
Ž .JOURNAL OF ALGORITHMS 22, 158]186 1997
ARTICLE NO. AL960819

Slide}The Key to Polynomial
End-to-End Communication*

Yehuda Afek

Department of Computer Science, Tel-A¨ ï Unï ersity, Tel-E¨ ï 69978, Israel

Baruch Awerbuch†

Computer Science Department, Johns Hopkins Unï ersity; and Department of
Mathematics and Laboratory for Computer Science, MIT, Cambridge, Massachusetts

02139

Eli Gafni‡

Computer Science Department, Unï ersity of California, Los Angeles, California 90024

and

Yishay Mansour,§ Adi Rosen, and Nir Shavit¶´

Department of Computer Science, Tel-A¨ ï Unï ersity, Tel-A¨ ï 69978, Israel

Received December 19, 1995

*Preliminary versions of the various results in this paper appeared in Proc. of the 30th
IEEE Annual Symp. on Foundation of Computer Science, 1989, and Proc. of the Ele¨enth

w xAnnual ACM Symp. on Principles of Distributed Computing, 1992 AMS89, AGR92 .
†Supported by Air Force Contract TNDGAFOSR-86-0078, ARO Contract DAAL03-86-K-

0171, NSF Contract CCR8611442, and a special grant from IBM.
‡Supported by NSF Presidential Young Investigator Award under Grant DCR84-51396 and

matching funds from XEROX Co. under Grant W881111.
§ Part of the research was done while the author was at Laboratory for Computer science,

MIT, partially supported by NSF 865727-CCR, ARO DALL03-86-K-017, and ISEF fellow-
ship, and at IBM]T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY
10598.

¶Part of this work was performed while this author was at the Hebrew University,
Jerusalem and the TDS group at MIT. Supported by Israeli Communications Ministry Award,
and by NSF Contract CCR-8611442, by ONR Contract N0014-85-K-0168, by DARPA
Contract N00014-83-K-0125, and a special grant from IBM.

158

0196-6774r97 $25.00
Copyright Q 1997 by Academic Press
All rights of reproduction in any form reserved.

THE SLIDE PROTOCOL 159

We consider the basic task of of end-to-end communication in dynamic networks,
that is, delivery in finite time of data items generated on-line by a sender, to a
receiver, in order and without duplication or omission.

A dynamic communication network is one in which links may repeatedly fail and
recover. In such a network, though it is impossible to establish a communication
path consisting of nonfailed links, reliable communication is possible, if there is no
cut of permanently failed links between a sender and receiver.

This paper presents the first polynomial complexity end-to-end communication
Ž 2 .protocol in dynamic networks. In the worst case the protocol sends O n m

messages per data item delivered, where n and m are the number of processors
and number of links in the network respectively. The centerpiece of our solution is
the novel slide protocol, a simple and efficient method for delivering tokens across
an unreliable network. Slide is the basis for several self-stabilizing protocols and
load-balancing algorithms for dynamic networks that have subsequently appeared
in the literature.

We use our end-to-end protocol to derive a file-transfer protocol for sufficiently
Ž .large files. The bit communication complexity of this protocol is O nD bits, where

Ž .D is the size in bits of the file. This file-transfer protocol yields an O n amortized
message complexity end-to-end protocol. Q 1997 Academic Press

1. INTRODUCTION

A basic problem in computer networks is that of end-to-end communica-
tion, that is, the delivery in finite time of data items, generated at a
designated sender processor to a designated receï er processor without
duplication, omission, or reordering of the data-items. The data items
could represent transactions of a stock exchange, files to be transferred,
interactive remote processing messages, etc. In almost all cases, the
sequence of data items is produced on-line and is not available at the
beginning of the protocol’s execution.

In a reliable network, where communication links never fail, end-to-end
communication is easily performed by establishing a fixed communication
path between the sender and the receiver, and sending all data items along

w xthis path. However, communication networks like ARPANET MRR80
w xand DECNET Wec80 , have a dynamic topology, i.e., links may repeatedly

fail and recover, making it impossible to rely on any single communication
path.

The ‘‘classical’’ approach to the problem in dynamic networks is to
construct a new communication path every time the previous path fails,
purging any messages in transit on the old path. However, this approach is

Ž wlimited since its implementations e.g., Fin79, Gal76, AAG87, AS88,
x.AAM89, AGH90 require strong assumptions regarding the allowable

wpatterns of link failures in the network. In some works AAG87, AS88,
xAAM89 , the assumption is that the whole network stabilizes for a period

of time long enough to allow the construction of a path and the delivery of

AFEK ET AL.160

at least one data item over it. Moreover, as networks become larger and
presumably topological changes occur more often, the above approach
yields protocols that might grind to a halt. However, as noted in previous

w xworks Vis83, AE86 , the existence of an operational communication path
is not a necessary condition for communicating between two processors. A
necessary condition for communication is that even though there is never a
point in time during which there is a path of operational links between
sender and receiver, they are e¨entually connected: there is no cut of
permanently failed links separating the sender from the receiver. Formally
this means that there exists no partition of the network into two sets, one
containing the sender and the other the receiver, such that from some time
and on, no message can be delivered from any processor in one set to any
processor in the other set.

w xEarly papers Vis83, AE86 solving the end-to-end communication prob-
lem under the eventual connectivity condition employed ‘‘unbounded
sequence numbers,’’ implying that both the message size and the amount
of memory needed grow with the number of data items transmitted.
Therefore, the space and communication complexity of those protocols is
unbounded in terms of the size of the network. In recent years a sequence
of works gave bounded and increasingly efficient solutions to the problem.
The first bounded end-to-end communication protocol under the eventual

w x Ž .connectivity fairness condition AG88 required only O 1 space per-link,
but had an exponential communication complexity.

This paper presents the first polynomial complexity end-to-end commu-
nication protocol in dynamic networks. In the worst case the protocol

Ž 2 .sends O n m messages per data item delivered, where n and m are
respectively the total number of processors and links in the network. A

w xpreliminary version by three of the authors AMS89 presented an algo-
Ž 9.rithm with a message complexity of O n . Another preliminary end-to-end

protocol by two of the authors, based on the resynchronization protocol
w xAG91 for unreliable networks, constructed an end-to-end communication

Ž .protocol with an improved O nm message complexity. Though the pre-
w xsented algorithm is a factor of n slower than AG91 , it is substantially

simpler and more streamlined than either of the above, and unlike them
can be used to yield an efficient file-transfer protocol. Furthermore, its key
component is the novel slide protocol which we have reason to believe will
become a popular building block for dynamic network algorithms. In fact,

w xa recent work KOR95 builds upon the slide to obtain an end-to-end
communication protocol with logarithmic space complexity, and at the
same time polynomial communication complexity. In Table 1 below we
compare the performance of the various known end-to-end communication
protocols.

Slide is a simple and efficient method for delivering tokens across an
unreliable network. Like the Merlin-Schweizer deadlock avoidance algo-

THE SLIDE PROTOCOL 161

TABLE 1

Paper Communication complexity Space complexity

w xVis83, AE86 unbounded: ` unbounded: `
w x Ž .AG88 , Alg. 1. unbounded: ` constant: O D
w x Ž Ž .. Ž .AG88 , Alg. 2. exponential: O D ? exponential n logarithmic: O log n q D

2Ž . Ž .Present work polynomial: O n mD linear: O nD
w x Ž . Ž .AG91 polynomial: O nm log n q mD linear: O n q D

2w x Ž . Ž .KOR95 polynomial: O n mD logarithmic: O log n q D

w xrithm MS80 , it uses store-and-forward buffer hierarchies to control
packet flow. However, the similarity ends here: slide allows packets the
freedom to move in the network obliviously and permits deadlocks caused
by individual packets that are delayed in the network for an indefinite
periods of time. It uses the buffer hierarchy to balance the flow of packets,
so that if enough packets of a given type are put into the network by a
sender, some packets must reach the receiver processor.

We construct our first end-to-end communication protocol by combining
w q xslide with the majority selection mechanism of AAF 90 . We then present

a second protocol without majority selection, which has the advantage of
being data-oblivious, i.e., the protocol does not access the data being
transmitted. This modular separation of messages into a ‘‘control bits’’ part
and a ‘‘data’’ part is standard practice in communication protocols. A
combination of key elements of the two protocols, in conjunction with the

Ž . w xInformation Dispersal Algorithm IDA of Rabin Rab89 , allows us to
Ž .design a file-transfer protocol with O nD bit communication complexity

for files of sufficiently large size D.
The rest of the paper is organized as follows. The slide protocol is

presented in subsection 4.1. Section 2 introduces the dynamic network
model. Section 3 provides an informal overview of our protocols. Section 4
includes their formal statement, proof of correctness, and analysis, specifi-
cally that of the slide protocol.

2. MODEL AND PROBLEM STATEMENT

2.1. The Network Model

Consider a communication network in the form of an undirected graph
Ž . < < < <G s V, E , V s n, E s m, where the nodes are the processors and the

edges are the links of communication.

AFEK ET AL.162

Processors are modeled as interactive Turing machines, and run mes-
sage driven programs. We do not require that they have distinct identifiers,
and in fact except for the sender and the receiver they all run the same
program. Each undirected link consists of two directed links, delivering
messages in the opposite directions. Below we describe the properties of a
directed link. We associate with each message a send e¨ent and a receï e
e¨ent; each event has its time of occurrence according to a global time,
unknown to the nodes. We assume no two events occur exactly at the same
time. A message is said to be in transit at any time after it send event and
before its receive event.

Each link has constant capacity, in the sense that only a constant
number of messages can be in transit on a given link at a given time. For
clarity of representation we present the protocols in a model in which each

Ž . Ž . Ž .link has O n capacity Lemma 4 . However, the model of O n capacity
links is easily reduced to the model of constant capacity links by maintain-

Ž .ing a buffer of O n outstanding messages for each link. This reduction
does not increase the space complexity of our protocols since their space

Ž .complexity is O n in either case. Each link delivers messages in FIFO
order, that is, the sequence of messages receï ed over it is a prefix of the
sequence of messages sent over the link. Also, the communication is
asynchronous: there is no a-priori bound on message transmission delays
over the links.

A directed link is non-̈ iable if starting from some message and on it
does not deliver any message: the transmission delay of this message and

Ž .any subsequent message sent on this link is considered to be infinite ` .
The sequence of messages received over the link is in this case a proper
prefix of the sequence of messages sent. Otherwise, the link is ¨iable. An
undirected link is ¨iable if both directed links that it consists of are viable.
We say that a node ¨ is e¨entually connected to a node u if there exists a
Ž .simple path from ¨ to u consisting entirely of undirected viable links.
Note that if there is a cut of the network, disconnecting the sender from
the receiver, such that all the directed links crossing the cut become
nonviable, then it becomes impossible to deliver messages from the sender
to the receiver.

Note that we model the undirected graph as a by-connected directed
graph. We thus assume that for each link either both its directed link or
viable, or both are nonviable. In this case, the assumption stated above of
eventual connectivity between the sender and the receiver is a necessary
minimal condition to allow communication between the sender and the
receiver. In the model of directed graphs, it could be the case that there

Žexists a directed viable path from the sender to the receiver and maybe a
.different one from the receiver to the sender , yet all undirected links are

THE SLIDE PROTOCOL 163

Ž .nonviable. We do not consider in the present paper this more difficult
model, and are dealing only with undirected graphs.

2.2. Other Models

w xThe model described above is called the ‘‘`-delay model’’ in AG88 , and
w xthe ‘‘fail-stop model’’ in AM88 . As mentioned in the introduction, we

deal with networks that frequently change their topology. In such dynamic
Ž .networks, links may fail and recover many times yet processors never fail

w xAAG87 , and each failure or recovery of a network link is eventually
reported at both its endpoints by some underlying link protocol. It is not
hard to see that any problem defined in the context of the dynamic-net-
work model can be reduced to the same problem defined in the context of
the fail-stop networks model. Given a network under the dynamic model,
and an algorithm for networks of the fail-stop model, one can apply the
given algorithm as follows: a message to be forwarded on a link is stored in
a buffer, which is manipulated by a lower-level protocol that leaves the
message in the buffer until all previous messages have been delivered, and
until the link recovers , if it is down. A protocol similar to the data-link

w xinitialization protocol BS88 is used to guarantee that no message is lost
or duplicated. Any link in the dynamic network that fails and never
recovers for a long enough period to allow the delivery of a message is
represented by a nonviable link in the fail-stop model; each link that
eventually recovers for such a long enough period of time is represented
by a viable link. Any two nodes that are eventually connected in the
dynamic network model are eventually connected in the fail-stop model.

2.3. The End-to-End Problem

The purpose of the end-to-end communication protocol is to establish a
Ž .directed ‘‘virtual link’’ to be used for the delivery of data inserted from
the environment to one distinguished processor, called the sender and
usually denoted by S, to a second distinguished processor, called the
receiver and usually denoted by R, that in turn will extract them to its
environment. It is required that this virtual link be viable if the sender is
eventually connected to the receiver. This virtual link should have the
same properties as a ‘‘regular’’ network line, namely

Safety: The sequence of data items output by the receiver is a prefix of
the sequence of data items input by the sender.

Lï eness: If the sender is eventually connected to the receiver, then
each data item input by the sender is eventually output by the receiver.

An algorithm for the end-to-end communication problem generates a
sequence of input events of data items at the sender and a sequence of

AFEK ET AL.164

receive events of data items at the receiver, that obey the safety and
liveness properties.

2.4. The Complexity Measures

We consider the following complexity measures:

Message: The total number of messages sent in the worst case in the
period of time between two successive data item output events at the
receiver.

Communication: The total number of bits sent in the worst case in the
period of time between two successive data item output events at the
receiver.

Space: The maximum amount of space per incident link, measured in
bits, required by a node’s program throughout the protocol.

DEFINITION 1. A protocol is bounded if its communication and space
complexities are independent of the number of data items, depending only
on the size of the network and the size of a data item.

DEFINITION 2. A protocol is polynomial if its communication and space
complexities are upper-bounded by polynomials of the size of the network.

Ž .We would like to stress the fact that being able to send receive an
infinite number of messages does not require either the sender or the

Ž .receiver to have infinite space. A single buffer at the sender receiver
suffices in order to store the next data item to be transmitted. The precise
formulation of this ‘‘interactive’’ statement of the problem can be found in
w xLMF88 .

3. INFORMAL DESCRIPTION

In this section, we informally describe the slide protocol, and then
describe three end-to-end communication protocols that use it as a build-
ing block. The formal presentation of these protocols, their proof of
correctness and their analysis follow in the next section.

3.1. The Slide Protocol

The purpose of the slide protocol is to deliver messages from a sender to
a receiver over an unreliable network. We refer to these messages as
tokens, since for the purpose of the slide protocol we are indifferent to the
contents of the messages. In the slide protocol one designated processor,

Ž .the sender, inputs tokens messages into the network. The sender can be

THE SLIDE PROTOCOL 165

in either of two states, enabled, or disabled, and it may insert new tokens
into the network only if it is enabled. A second designated processor, the
receiver, outputs the tokens from the network. Tokens are neither lost nor
duplicated in the network, and the total number of tokens in it at any
given time is bounded. If the sender and the receiver are eventually
connected, then eventually the sender is in the enabled state, that is, the
insertion of a new token into the network is possible. The order in which
the tokens are output by the receiver is, however, not necessarily that in
which they were input by the sender. More formally, if the sender and the
receiver are eventually connected, then the slide protocol establishes
between them a non-FIFO, bounded-capacity virtual communication link
that does not lost or duplicate messages.

The slide protocol is based on the storing and forwarding of tokens
between the processors of the network. Each undirected link is viewed as a
pair of directed antiparallel links. Each processor maintains for each
incident incoming link an array of slots numbered 1 through n. We regard
the elements of the array as ordered in increasing order of levels. Each
slot has room for one token, and each array is used to store tokens arriving
on the link associated with it; tokens from an array can be sent over any
outgoing link. The key to the protocol is the condition that a token be sent

Ž .from any slot i at processor ¨ to slot j at the ¨ , u array at processor u,
only if j - i. To this end, the processors maintain for each outgoing link a
variable holding an upper bound on the lowest numbered slot available at
the outer side of the link. The tokens are sent from slots with a number
higher than the bound, and thus are guaranteed to conform to the above
condition. Every time a token is removed from an array, a signal to this
effect is sent over the incoming link associated with the array. Since the
only source of tokens for a specific array is the processor on the other end
of its associated link, the bound can be maintained by incrementing it
every time a token is sent over the link, and decrementing it every time a
signal is received over the link. Thus the bound is never smaller than the
number of tokens in the array on the other side of the link plus the
number of tokens in transit over the link. As the links obey the FIFO rule,
the above mentioned variable is at any time t an upper bound for the
lowest numbered slot that is available in the receiving processor upon the
arrival of a token that is sent at time t.

New tokens enter the network only at the sender and to a special slot at
level n. The receiver has always a vacant slot of level 1, and removes and
outputs any token it receives.1 If the sender and the receiver are eventu-
ally connected, then eventually the special slot at the sender is vacant. The

1We remark that every node but the receiver, slots of level 1 are redundant, as a token
cannot be sent from such slots.

AFEK ET AL.166

tokens travel in the network from the sender to the receiver, sliding from
higher numbered slots to lower numbered slots as they advance from link
to link. Therefore, each token can make at most n hops in the network.

ŽSince the protocol maintains for each link 2n slots, and as we prove in the
.sequel this also bounds the total number, per link, of tokens in slots plus

tokens in transit at any given time, the total number of tokens in the
network at any given time is at most 2nm. This is the capacity of the slide
protocol, denoted CC. In Lemma 4 we show that we can replace the

Ž .assumption that link capacity is O n by an assumption that link capacity is
Ž .O 1 , by maintaining a 2n messages buffer of outstanding messages for

each link.

3.2. The Majority Algorithm

We construct a simple end-to-end communication algorithm by operat-
ing the slide from the sender processor S to the receiver processor R. To
send a data item to R, processor S sends consecutively 2 ? CC q 1 dupli-
cates of the data item to R using the slide. To output the first data item, R
waits for CC q 1 data items and outputs one of them, and for each
subsequent data item R waits for the next 2 ? CC q 1 data items, takes the
majority of the values received, and outputs this value. This is similar to

w q xthe protocol of AAF 90 . Since S sends 2 ? CC q 1 duplicates of each data
item and the slide can delay only up to CC data items, the receiver is
ensured of receiving enough data items to allow the output of the next
data item.

3.3. The Labels Algorithm

In the labels algorithm, each data item is marked with a unique label,
enabling the receiver to distinguish between a new data item that has yet
to be output and an old item that has already been output. The protocol is
thus data-oblivious in that it does not use the data itself for the control of
the protocol. The labels are not ‘‘sequence numbers,’’ since they need not
define an order on the items. Since the slide protocol has a bounded token
capacity, one can design an algorithm requiring only a bounded range of
labels by devising a technique allowing the sender to know which labels it
can reuse. We do so in the following way.

Ž . Ž .Given a designated sender S and receiver R of an end-to-end
communication problem, we operate two slide protocols, one from S to R
and another from R to S. The slide operated from R to S is used by R to
return to S tokens it received.

Ž .Let CC s O nm denote the maximum number of tokens that a single
Ž .slide protocol can delay. Let LL denote a set of O nm labels, and at any

point in time, let free LL be a variable holding the subset of LL from]

THE SLIDE PROTOCOL 167

which S can take a label to mark a new data item since the label does not
appear in any token in the network. Initially, free LL s LL .]

Processor R keeps for each label an indicator saying whether R may
accept a new data item with this label or not; initially, R may accept a data
item with any label. Whenever S wishes to send a data item to R, it
extracts a label l from free LL and starts sending tokens of the form]
Ž .l, data item to R. S stops sending these tokens either when the first such
token is received back from R, or after CC q 1 such token are sent. Any
token that arrives at R is returned to S using the R-to-S slide protocol.
Before returning the token, R processes the token as follows. If the status
of the label appearing in the token is acceptable, it outputs the receives
data item and sets the status of that label to not acceptable: otherwise
Ž .if the status of the label is not acceptable it ignores the token since
the received data item has already been output. Processor S counts, for
each label, the number of tokens it sends and the number of tokens it
received back from R. If and when all the tokens containing a certain label
arrive back, S can use the label again for transmitting future data items.
Before doing so, S must inform R that it should again set the status of the
label to acceptable. This is done by ‘‘reset’’ messages sent to R. In
order not to increase the complexity of the algorithm by adding the ‘‘reset’’
messages and in order to avoid deadlocks, a ‘‘reset’’ message is ‘‘piggy-
backed’’ on the tokens sent to R. To this end, upon the receipt by S of the
last token having label l, l is added to a set of ‘‘pending reset’’ labels. To
each data item sent, S adds a ‘‘reset’’ message for a label from the

Ž .‘‘pending reset’’ set if the set is not empty . When R receives a token
contains a ‘‘reset’’ message for l, it sets l to the acceptable status. If
and when S received back all the tokens containing a ‘‘reset’’ message for
a certain label l, S concludes that l is in the acceptable state at R, and
that the S-to-R slide is ‘‘clean’’ of tokens carrying either a data item
labeled by l, or a reset message for l. Therefore, l can be safely returned
to free LL for future use by S.]

Since the capacity of each slide is bounded by CC, no more than CC q 1
tokens have to be sent by S before at least one reaches R and the data
item is output. The algorithm is technically designed so that to ensure that

Ž .at any time the number of tokens stored in R before being returned to S
is bounded. Together with the fact that each slide can delay up to CC

token, this implies that a set of 6 ? CC q 3 labels allows the algorithm to run
Ž .without deadlocks see Section 4.3 .

3.4. The Data Dispersal Algorithm

Ž .We now show an algorithm that achieves O nD bit communication
complexity for the cases in which the data items are large with respect to

AFEK ET AL.168

Ž Ž . .the size of the network having size of V nm log n bits . The same
algorithm can also be used for smaller data items if the sender is allowed
to lump together several data items and transmit them together.

Recall that the slide protocol allows only a finite number of packets to
be delayed in the network. Based on this property, we are able to combine

w xthe slide protocol with Rabin’s Information Dispersal Algorithm Rab89
Ž .to achieve the O nD bit complexity. The general idea is that the sender

splits the data item into packets using the Information Dispersal Algo-
Ž .rithm IDA and sends them to the receiver using slide. As the IDA allows

the construction of the full data item from only a subset of these packets,
the protocol can tolerate the loss of the finite number of packets that can
be delayed in the network during the execution of slide. In addition, the
total size of the packets in any group from which the data item can be
constructed is not larger than the size of the data item itself; therefore we

Ž .build an efficient algorithm with O nD bit communication complexity.
More specifically, the sender creates, using the IDA, 2 ? CC q 1 packets,

Ž Ž ..each of size O Dr CC q 1 bits, where D is the size of the data item. The
sender sends each of these packets to the receiver, each one along with its
serial number as required by the IDA. This allows the receiver to construct
the full data item from only CC q 1 packets. The sender sends the 2 ? CC q 1
packets and, since at most CC packets can be delayed, the receiver will
receive enough packets to reconstruct the data item. The only difficulty
left is to make sure that the receiver does not use old delayed packets to
reconstruct data items subsequently sent. To overcome this difficulty, the
sender selects for each data item a label and adds it to all the packets of
the data item. The receiver outputs the first data item after calculating it
from the first CC q 1 packets it receives; for each subsequent data item it
waits for another 2 ? CC q 1 packets, checks which label has the majority
among the labels in the packets, and uses only the packets having this
label; this is similar to the Majority Algorithm. For each new data item the
sender must use a label that is not present in the network. Therefore, as in
the Labels Algorithm, the receiver sends back to the sender every packet it
receives through another slide operated in the opposite direction. Thus the
sender always knows which labels are present in the network. As the
capacity of each slide is bounded by CC, 2 ? CC q 1 different labels suffice.

The bit communication complexity of the Data Dispersal Algorithm is
Ž .O nD bits per data item if it is applied to large enough data items. As

Ž . Ž .each packet is sent with a serial number of size O log mn s O log n bits,
Ž .the size of a data item that yields this complexity should be V nm log n

bits. If the algorithm is applied to a smaller data items, it achieves an
Ž .amortized bit communication complexity of O nD bits, by combining

several data items together.

THE SLIDE PROTOCOL 169

4. FORMAL DESCRIPTION AND PROOFS

In this section, we formally state the code of the slide, the Majority, the
Labels and the Data Dispersal Algorithms, prove their correctness, and
analyze their complexities. The presentation of the code is based on the

w xlanguage of guarded commands of Dijkstra DF88 where the code of each
process is of the form

Select G ª A IG ª A I ??? G ª A End Select.1 1 2 2 l l

The code is executed by repeatedly selecting an arbitrary i from all guards
G that are true and executing A . A guard G is a conjunction ofi i i
predicates.

The predicate Receive M is true when a message M is available to be
received. If the statements associated with this predicate are executed,
then prior to this execution the message M is received. The message may
contain some values that are assigned, upon its receipt, to variables states

Ž Ž ..in the Receive predicate e.g., Receive TOKEN data .
Throughout the proofs we assume a global time, unknown to the nodes,

and we denote the value of variables in a node at a given time by a
Ž t.subscript of the node and a superscript of the time e.g., XX .¨

4.1. The Slide Protocol

The protocol, given in Fig. 1, uses two types of messages: TOKEN
messages that are used to transfer the tokens themselves, and
TOKEN LEFT messages that are used as signals to inform the other side
of the link that a token from the array associated with it was removed from
the array.

Each node has associated with each incoming link an array of n slots
ordered in levels from 1 to n. Each of these slots is used to store a single
token arriving on the respective incoming link. In addition, each node
maintains for each outgoing link a variable called bound, which is an upper
bound on the number of tokens in the array on the other end of the link
plus the number of tokens on the link plus 1. Thus, bound is an upper
bound on the height of the slot available for a token if it is sent. This
bound is maintained by initializing it to 1, incrementing it by 1 every time a
token is sent over the outgoing link, and decrementing it by 1 every time a
TOKEN LEFT message is received over the corresponding incoming link.
Whenever there is a token stored in a slot with a higher number than the
bound of some outgoing link, the token is removed from the slot and sent
over the link.

The differences between the sender and an ordinary node are due to the
fact that the sender is the node that inputs new tokens to the network.

AFEK ET AL.170

Ž . Ž . ŽFIG. 1. The slide. a Ordinary node’s code. b Additions for the sender sender code is a
. Ž .and b . c Receiver’s code.

Therefore it has an additional ‘‘special array’’ into which tokens are input
from an external process. These tokens are input into slot number n of the
‘‘special array.’’ Like all other arrays, tokens from this array can be sent
over any link.

The receiver outputs any token it receives and never sends tokens.

4.1.1. Correctness Proof of the Slide Protocol

In this section we prove

THEOREM 4.1. The slide protocol satisfies the following four properties:

PP1. For each token, the total number of times it is sent o¨er a link, is at
Žmost n. We say that each time a token is sent it is passed o¨er a link, and

.that it performs a hop in the network .
PP2. At any time t, the number of tokens in the network is bounded by
Ž .2nm. CC s 2nm .

PP3. In any time inter̈ al in which new new tokens are inserted into the
Ž 2 .network, at most O n m q new ? n token-passes can occur.

PP4. If the sender and the receï er are e¨entually connected, the sender
will e¨entually input a new token.

THE SLIDE PROTOCOL 171

Proof. We start with several definitions. The definition are used to
count the number of different messages on a given link at a given time.

DEFINITION 3. Let tokens t be the number of TOKENs in transituª ¨
from u to ¨ at time t. Let signals t be the number of TOKEN LEFTuª ¨
messages in transit from u to ¨ at time t.

Ž .LEMMA 1. At any time t and for any e s u, ¨ ,

t t t tw x w xbound e y 1 s top e q tokens q signals .u ¨ uª ¨ ¨ ª u

w xProof. Upon initialization, the invariant holds, since the bound e vari-
w xables are initialized to 1, the top e variables are initialized to 0, and no

message is in transit in the network. By induction on the events that
change any of the values participating in the invariant we can show that it
holds for any t. There are four events to be considered: send and receive
events of TOKEN messages from u to ¨ and send and receive events of
TOKEN LEFT messages from ¨ to u. Consider the first case, a send

w xevent of a TOKEN message from u to ¨ : bound e is incremented by 1,u
but so is tokens . The other three cases are proved similarly.uª ¨

The next lemma gives the main intuition for the progress in the
protocol.

LEMMA 2. If a token from slot i at node u is sent to node ¨ and is stored
there at slot j, then j - i.

Proof. Let t be the time just before the tokens is sent from u, and t9
the time just before it is received at ¨ . Denote by e the link between ¨ and
u, by new slot the slot number in which the token is stored in ¨ , and by
old slot the slot number where it was stored in u.

Because top is incremented only when tokens arrive on the link, and
because the links are FIFO, we have:

t 9 t tw x w xtop e F top e q tokens .¨ ¨ uª ¨

By Lemma 1,
t 9 tw x w xtop e q 1 F bound e .¨ ¨

w xt w xt 9By the code old slot) bound e and new slot s top e q 1, henceu ¨
old slot) new slot.

Since new tokens enter the network into slot n, this proves property
Ž .PP1 of the slide. Since all the tokens in the network are either stored in
the arrays or in transit over links, the following lemma proves property
Ž .PP2 .

AFEK ET AL.172

Ž .LEMMA 3. At any time t and for any e s u, ¨ ,

t tw xtop e q tokens F n.¨ uª ¨

w xt t w xtProof. By Lemma 1 top e q tokens F bound e y 1. For¨ uª ¨ u
w xbound e to be strictly greater than n, a token must be sent over e when

w xbounded e s n. By the code, this token must be stored in level G n q 1.
By Lemma 2, and since new tokens enter the network into level n slots,

tw xsuch a token cannot exist. Thus for any t bound e F n.u

Ž . Ž .We can now also prove properties PP3 and PP4 . We start by proving
Ž . Ž .property PP3 . By property PP2 the total number of tokens in the

Ž . Ž .network at the beginning of the time interval is O nm . By Property PP1
each can make up to n hops in the network, thus contributing up to
Ž 2 .O n m token passes. Any token from the new new tokens can also make

up to n hops.
Ž .The rest of the proof is devoted for proving property PP4 . By way of

contradiction assume that t is the last time at which the sender inputs a
token.

Ž .As a result of property PP3 and as there is only one TOKEN LEFT
message per token pass, there is a time t9 G t after which no TOKEN or
TOKEN LEFT messages are sent. As S and R are eventually connected,
there is a path R s ¨ , ¨ , . . . , ¨ , ¨ s S, k - n, such that for each0 1 ky1 k

Ž .0 F i F k y 1, e s ¨ , ¨ is viable, hence there is a time t0 G t9 byi iq1
which all messages between ¨ and ¨ , in both directions, are delivered.i iq1

By induction on the length of the viable path from ¨ to R, we will showi
that ¨ cannot have a token in a slot at level strictly greater than i afteri
time t0.

Ž .The receiver, ¨ , has no tokens stored at all. Denote by e the ¨ , ¨0 iy1 i
Ž .link i G 1 , and assume the inductive hypothesis that ¨ has no tokeniy1

stored at level strictly greater than i y 1. Since at t0 all messages between
¨ and ¨ have arrived, by Lemma 1 and the inductive assumptioniy1 i

w xt 0bound e F i. As t0 G t9, no token is sent after t0, but according to the¨ i

code this can happen only if ¨ has no tokens in slots of level i q 1 ori
more, proving the induction step.

Thus slot n at S is vacant, and S will enable the input of a new token,
contradicting the assumption.

The following lemma shows that our protocol applies in the model
Ž .where links have constant capacity by having an O n space buffer at the

tail of each link and sending every message only after receiving an
acknowledgment for the previous one. As the space complexity of the

Ž . Ž .protocol is already O n per link see below , this change does not affect
any of the complexity measures.

THE SLIDE PROTOCOL 173

LEMMA 4. At any time t, there are at most 2n messages in transit in each
direction on any link.

Ž .Proof. By Lemma 1, for any e, e s u, ¨ , and any time t

t tt tw x w xtokens F bound e y 1, and signals F bound e y 1.u uuª ¨ ¨ ª u

w xtBy the same arguments as in the proof of Lemma 3, bound e F n, foru
any t. Hence tokenst F n and signalst F n.uª ¨ ¨ ª u

The same arguments hold for the opposite directions; thus on any link at
any time there are at most n TOKEN messages and n TOKEN LEFT
messages in each direction.

4.1.2. The Complexity of the Slide Protocol

LEMMA 5. The number of messages sent by the slide protocol in any time
inter̈ al where new new tokens are input by the sender is bounded by
Ž 2 .O n m q new ? n .

Proof. The only message in the protocol are TOKEN messages and
TOKEN LEFT messages, and there is exactly one TOKEN LEFT mes-

Ž .sage per TOKEN message. The lemma thus follows from Property PP3 .

Ž .COROLLARY 6 Communication Complexity . The number of bits sent by
the slide protocol in any time inter̈ al where new new tokens are input by the

ŽŽ 2 . .sender is bounded by O n m q new ? n D , where D is the maximal number
of bits in a token.

The following claim follows from the code of the protocol and its
correctness.

Ž .Claim 6 Space Complexity . The space required at each node is
nD q 2 log n bits per incident link, where D is the maximal number of bits

Ž .in a token. If links have constant capacity then it is 2nD q n q 4 log n.

4.2. The Majority Algorithm

The algorithm is informally described in Section 3.2, and its code is
given in Figs. 2 and 3.

The Majority Algorithm uses the slide protocol, given in Section 4.1, as a
lower-level building block. The sender and the receiver of the Majority
Algorithm communicate using this protocol: each token to be sent by the
sender of the Majority Algorithm is input by the sender of the slide, and
upon the arrival of a token to the receiver of the slide, it is output by this
receiver and receï ed by the receiver of the Majority Algorithm.

AFEK ET AL.174

Ž . Ž .FIG. 2. The Majority Algorithm. a Receiver’s code; b sender’s code.

4.2.1. Correctness Proof of the Majority Algorithm

In this section we prove the Safety and Liveness properties of the
Majority Algorithm.

Ž .THEOREM 4.2 Safety . At any time the output of the receï er is a prefix of
the input of the sender.

Ž . Ž .Proof. We denote by I s I , I , . . . and by O s O , O , . . . the1 2 1 2
input to the sender and the output of the receiver, respectively. Denote by
t , i) 0, the time at which O is output.i i

To prove the theorem, we claim that the majority of the tokens received
Ž xby the receiver in the interval of time t , t carry data item I . Firstiy1 i i

we show that no token that carries I , k) i, would have been receivedk
before t .i

FIG. 3. The Majority Algorithm.

THE SLIDE PROTOCOL 175

The following definitions are used to count the number of tokens in the
system.

DEFINITION 4. Let inŽ t, t 9x be the number of tokens input by the sender
Ž x Ž t, t 9xto the slide in interval of time t, t9 . Let out be the number of tokens

Ž xreceived by the receiver from the slide in the interval of time t, t9 .

Denote by t some time before the beginning of the execution of the0
algorithm.

t Ž t0 , t x Ž t0 , t x ŽDEFINITION 5. delay s in y out the number of tokens delayed
.by the slide at time t .

By the code, the total number of tokens that have been received by the
receiver by time t isi

out Ž t0 , t i x s CC q 1 q i y 1 2 ? CC q 1 .Ž . Ž .

Since the network capacity of CC, the total number of tokens sent by the
sender at any time t is at most CC more than the total received by the
receiver at the same time, t. Thus,

inŽ t0 , t i x F i 2 ? CC q 1 1Ž . Ž .

Therefore, no token carrying I , k) i, can be sent by the sender before t .k i
Hence, no such token can be received by the receiver at t, t - t .i

We claim that no more than CC tokens containing data item I , k - i,k
Ž xmay be received in the interval of time t , t . This, together with theiy1 i

fact that no token carrying I , k) i, can arrive at time t - t , completesk i
the proof of the safety property because it implies that the 2 ? CC q 1

Ž xtokens received in t , t at least CC q 1 carry data item I .iy1 i i
To prove the claim, we distinguish between two sets of tokens, those that

carry data items I , k - i, which we call old, and all other tokens. We havek
already proved that all the tokens received by t are old and that theiy1

Žtotal number of such tokens received by the receiver by t is 2 ? CC qiy1
.Ž .1 i y 1 y CC. Since the total number of old tokens ever sent by the

Ž .Ž .sender is 2 ? CC q 1 i y 1 , at most CC may be received by the receiver in
Ž xthe interval of time t , t .iy1 i

Ž .THEOREM 4.3 Liveness . If the sender and the receï er are e¨entually
connected, then the receï er e¨entually outputs any data item gï en to the
sender.

Proof. If the sender inputs the ith data item, then it tries to send
Ž . Ž .i 2 ? CC q 1 tokens counted over the whole run . As the sender and the

Ž .receiver are eventually connected, by Property PP4 of the slide all the

AFEK ET AL.176

tokens are eventually input by the slide. Since the slide can delay at most
Ž .CC tokens, the receiver will eventually receive i 2 ? CC q 1 y CC tokens, and

thus output the ith data item.

4.2.2. The Complexity of the Majority Algorithm

Ž 2 .LEMMA 8. The message complexity of the majority algorithm is O n m
messages.

Ž xProof. Clearly in t , t the receiver receives 2 ? CC q 1 tokens. Sinceiy1 i
the slide can hold at most CC tokens, at most 3 ? CC q 1 tokens are sent by

Ž x Ž .the sender in t , t . As CC s O nm , the lemma follows from Lemma 5.iy1 i

Ž 2 .Since every bit in this algorithm is duplicated O n m times, we estab-
lish the following corollary.

Ž .COROLLARY 9 Communication Complexity . The bit communication
Ž 2 .complexity of the majority algorithm is O n mD bits, where D is the size in

bits of a data item.

Ž .LEMMA 10 Space Complexity . The space complexity of any node except
Ž . Ž .the receï er is O nD bits and O nmD bits for the receï er, where D is the

size in bits of a data item.

Proof. Each token sent in the Majority Algorithm consists of D bits.
Combining that with the space complexity of the slide results in space

Ž .complexity of O nD for the Majority Algorithm for any node except the
Ž .receiver. The receiver requires in addition O nmD bits.

4.3. The Labels Algorithm

The algorithm is informally described in Section 3.3, and the code of the
algorithm is given in Fig. 4. In the algorithm we use two slide protocols
between the sender and the receiver, operating in opposing directions. In
the code we use the subscripts S ª R and R ª S to denote operation
with respect to the slide from the sender to the receiver and the slide from
the receiver to the sender, respectively. Similarly to the Majority Algo-
rithm, the slide is a lower-level building block used by the Labels Algo-
rithm. Tokens to be sent by the Labels Algorithm are input by the sender
of the corresponding slide protocol, and upon their arrival to the corre-
sponding receiver, they are output by it, and receï ed by the process of
the Labels Algorithm.

Each token sent from S to R consists of three fields: a label, marking
the token: a data item; and a piggy-backed reset-label. The set LL is a set
of 6 ? CC q 3 labels, where CC is the capacity of a single slide. Each token

THE SLIDE PROTOCOL 177

Ž . Ž .FIG. 4. The Labels Algorithm. a Sender’s code; b receiver’s code.

received by R is stored in a buffer before being returned to R. As the two
slide protocols may operate at different paces, many tokens may be stored
in the buffer. Therefore, we use at S at variable missing that counts the
number of tokens that were sent but not returns yet. By delaying the input
of a new data item until missing F 2 ? CC, we can limit the number of
tokens stored at R. The array count counts for each label l how many
tokens labeled by l are currently in the network. The function

Ž .extract set extracts an arbitrary element from set. If set is empty, the
function returns null.

4.3.1. Correctness Proof of the Labels Algorithm

In this section we prove the Liveness and Safety properties of the Labels
Algorithm.

The ‘‘life-cycle’’ of each label, as viewed by the sender, consists of four
periods of time. First the labels is in free LL , second it is removed from]
free LL to label tokens into the network, third it is pending reset, and then]

AFEK ET AL.178

it is piggy-backed to tokens in order to be reset at the receiver. After all
tokens resetting a label return to S, the label is returned to free LL to]
start a new ‘‘life-cycle.’’ We define subsets of the labels, corresponding to
the sets of labels that are in each of the above mentioned periods in the
‘‘life-cycle’’ of a label.

DEFINITION 6. Let sending t be the set of labels that at time t are used
to label tokens that are either delayed by any of the two slide protocols or
are in the receiver’s send buffer. Let pending rest t be the set of labels
that at time t are in the set labels to reset of the sender. Let resetting t be
the set of labels that at time t are piggy-backed on tokens that are either
by any of the two slide protocols or in the receiver’s send buffer.

Claim 11. At the sender, at any time t, missing t F 3 ? CC.

Proof. The variable missing is incremented when a token is sent by the
sender. By the code, at most CC q 1 tokens are sent between any two input
events at the sender. The input event at the sender can occur only when
missing F 2 ? CC. Therefore, for any time t missing F 3 ? CC q 1.

Note that this implies that, at any time, send buffer at the receiver
stores at most 3 ? CC q 1 tokens.

LEMMA 12. At any time t,

< t < < t <1. sending F 3 ? CC q 1 and resetting F 3 ? CC q 1.
< t < < t <2. sending q pending reset F 3 ? CC q 1.

Proof. Part 1 follows immediately from Claim 11. To prove part 2, note
that each time a label is added to sending, either pending reset is empty,
or a label is extracted from it. Therefore part 2 follows from part 1. To
formally prove it, assume by way of contradiction that t is the earliest0

< < < <time when sending q pending reset) 3 ? CC q 1. This means that, at t ,0
a label was added either to sending or to pending reset.

By the code, a label is added to pending reset if and only if at t the last0
token containing the label at the ‘‘sending’’ field arrived at S, which means
that the label is extracted at the same time from sending, contradicting the

< < < <assumption that t is the earliest sending q pending reset) 3 ? CC q 1.0
If the label is added to sending, then by the code, if at this time

pending reset is not empty, a label to be reset is sent with the tokens and
this label is extracted from pending reset, contradicting the assumption
that at t the sum of the cardinalities increases.0

< <Thus, pending reset must be empty at t , therefore sending q0
< < < <pending reset) 3 ? CC q 1 yields sending) 3 ? CC q 1, contradicting
part 1.

THE SLIDE PROTOCOL 179

< < ŽLEMMA 13. If LL G 6 ? CC q 3, then free LL is ne¨er empty, i.e., the
.sender will always ha¨e able to send with a new data item .

Proof. The lemma follows Lemma 12.

Ž .THEOREM 4.4 Liveness . If the sender and the receï er are e¨entually
connected, then any data item input by the sender is e¨entually output by the
receï er.

Proof. Let us first prove the following two lemmas

LEMMA 14. If the sender and the receï er are e¨entually connected, then
Ž .there is no deadlock at the sender i.e., e¨entually, missing F 2 ? CC .

Proof. Assume by way of contradiction that there is a time t such that
for any t9) t, missing G 2 ? CC q 1. By the code, the sender can send after
t at most CC q 1 tokens; therefore there is a time t0, after which the
sender does not send any more tokens. Assume the sender has sent until

Ž .t0 k tokens counted over the whole run . As the slide can delay only up to
CC tokens, the receiver has received by t0 at least k y CC tokens. All these
tokens are added to send buffer. Since the sender and the receiver are

Ž .eventually connected by property PP4 of the slide all these tokens are
eventually input by the R-to-S slide. As this slide can delay at most CC

tokens as well, the sender will eventually receive at least k y 2 ? CC tokens.
Therefore missing will eventually be F 2 ? CC.

This implies that any data item available for input will eventually be
input by the sender. Clearly, at least one token with a copy of each data
item is received by the receiver. Thus it remains to prove that one copy of
each data item will be output. For this, we need the following.

LEMMA 15. Let acceptablet be the set of labels whose state is accept-
able at time t in R. Then at any time, t, free LL : acceptablet.]

Proof. Clearly the invariant holds when the algorithm starts.
A label l is extracted from acceptable only when R receives a token with

l at the ‘‘labeling’’ field. Since at this time there is no token in the network
labeled with l, l cannot be in free LL .]

A label l is added to free LL only when all tokens with the label at the]
‘‘reset’’ field return to S. Assume this happens at time t. Since these
tokens return to S, they were received by R, setting l to the acceptable
status. Assume the last one was received by R at t9, t9 F t. But in the time

Ž xinterval t9, t there is no token with l at the ‘‘labeling’’ field in the slide to
R. Therefore at t, l is in the acceptable status in R.

Thus, the label l used by the sender with a new data item at time t is in
the acceptable status at time t at the receiver. Furthermore, at t there is

AFEK ET AL.180

no other token in the network with label l in it. Thus, when the first copy
of a token with label l, after time t, arrives at the receiver, the receiver
outputs the new data item.

Ž .THEOREM 4.5 Safety . At any time the output of the receï er is a prefix of
the input of the sender.

Proof. The liveness property implies that every data item that is input
at the sender is eventually output at the receiver. Next we claim that there
is no duplication in the sequence of data items output by the receiver. This
claim is proved by way of contradiction. Assume that data item I is outputi
twice by the receiver at time t and t . Thus at both times the receiver1 2

Ž . w xreceived a token of the form l, I , l9 and status l was acceptable.i
w xSince at t status l is set to not acceptable this implies that at some1

Ž .time t9, t - t9 - t , a token of the form),), l is received by R. At time1 2
Ž .t not such tokens exist in the network since l is extracted from free LL ,]

and any new such tokens can be created by the sender only after all tokens
Ž .of the form l, I ,) have arrived to S. Therefore such token are createdi

only after t , contradicting the fact that such token arrives at R at t9.2
It remains to show that there is no reordering in the output sequence.

Ž .This follows from the fact that the sender sends the i q 1 st data item
only after the ith data item has been output by the receiver.

4.3.2. The Complexity of the Labels Algorithm

Ž 2 .LEMMA 16. The message complexity of the labels algorithm is O n m .

This lemma follows from the properties of the slide and from the
bounded number of tokens input into each of the two slide protocols used,
as proved in the following two lemmas.

LEMMA 17. In any time inter̈ al between two consecutï e output e¨ents of
Ž .the receï er at most O nm tokens are input to the S-to-R slide.

Ž .Proof. The lemma follows from the following two facts: 1 the maxi-
mum number of tokens that can be input to the slide between any two

Ž .consecutive inputs events is bounded by CC q 1, and 2 any interval
between two consecutive output events overlap in time at most two
intervals between consecutive input events.

LEMMA 18. In any time inter̈ al between two consecutï e output e¨ents of
Ž .the receï er, at most O nm tokens are input to the R-to-S slide.

Proof. Denote by OUT and OUT the two output events that formi iq1
the time interval. The tokens that can be input to the R-to-S slide in this
time interval are the tokens in send buffer at OUT , the tokens that arei

THE SLIDE PROTOCOL 181

delayed by the S-to-R slide at OUT , and the tokens sent by the sender ini
Ž xthe time interval OUT , OUT .i iq1

Ž .By Claim 11 the number of tokens in send buffer is at most O nm .
Ž .Slide can delay also at most O nm tokens at any time. By the previous

Ž .lemma the sender sends in this time interval at most O nm tokens.

Each token sent in the Labels algorithm consists of a data item plus a
Ž .label of size O log n bits. We thus get the following corollaries.

Ž .COROLLARY 18 Communication Complexity . The bit communication
Ž 2 Ž ..complexity of the labels algorithm is O n m D q log n , where D is the

number of bits in a data item.

Ž .LEMMA 20 Space Complexity . The space complexity of any node except
Ž .the receï er and the sender is O nD q n log n , where D is the size in bits of a

data item.

ŽProof. Each token sent in the Labels Algorithm consists of O D q
.log n bits. Combining that with the space complexity of the slide, results

Ž .in space complexity in O nD q n log n for the Labels Algorithm.

Note that the space complexity of the sender and the receiver is
Ž .O nm log n q D .

4.4. The Data Dispersal Algorithm

The algorithm is informally described in Section 3.4, and the code of the
algorithm is given in Fig. 5. As in the Labels Algorithm, we use two
separate slide protocols, one from the sender to the receiver and another
in the opposite direction. We use the subscripts S ª R and R ª S the
same way as for the Labels Algorithm. The interaction between the slide
protocols and the processes of the present algorithm is the same as the
interaction stated for the Labels Algorithm.

Let LL denotes a set of 2 ? CC q 1 labels. The sender maintains for each
w xlabel l g LL a counter, count l , that holds at any time the number of

tokens labeled l that are present in the network. The sender can, there-
fore, conclude at any time which labels are present in the network. The

Ž .function extract set extracts an arbitrary element from set.
w xRabin’s Information Dispersal Algorithm Rab89 requires that the data

be represented as a sequence of numbers over the field ZZ , where p is ap
prime bigger than the number of packets to be created by the IDA. We
use the IDA to create 2 ? CC q 1 packets; therefore we need a prime p,
such that p) 4nm q 1. Since m F n2, any p such that p) 4n3 q 1
would do. In order to keep the size of the smallest data item to which the
Data Dispersal Algorithm can be applied as small as possible, we should
use the smallest p for which the above inequality holds. Since for any x

AFEK ET AL.182

Ž . Ž . Ž .FIG. 5. The Data Dispersal Algorithm. a Sender’s code; b receiver’s code; c proce-
dure check and output.

there is a prime q such that x F q F 2 x, there is always a prime that can
u Ž 3 .vbe represented in log 8n q 2 bits. Since each packet must contain at

least one full number over ZZ , the size of the smallest data item to whichp
Ž .the Data Dispersal Algorithm can be applied in V nm log n .

4.4.1. Correctness Proof of the Data Dispersal Algorithm

In this section we prove the Safety and Liveness Properties of the Data
dispersal Algorithm.

Ž .THEOREM 4.6 Safety . At any time the output of the receï er is a prefix of
the input of the sender.

Ž . Ž .Proof. We denote by I s I , I , . . . and by O s O , O , . . . the1 2 1 2
input to the sender and the output of the receiver, respectively. Let t bei

THE SLIDE PROTOCOL 183

the time when the receiver outputs O , and denote by l the label added toi i
the 2 ? CC q 1 packets calculated by the IDA from I at the sender. By thei
code, the tokens used at t to calculate O at the receiver are the 2 ? CC q 1i i

Ž xtokens received by it in the time interval t , t . By the same argumentsiy1 i
as in the proof of Theorem 4.2, at least CC q 1 of these tokens contain the
label l ; thus the majority of labels will be l , and the receiver will calculatei i
O from the tokens containing l . Since at the time the sender extracts li i i
from free LL , there is no token containing it in the network, the receiver]
will use at t only packets calculated from I at the sender. As notedi i
before, the receiver has at least CC q 1 such packets at t , and the IDA willi
correctly calculate I at t . Thus O s I for any i.i i i i

The proof of the Liveness property requires the following technical
lemma.

LEMMA 21. For any time t, missing F 4 ? CC q 1.

The proof is similar to the proof of Claim 11.
Note that this also implies that the receiver never stores more than

4 ? CC q 1 tokens in all its buffers.

Ž .THEOREM 4.7 Liveness . If the sender and the receï er are e¨entually
connected, then the receï er will e¨entually output any data item input by the
sender.

The proof is similar to the proof of Theorem 4.3.

4.4.2. The Complexity of the Data Dispersal Algorithm

LEMMA 22. The message complexity of the data dispersal algorithm is
Ž 2 .O n m messages.

Proof. Denote by t the time the ith data item is output at the receiver.i
We use for the S-to-R slide the same notation as in Section 4.2.1.
out Ž t i, t iq1 x s 2 ? CC q 1 and for any t, 0 F delayt F CC, thus CC q 1 F inŽ t i, t iq1 x

Ž . Ž .F 3 ? CC q 1. By Property PP2 of the slide CC s O nm and applying this
Ž 2 .to Lemma 5 yields a message complexity of O n m for the S-to-R slide.

Ž xThe tokens that are input to R-to-S slide in the time interval t , ti iq1
must be in tokens to return just after t , since new tokens are added toi
this set only at output events at the receiver. By Lemma 21, the receiver
stores at any time at most 4 ? CC q 1 tokens. In the worst case all of them
are in tokens to return at t. Thus at most 4 ? CC q 1 tokens are input to

Ž xthe R-to-S slide in the time interval t , t . Applying this to Propertyi iq1
Ž .PP2 of the slide and the results of Lemma 5, we obtain a message

Ž 2 .complexity of O n m for this slide..

AFEK ET AL.184

Combining the two slide protocols results in a message complexity of
2Ž .O n m for the Data Dispersal Algorithm.

Ž .LEMMA 23 Communication Complexity . The bit communication com-
Ž .plexity of the data dispersal algorithm is O nD bits, where D is the size in bits

Ž .of a data item, if D s V nm log n .

Proof. Each token sent in the Data Dispersal Algorithm consists of a
Ž Ž .. Ž .packet of size O Dr CC q 1 bits, a label of size O log n bits, and a serial
Ž .number of size O log n bits. The message complexity of the algorithm is

Ž 2 . Ž Ž .. .O n m , and half of the messages are of size O Dr CC q 1 q log n bits,
while the other half have constant size. The total number of bits sent
between any two consecutive output events at the receiver is, therefore,
ŽŽ 2 .Ž Ž . .. Ž 2 .O n m Dr CC q 1 q log n s O nD q n m log n . For data items of

Ž . Ž .size V nm log n the bit complexity is thus O nD .

Ž .LEMMA 24 Space complexity . The space complexity of any node except
Ž .the receï er and the sender is O Drm q n log n , where D is the size in bits of

a data item.

Ž Ž .Proof. Each token sent in the algorithm is of size O Dr CC q 1 q
.log n . Combining that with the space complexity of the slide, results in

Ž Ž Ž . ..space complexity of O n Dr CC q 1 q log n . Since CC s 2nm, the space
Ž .complexity is O Drm q n log n .

w xNote that using the analysis of the IDA Rab89 the space complexity of
Ž 2 2 . 2the sender and the receiver is O n m log n .

5. CONCLUSION

This paper introduces the slide protocol and uses it to provide the first
polynomial complexity end-to-end communication protocol in dynamic

w xnetworks. Since its initial publication AGR92 , slide has been used as the
basis for several new algorithms, including the elegant self-stabilizing

w x w xprotocols AV91, APSV91, Var92 , a load-balancing scheme AAMR93 ,
w xand a multi-commodity flow algorithms AL94, AL93 . We believe it will

find further applications in network protocol design as issues of availability
and fault-tolerance become more critical in distributed applications.

2 w xIt was pointed out to us by Michael Saks Sak91 that based on the slide and the majority
Ž 2 2 . Ž .mechanisms, for files of size at least V n m log n bits, one can build an O nD communi-

cation complexity file-transfer protocol without resorting to coding techniques such as the
IDA.

THE SLIDE PROTOCOL 185

ACKNOWLEDGMENTS

We thank Michael Merritt and Mike Saks for their many helpful comments.

REFERENCES

w q xAAF 90 Y. Afek, H. Attiya, A. Fekete, M. J. Fischer, N. Lynch, Y. Mansour, D. Wang,
and L. D. Zuck, Reliable communication over unreliable channels, J. ACM
Ž . Ž .41 6 1994 , 1267]1297.

w xAAG87 Y. Afek, B. Awerbuch, and E. Gafni, Applying static network protocols to
dynamic networks, in ‘‘Proc. of the 28th IEEE Ann. Symp. on Foundation of
Computer Science, 1987,’’ pp. 358]370.

w xAAM89 Y. Afek, B. Awerbuch, and H. Moriel, A complexity preserving reset procedure,
Technical Report MITrLCSrTM-389, MIT, May 1989.

w xAAMR93 W. Aiello, B. Awerbuch, B. Maggs, and S. Rao, Approximate load balancing on
dynamic and asynchronous networks, in ‘‘Proc. 25th ACM Symp. on Theory of
Computing, 1993, ’’ pp. 632]641.

w xAE86 B. Awerbuch and S. Even, Reliable broadcast protocols in unreliable networks,
.NETWORKS 16 1986 , 381]396.

w xAG88 Y. Afek and E. Gafni, End-to-end communication in unreliable networks, in
‘‘Proc. of the 7th ACM Symp. on Principles of Distributed Computing, 1988,’’
pp. 131]148.

w xAG91 Y. Afek and E. Gafni, Bootstrap network resynchronization: An efficient
technique for end-to-end communication, in ‘‘Proc. of the Tenth Ann. ACM

Ž .Symp. on Principles of Distributed Computing PODC , 1991,’’ pp. 295]307.
w xAGH90 B. Awerbuch, O. Goldreich, and A. Herzberg, A quantitative approach to

dynamic networks, in ‘‘Proc. 9th ACM Symp. on Principles of Distributed
Computing, 1990,’’ pp. 189]204.

w xAGR92 Y. Afek, E. Gafni, and A. Rosen, The slide mechanism with applications in
dynamic networks, in ‘‘Proc. 11th ACM Symp. on Principles of Distributed
Computing, 1992,’’ pp. 35]46.

w xAL93 B. Awerbuch and T. Leighton, A simple local-control approximation algorithm
for multicommodity flow, in ‘‘Proc. 34th IEEE Symposium on Foundations of

Ž .Computer Science FOCS , 1993,’’ pp. 459]469.
w xAL94 B. Awerbuch and T. Leighton, Improved approximation algorithms for multi-

commodity flow problem and local competitive routing in dynamic networks, in
Ž .‘‘Proc. 26th ACM Symposium on Theory of Computing STOC , 1994,’’ pp.

487]496.
w xAM88 B. Awerbuch and Y. Mansour, An efficient topology update protocol for

dynamic networks, unpublished manuscript, January 1988.
w xAMS89 B. Awerbuch, Y. Mansour, and N. Shavit, Polynomial end to end communica-

tion, in ‘‘Proc. of the 30th IEEE Ann. Symp. on Foundation of Computer
Science, 1989,’’ pp. 358]363.

w xAPSV91 B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilization by local
checking and correction, in ‘‘Proc. of the 32nd IEEE Ann. Symp. on Founda-
tion of Computer Science, 1991,’’ pp. 268]277.

w xAS88 B. Awerbuch and M. Sipser, Dynamic networks are as fast as static networks, in
‘‘Proc. of the 29th IEEE Ann. Symp. on Foundation of Computer Science,
1988,’’ pp. 206]220.

AFEK ET AL.186

w xAV91 B. Awerbuch and G. Varghese, Distributed program checking: A paradigm for
building self-stabilizing distributed protocols, in ‘‘Proc. of the 32nd IEEE Ann.
Symp. on Foundation of Computer Science, 1991,’’ pp. 258]267.

w xBS88 A. E. Baratz and A. Segall, Reliable link initialization procedures, IEEE Trans.
Ž . Ž .Comm. 36 2 1988 , 144]152.

w xDF88 E. W. Dijkstra and W. H. J. Feijin, ‘‘A Method of Programming,’’ Addison-Wes-
ley, Reading, MA, 1988.

w xFin79 S. G. Finn, Resynch procedures and fail-safe network protocol, IEEE Trans.
Ž .Comm. COM-27 1970 , 840]845.

w xGal76 R. G. Gallager, A shortest path routing algorithm with automatic resynch,
unpublished note, March 1976.

w xKOR95 E. Kushilevitz, R. Ostrovsky, A. Rosen, Log-space polynomial end-to-end com-´
munication, in ‘‘Proc. of the 27th Ann. ACM Symposium on the Theory of

Ž .Computing STOC , 1995,’’ pp. 559]568.
w xLMF88 N. Lynch, Y. Mansour, and A. Fekete, The data link layer: Two impossibility

results, in ‘‘Proc. of the Seventh ACM Symp. on Principles of Distributed
Computing, 1988,’’ pp. 149]170.

w xMRR80 J. M. McQuillan, I. Richer, and E. C. Rosen, The new routing algorithm for the
Ž . Ž .arpanet, IEEE Trans. Comm. COM-28 5 1980 , 711]719.

w xMS80 P. M. Merlin, and P. J. Schweitzer, Deadlock avoidance in store-and-forward
Ž . Ž .networks 1: Store-and-forward deadlock, IEEE Trans. Comm. 28 3 1980 ,

345]354.
w xRab89 M. O. Rabin, Efficient dispersal of information for security, load balancing, and

Ž . Ž .fault tolerance, J. ACM 36 2 1989 , 335]348.
w xSak91 M. Saks, personal communication, 1991.
w xVar92 G. Varghese, Dealing with Failure in Distributed Systems, PhD thesis, MIT,

Department of Electrical Engineering and Computer Science, 1992.
w xVis83 U. Vishkin, An efficient distributed orientation algorithm, IEEE Trans. Info.

Ž . Ž .Theory 29 4 1983 , 624]629.
w xWec80 S. Wecker, DNA: The digital network architecture, IEEE Trans. Comm. COM-

Ž .28 1980 , 510]526.

