem 3.4 .

3.3 Example : Memory Access

Let us consider a simple memory access program that obtains the value stored at a given

address in the memory. For ease of exposition, we will allow access to only one memory

location, addr. Thus, an intolerant program for memory access, p, is as follows (where MEM

contains the set of objects of the form haddr; valuei, and if MEM does not contain an object

of the form haddr;�i, (valjhaddr; vali2MEM) returns an arbitrary value):

p :: true �! data := (valjhaddr; vali2MEM)

The fault-class we consider is a page fault whereby addr and its value are initially removed

from the memory. In the presence of this fault, fail-safe tolerance can be achieved by the

following program, say pf .

pf1 :: (9 val :: haddr; vali2MEM) ^ :Z1 �! Z1 := true

pf2 :: Z1 ^ true �! data := (valjhaddr; vali2MEM)

12

Program pf contains two actions: the �rst action detects whether addr is in the memory. If

this detection is successful, it sets Z1 to true. The data is accessed only when Z1 is true. (cf.

Figure 1: the predicate X1 denotes that addr is currently in the memory, and U1 denotes that

the predicate Z1 is truthi�ed only when the predicate X1 is true.)

MEM

addr

Z1

pf2

data

pf1

Figure 1: Memory access

X1 � (9val :: haddr; vali2MEM)

U1 � (Z1) X1)

Program pf is fail-safe `page-fault'-tolerant in the sense that it re�nes the speci�cation of

the memory transfer program, SPECmem in the absence of faults, and it re�nes the fail-safe

tolerance speci�cation of SPECmem in the presence of a page fault. (Intuitively, SPECmem

requires that the data is eventually set to the correct value, and it is never set to an incorrect

value.) More speci�cally, if no fault occurs, i.e., a tuple haddr; vali exists in the memory, it

eventually sets data to be equal to val , and it never sets data to any other value. In the

presence of a page fault, it never sets the value of data incorrectly, although, it may not assign

a value to data . We use the theory of detectors developed in the previous subsection to show

that pf is fail-safe `page-fault'-tolerant.

Let S := U1 ^ X1, T := U1, and F := `page fault'. Now, observe that p re�nes SPECmem

from S, pf re�nes p from S, pf encapsulates p, and pf []F re�nes the safety speci�cation of

SPECmem from T . Therefore, by Theorem 3.6, we have

pf is fail-safe `page fault'-tolerant for SPECmem from S, and

pf is a fail-safe `page fault'-tolerant detector of a detection predicate of p .

The alert reader will note that the detection predicate of pf is X1 and the witness predicate

of pf is Z1 . Also, this detector is implemented by action pf1 in program pf .

4 Correctors and Their Role in Nonmasking Tolerance

In this section, we introduce the second of the two tolerance components, correctors. Below, we

de�ne correctors formally and develop their theory. Subsequently, we build upon our memory

access example to illustrate an instance of correctors. (As mentioned in the introduction,

methods for the hierarchical and distributed construction of correctors and methods for adding

correctors to a fault-intolerant program are presented in [4].)

13

4.1 De�nition

Let X and Z be state predicates. Let `Z corrects X' be the problem speci�cation that is the

set of all state sequences, s0; s1; ::: satisfying the following three conditions:

� (Convergence) There exists i; i � 0, such that for each j; j � i, X is true at sj, and for

each k; k � 0, if X is true at sk then X is also true at sk+1.

� (Safeness) For each i; i � 0, if Z is true at si then X is also true at si. (In other words,

Z) X.)

� (Progress) For each i; i � 0, if X is true at si then there exists k; k � i, such that Z is

true at sk or X is false at sk.

� (Stability) For each i; i � 0, if Z is true at si then Z is true at si+1 or X is false at si+1.

(In other words, (fZg; fZ _ :Xg).)

De�nition (corrector). Z corrects X in c from U i� c re�nes `Z corrects X' from U .

Since c satis�es Convergence from U , it follows that eventually c reaches a state where X is

truthi�ed and X continues to be true thereafter. Moreover, since c satis�es Safeness from

U , it follows that a corrector never lets the predicate Z witness the correction predicate X

incorrectly. Since c satis�es Progress from U , it follows that Z is eventually truthi�ed. And,

�nally, since c satis�es Stability from U , it follows that Z is never falsi�ed.

De�nition (tolerant corrector). c is a nonmasking (respectively fail-safe or masking)

tolerant corrector for `Z corrects X' from U i� c re�nes the nonmasking (respectively fail-safe

or masking) tolerance speci�cation of Z corrects X from U .

Remark. If the witness predicate Z is identical to the correction predicate X, our de�nition

of the corrects relation reduces to one given by Arora and Gouda [3]. We have considered

this more general de�nition to accommodate the case |which occurs for instance in mask-

ing tolerance| where the witness predicate Z can be checked atomically but the correction

predicate X cannot. (End of Remark.)

4.2 Theory of Correctors

We show (1) if a program eventually re�nes a speci�cation then it contains correctors, and (2)

if a program is nonmasking F -tolerant then it contains nonmasking tolerant correctors.

Throughout this section, let p be a program, � be a pre�x of a computation, � be a su�x of

a computation, SPEC be a problem speci�cation, and s be a state.

Let p be a program that re�nes SPEC from S. In Theorem 4.1, we show that if p0 is designed

such that it eventually behaves like p and, thus, has a su�x in SPEC, then p
0 contains a

corrector of an invariant predicate of p . As discussed in Section 3.2, we prove Theorem 4.1 by

showing that p0 itself re�nes the required corrector speci�cation.

14

Theorem 4.1 (Programs that eventually re�ne a speci�cation contain correctors).

If

� p re�nes SPEC from S,

� p
0 re�nes p from S, and

� p
0 re�nes (true)�(p0 j S) from T

then

� p
0 is a corrector of an invariant predicate of p .

Proof.

Let X = S, and

Z = S ^ fs : s is a state of p0 : s is reached in some computation of p0 starting from T g .

Since p re�nes SPEC from S, it follows that X is an invariant predicate of p for SPEC. Now,

we show that p0 re�nes `Z corrects X' from T .

By de�nition of Z, in any state where Z is true, S is true. In other words, in any state where

Z is true, X is also true. Thus, Safeness is satis�ed.

Since p0 re�nes (true)�(p0 j S) from T , every computation of p0 starting from T will reach a

state where S is true. By de�nition of Z, Z is true in this state. Thus, Progress is satis�ed.

Since p0 re�nes p from S, it follows that S is closed in p
0 . Also, the second conjunct in Z is

closed in p
0 . Thus, Z is closed in p

0 . Thus, Stability is satis�ed.

Since p0 re�nes (true)�(p0 j S) from T , every computation of p0 starting from T will reach a

state where S is true. And, S is closed in p
0 . Thus, Convergence is satis�ed.

The next lemma generalizes Theorem 4.1 . In general, given a program p that re�nes SPEC

from S, p0 may not behave like p from each state in S but only from a subset of S, say R . This

may happen, for example, if p0 contains additional variables and p
0 behaves like p only after

the values of these additional variables are restored. Lemma 4.2 shows that in such a case, p0

contains a nonmasking corrector of an invariant predicate of p . (The corrector is nonmasking

in the sense that the correction predicate is preserved only after p0 reaches a state where R is

true.)

Lemma 4.2

If

� p re�nes SPEC from S,

� p
0 re�nes p from R, where R) S, and

� p
0 re�nes (true)�(p0 j R) from T

then

� p
0 is a nonmasking corrector of an invariant predicate of p .

Proof.

Let X = S, and

Z = R .

We show that p
0 re�nes the nonmasking tolerance speci�cation of Z corrects X from T .

In particular, we �rst show that a computation of p0 starting from a state where T is true

15

eventually reaches a state where R is true. Then, we show that starting from this state p
0

re�nes the Z corrects X .

For the �rst part, since p0 re�nes (true)�(p0 j R), it follows that p0 eventually reaches a state

where R is true.

For the second part, we show that starting from this state, p0 satis�es Safeness, Progress,

Stability and Convergence. R) S is trivially true, thus, Safeness is satis�ed. In a state where

R is true, Progress is satis�ed. Since p0 re�nes p from R, R is closed in p
0, Stability is satis�ed.

Finally, in a computation starting from a state where R is true, S is true at all states and,

thus, Convergence is satis�ed.

We now use Theorem 4.1 and Lemma 4.2 to show that if a nonmasking F -tolerant program p
0

is designed from p using re�nement then p
0 contains a nonmasking corrector for an invariant

of p .

Theorem 4.3 (Nonmasking F -tolerant programs contain nonmasking tolerant correctors).

If

� p re�nes SPEC from S,

� p
0 re�nes p from R, where R) S and

� p
0[]F re�nes (true)�(p0 j R) from T , where T (R

then

� p
0 is nonmasking F -tolerant for SPEC from R, and

� p
0 is a nonmasking F -tolerant corrector of an invariant predicate of p .

Proof. Part 1: nonmasking F -tolerance to SPEC. Since p0 re�nes p from R, R is closed

in p
0 and for every computation of p0 that starts in a state where R is true, the projection

of that computation on p is a computation of p. Also, since p re�nes SPEC from S and

R) S, for every computation of p that starts in a state where R is true, the projection of that

computation on SPEC is in SPEC. It follows that for every computation of p0 that starts in

a state where R is true, the projection of that computation on SPEC is in SPEC. Thus, p0

re�nes SPEC from R .

Since R) T and T is closed in p0[]F , in the presence of F , p0 is perturbed only to states where

T is true. From these states p0 eventually reaches a state where R is true, and from that state

a computation of p0 is in SPEC. It follows that in the presence of F , p0 re�nes nonmasking

tolerance speci�cation of SPEC. Thus, p0 is nonmasking F -tolerant to SPEC from R .

Part 2: corrector. We use the de�nition of Z and X given in the proof of Lemma 4.2 and

show that p0 is nonmasking F -tolerant to Z corrects X from R and the F -span of p0 is T . To

this end, we �rst show that p0 re�nes Z corrects X from R, and then show that p0[]F re�nes

the nonmasking tolerance speci�cation of Z detects X from T .

In Lemma 4.2, we have shown that starting from any state in R, every computation of p0

satis�es Safeness, Progress, Stability, and Convergence. It follows that p0 re�nes Z corrects X

from R .

In Lemma 4.2, we have also shown that p0 re�nes the nonmasking tolerance speci�cation of

Z corrects X from T . In the presence of F , this speci�cation may be violated. However,

16

after faults stop occurring (by Assumption 2, number of faults in a computation are �nite),

p
0 eventually reaches a state where R is true. And, from this state, p0 re�nes Z corrects X .

Thus, p0 is nonmasking F -tolerant to Z detects X from R.

4.3 Example : Memory Access (continued)

Continuing with the example in Section 3.3, consider the case where the given address not in

the memory. In this case, an object of the form haddr;�i has to be added to the memory.

(This object may be obtained from a disk, from a remote memory, or from a network; but we

ignore these details.) Thus, nonmasking `page fault'-tolerance can be achieved by the following

program, say pn.

pn1 :: :(9 val :: haddr; vali2MEM) �! MEM := MEM [fhaddr;�ig
pn2 :: true �! data := (valjhaddr; vali2MEM)

Program pn consists of two actions: the �rst action detects whether the given address exists

in the memory. If the detection fails, then it adds an appropriate element haddr;�i to the

memory. The second action is the same as the action of intolerant program p in Section 3.3,

and it sets data to the value in the memory.

Program pn is nonmasking `page fault'-tolerant in the sense that in the absence of faults, it

re�nes SPECmem, and in the presence of a page fault, it re�nes the nonmasking tolerance

speci�cation of SPECmem . More speci�cally, if no fault occurs, i.e., a tuple haddr; vali exists
in the memory, it eventually sets data to be equal to val , and it never sets data to any other

value. In the presence of a page fault, it may set the data to an incorrect value, but eventually

it will set data to the correct value. We use the theory of correctors developed in the previous

subsection to show that pn is nonmasking `page fault'-tolerant.

MEM

pn2

pn1
addr

data

Figure 2: Memory access

X1 � (9val :: haddr; vali2MEM)

U1 � (Z1) X1)

Let S := U1 ^ X1, T := U1 , and F := page fault. Now, observe that p re�nes SPECmem

from S, pn re�nes p from S, and pn[]F re�nes (true)�(pn j S) from T . Therefore, by Theorem

4.3, we have

pn is nonmasking `page fault'-tolerant for SPECmem from S, and.

pn is a nonmasking `page fault'-tolerant corrector of an invariant of p .

The alert reader will notice this time that the correction and witness predicate of pn is X1

and the corrector is implemented by action pn1 .

17

5 Detectors & Correctors and Their Role in Masking Tolerance

In this section, we show that both detectors and correctors exist in masking F -tolerant pro-

grams (cf. Theorem 5.5). Also, we show how masking tolerance relates to fail-safe tolerance

and nonmasking tolerance (cf. Theorem 5.2).

Lemma 5.1

If

� �s maintains SPEC, and

� s� 2 SPEC

then

� �s� 2 SPEC .

Proof.

�s maintains SPEC ^ s� 2 SPEC

= f by de�nition of maintains g
(9 : �s 2 SPEC) ^ s� 2 SPEC

) f by fusion closure of SPEC g
�s� 2 SPEC

Theorem 5.2

If

� p re�nes SPEC from S,

� p re�nes SSPEC from T , where T (S, and

� p re�nes (true)�(p j S) from T

then

� p re�nes the masking tolerance speci�cation of SPEC from T .

Proof. Consider a computation of p, say c, that starts in a state where T is true. Since

p re�nes (true)�(p j S) from T , c contains a state, say s, where S is true. Let �s be the

computation pre�x of c upto s, and let s� be the su�x of c starting from s.

Since p0 re�nes SSPEC from T , the projection of �s on SPEC maintains SPEC. And, since

p re�nes SPEC from S, the projection of s� on SPEC is in SPEC. Therefore, by Lemma

5.1, it follows that the projection of c on SPEC is in SPEC. Thus, for every computation

of p that starts in a state where T is true, the projection of that computation on SPEC is in

SPEC, i.e., p re�nes the masking tolerance speci�cation of SPEC from T .

Theorem 5.3 combines Theorem 3.4 and Theorem 4.1 to show that if p0 is designed by trans-

forming p to satisfy a speci�cation, say SPEC, then it contains detectors and correctors.

18

Theorem 5.3

If

� p re�nes SPEC from S,

� p
0 re�nes p from S

� p
0 encapsulates p,

� p
0 re�nes (true)�(p0 j S) from T , where T (S, and

� p
0 re�nes SSPEC from T

then

� (8 ac : ac is an action of p : p0 is detector of a detection predicate of ac), and

� p
0 is a corrector of an invariant predicate of p .

Proof. The proof follows from Theorem 3.4 and Theorem 4.1.

We generalize Theorem 5.3, as we did Theorem 4.1, to get Lemma 5.4 .

Lemma 5.4

If

� p re�nes SPEC from S,

� p0 re�nes p from R, where R) S,

� p0 encapsulates p,

� p0 re�nes (true)�(p0 j R) from T , where T (R, and

� p0 re�nes SSPEC from T

then

� (8 ac : ac is an action of p : p0 is a masking tolerant detector of a detection predicate of ac), and

� p0 is a masking tolerant corrector of an invariant predicate of p .

Proof Part 1: detector. We use the de�nition of Z and X as in Theorem 3.4. From

Theorem 3.5, we observe that p0 re�nes the safety speci�cation, namely Safeness and Stability,

of Z detects X from T . We now show that p0 also re�nes the liveness speci�cation, namely

Progress, of Z detects X from T .

Consider any computation, say c
0, of p0 which starts in a state where T is true and X is true

in each state in c
0 : Since p0 re�nes (true)�(p0 j R) from T , it follows that c0 contains a state

where R is true. Let c10 be the su�x of c0 starting from such a state. Since X is true at each

state in c
0, it follows that X is true at each state in c10 and, hence, g is true in each state in

c10 . We leave it to the reader to verify that, similar to the proof of Progress in Theorem 3.4,

there exists a state in c10 where either Z is true or X is false. Thus, Progress is satis�ed.

Part 2: corrector. In general, the predicate S in this theorem may depend on variables of p0

that do not occur in p . Since p does not access these additional variables, we can strengthen

`p re�nes SPEC from S' to `p re�nes SPEC from Sp', such that S) Sp and Sp only depends

on the variables of p . Speci�cally, we let

Let Sp = fs : s is a state of p0 : (9s0 : s0 is a state of p0 :

S is true in state s0, and

projection of s on p is the same as the projection of s0 on p) g

We now show that p re�nes SPEC from Sp . For this, we �rst show that Sp is closed in p.

19

Then, we show that every computation of p that starts in a state where Sp is true is in SPEC .

To show that Sp is closed in p, we consider states s0 and s1 such that Sp is true in state s0,

and (s0; s1) is a transition of p . By de�nition of Sp, there exists a state s00 such that S is

true in s00 and the projection of s00 on p is the same as the projection of s0 on p . Therefore,

there exists a transition s10 such that (s00; s10) is a transition of p and the projection of s10 on

p is the same as the projection of s1 on p . Since S is closed in p, S is true in s10 and, hence,

Sp is true in state s1 . It follows that Sp is closed in p .

By de�nition of Sp, it follows that S) Sp. Thus, every computation of p that starts in a state

where Sp is true is in SPEC . It follows that p re�nes SPEC from T .

Now, we use the predicate Sp to de�ne the corrector as follows:

Let X = Sp, and

Z = R .

We show that p0 re�nes the masking tolerance speci�cation of `Z corrects X ' from T .

R) Sp follows from R) S and S) Sp . Thus, Safeness is satis�ed.

Since p0 re�nes (true)�(p0 j R) from T , it follows that a computation of p0 that starts in a state

where T is true eventually reaches a state where R is true. Thus, Progress is satis�ed.

Since p0 re�nes p from R, R is closed in p
0 . Thus, Stability is satis�ed.

Since Sp is closed in p, p0 encapsulates and Sp only depends on variables of p, Sp is closed in

p
0 . Moreover, a computation of p0 starting in a state where T is true eventually reaches a state

where R is true and, hence, it reaches a state where Sp is true. It follows that T converges to

Sp in p
0 . Thus, Convergence is satis�ed.

Finally, we use Theorem 5.3 and Lemma 5.4 to show that masking F -tolerant programs contain

masking tolerant detectors and correctors. We emphasize, however, that the masking toler-

ant correctors need not be masking F -tolerant; they may be merely nonmasking F -tolerant.

More speci�cally, the Stability and Convergence property of the corrector may be violated by

execution of a fault action in F but these properties are never violated by the execution of a

program action.

Theorem 5.5 (Masking F -tolerant programs contain masking tolerant detectors and correctors.)

If
� p re�nes SPEC from S,
� p0 re�nes p from R, where R) S

� p0[]F re�nes (true)�(p0 j R) from T , where T (R,
� p0 encapsulates p, and
� p0[]F re�nes SSPEC from T

then
� p0 is masking F -tolerant for SPEC from T ,
� (8 ac : ac is an action of p : p0 is a masking F -tolerant detector of a detection predicate of ac),
� p0 is a masking tolerant corrector of an invariant predicate of p , and
� p0 is a nonmasking F -tolerant corrector of an invariant predicate of p .

Proof. Part 1: masking F -tolerance to SPEC. Since p
0[]F re�nes (true)�(p0 j R) from

T , a computation of p0[]F , say c
0 that starts in a state in T , eventually reaches a state, say s,

20

where R is true. Since p0[]F re�nes SSPEC from T , the computation pre�x upto s maintains

SPEC. Also, since p re�nes SPEC from S and R) S, the su�x of c starting from state S

is in SPEC . Therefore, by Lemma 5.1, it follows that c0 is in SPEC. Thus, a computation

of p0[]F that starts in a state in T is in SPEC, i.e., p is masking F -tolerant to SPEC from T .

Part 2: detector. We use the de�nition of Z and X in Theorem 3.6 . Theorem 3.6 shows

that p0 is fail-safe F -tolerant for Z detects X from R and the fault-span of p0 is T . To show

that p0 is masking F -tolerant we need to show that starting from any state in T , p0 satis�es

the liveness speci�cation of Z detects X, namely Progress. Thus, we need to show that if X

is continuously true then in a given computation of p0[]F eventually Z is set to true. Since the

number of faults is �nite, there exists a su�x of the given computation where X is continuously

true and only p executes in that computation. By the proof of Lemma 5.4 (Part 1), it follows

that Progress is satis�ed. Thus, p0 is masking F -tolerant to Z detects X from R .

Part 3: masking tolerant corrector. This proof is identical to the proof of Lemma 5.4 (Part

2).

Part 4: nonmasking F -tolerant corrector. We use the same de�nitions of Z and X as in

Lemma 5.4 (Part 2), and show that p0 is nonmasking F -tolerant to Z corrects X from T and

the F -span of p0 is T . To this end, we �rst show that p0 re�nes Z corrects X from T . Then,

we show that p0[]F re�nes the nonmasking tolerance speci�cation of Z corrects X from T .

For the �rst part, from Lemma 5.4, we observe that p0 re�nes Z corrects X from T .

For the second part, we observe that in the presence of F , stability of the corrector may be

violated. However, since faults are �nite, after the faults stop, the computation of p0 alone is

in Z corrects X . Thus, each computation of p0[]F has a su�x that is in Z corrects X . In

other words, p0[]F re�nes the nonmasking tolerance speci�cation of Z corrects X from T .

5.1 Example : Memory Access (continued)

Continuing with the example in Section 4.3, consider the following program that is masking

`page fault'-tolerant:

pm1 :: :(9 val :: haddr; vali2MEM) �! MEM :=MEM [fhaddr;�ig
pm2 :: (9 val :: haddr; vali2MEM) ^ :Z1 �! Z1 := true

pm3 :: Z1 ^ true �! data := (valjhaddr; vali2MEM)

Program pm consists of three actions: the �rst action adds a tuple haddr;�i if such a tuple

does not exist in the memory. The second action detects if a tuple of the form haddr;�i exists
in the memory. If this detection succeeds, it sets Z1 to true. Finally, the third action sets data

after Z1 is set to true.

Let S := U1 ^X1, T := U1 , and F := page fault. Observe that pn re�nes SPECmem from

S, pm re�nes p from S, pm[]F re�nes (true)�(pmjS) from T , pm encapsulates pn, and pm[]F

re�nes the safety speci�cation of SPECmem from T . Therefore, by Theorem 5.5, we have

pm is masking `page fault'-tolerant to SPECmem from S,

pm is a masking `page fault'-tolerant detector of a detection predicate of pn1 (respectively pn2),

pm is a masking `page fault'-tolerant corrector of an invariant of pn .

21

MEM

addr

Z1

pm1

pm2

pm3

data

Figure 3: Memory access

X1 � (9val :: haddr; vali2MEM)

U1 � (Z1) X1)

6 Role of Detectors and Correctors in Existing Methods

In this section, we show that detectors and correctors exist in programs designed using extant

methods for fault-tolerance. More speci�cally, we show this for the canonical programs designed

using two extant methods, namely replication and Schneider's state machine approach. Our

approach is in fact constructive: we show that canonical fault-tolerant programs designed using

these two methods can be designed by adding detectors and correctors to a fault-intolerant

program.

Regarding replication, we focus our attention in Section 6.1 on the problem of triple modular

redundant system design. And, regarding Schneider's state machine approach [14], we focus

our attention in Section 6.2 on one of its requirements, namely Agreement, in the presence of

Byzantine faults. For reasons of space, the other requirement, namely Order, is discussed in

[11].

6.1 Triple modular redundancy

Consider a triple modular redundant system used for the input-output problem: the system

consists of three inputs, say x, y and z, and one output, say out. In the absence of faults, all

inputs are identical. Faults may corrupt any one of the three inputs. The speci�cation of input-

output problem, SPECio, requires that the output be assigned the value of an uncorrupted

input.

Below, we show that the triple modular redundant system can be designed by �rst designing

a fault-intolerant system, IR, and then adding to it a detector, DR, followed by a corrector,

CR.

Fault-intolerant program IR. Program IR consists of a single action that copies the value of

x into out. The value ? of out denotes that out has not been assigned. Thus, the action of IR

is as follows

IR :: out=? �! out := x

Detector DR. Observe that IR violates its safety speci�cation from states where the value of

x is corrupted. To preserve the safety speci�cation, we will use a detector DR. Letting uncor

be the value of an uncorrupted input, the detection predicate of DR is (x= uncor), and the

22

witness predicate of DR is (x=y _ x=z) . Observe that (x=y _ x=z) detects (x=uncor)

in the program that merely evaluates the state predicate (x=y _ x=z) upon starting from

the states where at most one one input value is corrupted. To add fail-safe tolerance, IR is

restricted to execute only when the witness predicate of DR is satis�ed.

Letting S be the state of states where no input is corrupted, T be the state of states where at

most one input is corrupted, and F be the fault that corrupts at most one input, we observe

that IR re�nes SPECio from S, DR; IR re�nes IR from S, DR; IR encapsulates IR, and

(DR; IR)[]F re�nes the safety speci�cation of SPECio from T . Therefore, by Theorem 3.6, we

have

DR; IR is fail-safe `one input corruption'-tolerant,

DR; IR is a fail-safe `one input corruption'-tolerant detector of a detection predicate of IR .

Corrector CR. Program DR; IR deadlocks when the value of x gets corrupted. To achieve

masking tolerance, we add corrector CR whose correction predicate and witness predicate are

both out=uncor. CR consists of two actions: if the value of y is uncorrupted, y is copied into

the output, and if the value of z is uncorrupted, z is copied into the output. These actions are

as follows:

CR1 :: out=? ^ (y=z _ y=x) �! out := y

CR2 :: out=? ^ (z=x _ z=y) �! out := z

Thus, we have

DR; IR [] CR is masking `one input corruption'-tolerant.

Observe that DR; IR [] CR is the triple modular redundancy program, and, by construction,

it contains detectors and correctors.

6.2 Byzantine agreement

Consider the problem of Byzantine agreement: a unique general g outputs a binary value

d:g, and every non-general process eventually outputs its decision subject to the following two

conditions: (1) if g is not subject to a Byzantine fault, the decision output by all non-Byzantine

processes are identical to d:g, and (2) even if g is subject to a Byzantine fault the decision

output by all non-Byzantine processes are identical.

Byzantine faults corrupt processes permanently and undetectably such that the corrupted

processes execute arbitrarily nondeterministic actions. It is well known that masking tolerant

Byzantine agreement is possible i� there are at least 3f+1 processes, where f is the number

of Byzantine processes [12]. For ease of exposition, we will restrict our attention to the case

where the total number of processes (including g) is 4 and, hence, f is 1. (We discuss the

general case where f is greater than one elsewhere [11].)

We show that a Byzantine agreement program can be designed by �rst designing a fault-

intolerant program, IB, and then adding to it a detector, DB, followed by a corrector, CB.

23

Fault-intolerant program IB. IB consists of two actions for each non-general process, j: the

�rst action copies the decision d:g of the general into the d:j. The value ? of d:j is used to

denote that j has not yet copied the decision of the general. (We assume that d:g is not ?.)
The second action outputs the decision of j. Thus, the actions of j are as follows:

IB1:j :: d:j=? �! d:j := d:g

IB2:j :: d:j 6=? �! f output d:j g

To represent Byzantine faults, we introduce an auxiliary variable b:j at each process j (including

the general). IB1:j and IB2:j are executed when b:j is false, i.e., j is non-Byzantine. If b:j

is true, i.e., process j is Byzantine, j is allowed to change its decision arbitrarily, or output

an arbitrary decision. Thus, the Byzantine fault at process j is represented by the action that

changes b:j from false to true, thereby permitting the process to enter the Byzantine mode. In

other words, to each process j, BY Z:j is added that consists of the following two actions:

BY Z1:j :: b:j �! d:g := 0j1
BY Z2:j :: b:j �! f output 0j1 g

Detector DB. Observe that a non-general process j violates the safety speci�cation when it

executes IB2 from states where g is Byzantine. To preserve the safety speci�cation, we add a

detector DB:j to each non-general process j. DB:j ensures that the decision being output by j

satis�es the safety speci�cation of Byzantine agreement, by checking that d:j equals corrdecn,

where

corrdecn = d:g if :b:g
(majority j : j 6=g : d:j) otherwise

The detection predicate of DB:j is d:j = corrdecn, and the witness predicate of DB:j is

((8k : k 6=g : d:k 6=?) ^ d:j=(majority k : k 6=g : d:k)) . DB:j contains actions that let each

non-general process copy the decision from the general, i.e., DB:j consists of the action IB1:k

at the non-general processes. Thus, we have

BY Z:g [] ([]j : j 6=g : IB1:j [] DB:j; IB2:j [] BY Z:j) is fail-safe Byzantine-tolerant.

Corrector CB. In program BY Z:g [] ([]j : j 6= g : IB1:j [] DB:j; IB2:j [] BY Z:j), if g is

Byzantine and sends di�erent values to non-general processes, one non-general process will be

blocked from being able to output its decision. To add masking tolerance, we add a corrector

CB:j to each non-general process j. The correction predicate of CB:j is d:j=corrdecn and its

witness predicate is ((8k : k 6=g : d:k 6=?) ^ d:j=(majority k : k 6=g : d:k)) . The actions of

CB:j consist of the actions IB1:k at the non-general processes and the action CB1:j, where

CB1:j :: (8k : k 6=g : d:k 6=?) ^ d:j 6=(majority k : k 6=g : d:k) �! d:j := (majority k : k 6=g : d:k)

24

Thus, we have

BY Z:g [] ([]j : j 6=g : IB1:j [] DB:j; IB2:j [] CB:j [] BY Z:j)

is masking Byzantine-tolerant.

Observe that BY Z:g [] ([]j : j 6= g : IB1:j [] DB:j; IB2:j [] CB:j [] BY Z:j) is the

Byzantine agreement program where at most one process is Byzantine. And, by construction,

it contains detectors and correctors.

7 Concluding Remarks

In this paper, we presented a theory of detectors and correctors to show that they are integral

parts of a rich class of fault-tolerant programs that includes those designed using encapsulation

and re�nement. More speci�cally, we showed that (1) programs re�ning a safety speci�cation

contain detectors, and fail-safe F -tolerant programs contain fail-safe tolerant detectors, (2)

programs that eventually re�ne a speci�cation contain correctors, and nonmasking F -tolerant

programs contain nonmasking tolerant correctors, and (3) masking F -tolerant programs con-

tain masking tolerant detectors and correctors.

We showed that detectors and correctors also exist in fault-tolerant programs designed using

extant methods such as replication and Schneider's state machine approach. Our approach

was constructive in that we demonstrated how programs designed using these methods can be

alternatively designed using detectors and correctors.

We note that our notion of detectors also applies to the recent work of Chandra and Toueg

on failure detection [7], although that work makes some distinctions among failure detectors

{such as strong and weak accuracy{ that we do not need for our purposes. Our detectors are

more general than failure detectors in the sense that the failure detectors are instantiations of

detectors whose detection predicates are of the form `the given process is down' or `the given

process is up'. Unlike detectors that focus on states reached in the execution of the program

and the faults, failure detectors focus on the states reached immediately after the fault and,

hence, for a given problem detectors are typically more abstract than failure detectors. Also,

for a given problem it is possible to design the detectors required for designing a fault-tolerant

program for that problem using failure detectors.

As mentioned in the introduction, in related work [4], we have addressed how detectors and

correctors can be added to a fault-intolerant program to obtain a fault-tolerant program. Our

design method has been used used to provide multitolerant and e�cient solutions to barrier

computations, repetitive Byzantine agreement, mutual exclusion, tree maintenance, leader

election, termination detection and bounded-space network management [4, 10, 11, 5]. Based

on this experience and the existence of a rich class of programs that contain detectors and

correctors, we conclude that detectors and correctors provide a powerful basis for e�cient,

component-based design of fault-tolerance.

One observation of interest is that detectors and correctors required in one program as well

as across di�erent programs are often similar. Therefore, we are developing a framework of

such components. This framework will speed up the development time for a new fault-tolerant

program as instantiation of the framework may be used to design the components required for

the problem at hand. It will also simplify proofs of interference freedom between components

when we can discharge these proofs at the framework level.

25

We are also working on mechanized veri�cation and synthesis of component based fault-tolerant

programs. Towards mechanized veri�cation, we are encoding the theory of detectors and cor-

rectors {including the theory that deals with adding these components to obtain fault-tolerant

programs{ into the theorem-prover PVS [15]. Using the partial theory we have currently en-

coded in PVS, we have mechanically proved the correctness of Dijkstra's token ring program

[9] in a compositional manner. Towards mechanized synthesis, we are developing a method

that will synthesize the fault-tolerance components required for achieving each of the toler-

ance requirements, and compose these components with the given fault-intolerant program to

obtain a fault-tolerant program.

To facilitate the implementation of fault-tolerant programs, we are currently developing a tool

called SIEFAST. SIEFAST provides an environment that enables stepwise design, implemen-

tation and validation of component-based fault-tolerant distributed programs. It also permits

distributed and hybrid simulations; in a distributed simulation, the processes in a distributed

program are run in parallel, typically on di�erent machines. In a hybrid simulation, some

components of the program are implemented while others are simulated. A hybrid simulation

allows stepwise re�nement of programs where we can implement the program one component

at a time and still continue to verify the functionality, fault-tolerance and performance in the

intermediate steps. Finally, apart from faults, SIEFAST allows modeling of intruders, and

permits simulation and veri�cation of security protocols.

References

[1] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on Programming

Languages and Systems, 15(1):73{132, January 1993.

[2] B. Alpern and F. B. Schneider. De�ning liveness. Information Processing Letters, 21:181{

185, 1985.

[3] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering, 19(11):1015{1027, 1993.

[4] A. Arora and S. S. Kulkarni. Component based design of multitolerance. IEEE Transac-

tions on Software Engineering, 24(1):63{78, January 1998.

[5] A. Arora and S. S. Kulkarni. Designing masking fault-tolerance via nonmasking fault-

tolerance. IEEE Transactions on Software Engineering, pages 435{450, June 1998. A

preliminary version appears in the Proceedings of the Fourteenth Symposium on Reliable

Distributed Systems, Bad Neuenahr, 1995, pages 174{185.

[6] A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance compo-

nents. International Conference on Distributed Computing Systems, pages 436{443, May

1998.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2), 1996.

[8] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,

1988.

26

[9] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications

of the ACM, 17(11), 1974.

[10] S. S. Kulkarni and A. Arora. Multitolerance in distributed reset. Chicago Journal of

Theoretical Computer Science, Special Issue on Self-Stabilization, 1998, to appear.

[11] S. S. Kulkarni and A. Arora. Compositional design of multitolerant repetitive byzantine

agreement. Proceedings of the Seventeenth International Conference on Foundations of

Software Technology and Theoretical Computer Science, Kharagpur, India, pages 169{183,

December 1997.

[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transac-

tions on Programming Languages and Systems, 1982.

[13] B. Randell. System structure for software fault tolerance. IEEE Transactions on Software

Engineering., pages 220{232, 1975.

[14] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Computing Surveys, 22(4):299{319, December 1990.

[15] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Manual.

Computer Science Laboratory, SRI International, Menlo Park, CA, February 1993. A new

edition for PVS Version 2 is released in 1998.

27

Appendix : Notation

Symbols

p; q; p
0
; d; c; pf; pn; pm programs

F faults

s; s0; s1; s0; s00; s10 program states

ac; ac
0
; ac1; ac10 program actions

R;S; T; Sp; S
0
; sf;X;Z; U; sf1;X1; Z1; U1; sf2 state predicates

c; c1; c0; c10 program computations

�; �; ; � state sequences

SPEC problem speci�cation

SSPEC safety speci�cation

Program compositions

[] parallel composition

^ restriction

; sequential composition

Propositional connectives (in decreasing order of precedence)

: negation

^;_ conjunction, disjunction

);(implication, consequence

�; 6� equivalence, inequivalence

First order quanti�ers

8;9 universal, existential

8x : R(x) : S(x) forall x that satisfy R(x), S(x) is true

9x : R(x) : S(x) there exists x such that R(x) and S(x) is true

28

