
Computing with Faulty Shared Objects

YEHUDA AFEK

Tel-Aviv Universi@ Tel-Aviv, Israel, and AT&T Bell Laboratories, Murray Hillj New Jersq

DAVID S. GREENBERG

Sandia National Laboratories

MICHAEL MERRITT

AT&T Bell Laboratories, Murray Hill, New Jersqy

AND

GADI TAUBENFELD

AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. This paper investigates the effects of the failure of shared objects on distributed

systems. First the notion of a faulty shared object is introduced. Then upper and lower bounds on
the space complexity of implementing reliable shared objects are provided,

Shared object failures are modeled as instantaneous and arbitraty changes to the state of the

object. Several constructions of nonfaulty wait-free shared objects from a set of shared objects,

some of which may suffer any number of faults, are presented. Three of these constructions are:
(1) A reliable atomic read/write register from 20~ + 8 atomic read/write registers ~ of which

may be faulty, (2) a reliable test& set register for n processes from n + 10 primitive test & set
registers, one of which may be faulty, and 3n + 13 reliable atomic registers, and (3) a reliable
consensus object from 2f + 1 read-modify-write registers when f of these may be faulty. Using
these constructions a universal construction of any linearizable shared object from a set of either

A preliminary version of the results presented in this paper appeared in Proceedings of the llth
Annual ACM Symposium on Principles of Distributed Computing (Vancouver, B. C., Canada, Aug.
10-12). ACM, New York, pp. 47-58.

David Greenberg was supported in part by the U.S. Department of Energy under contract

DE-AC04-76DPO0789.

Authors’ addresses: Y. Afek, Tel-Aviv University, Tel-Aviv, Israel and AT&T Bell Laboratories,
600 Mountain Avenue, Murray Hill, NJ 07974 D. S. Greenberg, Sandia National Laboratories;
M. Merritt, AT&T Bell Laboratories, Room 213-409, 600 Mountain Avenue, Murray Hill, NJ
07974, e-mail: mischu@research,att.tom; G, Taubenfeld, AT&T Bell Laboratories, 600 Mountain
Avenue, Murray Hill, NJ 07974.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and\or a fee.
01995 ACM 0004-5411/95/1100-1231 $03.50

Journal of the Associationfor ComputinsMachine~,Vol. 42,1$0.6,November1995,pp. 1231-1274.

1232 Y. AFEK ET AL.

n-processor consensus objects or n-processor read-modifywrite registers, some of which may be
faulty, is presented.

Categories and Subject Descriptors: B.3.2. [Memory Structures]: Design Styles-shared memory.

General Terms: Algorithms, fault-tolerance, shared memory, synchronization.

Additional Key Words and Phrases: Atomic operations.

1. Introduction

The desire for increased performance, higher reliability, and decreased cost is

causing many real-world applications to be moved from mainframes to dis-

tributed systems. Previous to this work, research on the reliability of distributed

systems has concentrated on tolerating the failure of individual processors. It

has been shown that, by using shared objects to provide communication and

coordination between processors, it is possible to tolerate processor failures.

Distributed systems can be built that achieve the expected high performance

when no processors fail and that are able to continue (at a lower performance)

when even all but one processor fails.

These fault-tolerant systems depend critically on strong shared objects, yet

little research has been directed to studying how to tolerate faults in the shared

objects. This paper explicitly defines the problem of faulty shared objects and

shows how they can be made fault tolerant.

Before considering ~azdty shared objects we must define a shared object.

Intuitively, as the name implies, a shared object allows two or more processors

to share information (a formal definition is given in Section 2). The simplest

shared object is a shared memory word (or register), into which one processor

writes and any other may read.1 The necessity of having more complex shared

objects was recognized by IBM and other computer manufacturers in the early

1970’s. The inability of concurrent systems that used only read/write memory

cells to maintain a concurrent queue or stack or to reach consensus led to the

definition (and construction) of stronger primitives such as test-and-set and

semaphores [Dijkstra 1974; Peterson and Silberschatz 1985]. Most of this paper

is concerned with these stronger types of objects (one section, Section 4, is

devoted to read/write registers).

Herlihy has defined a hierarchy of progressively stronger shared objects

[Herlihy 1991]. Objects at each level are able to perform tasks that are

impossible for objects at the lower levels. The question asked in this paper is

whether it is possible to use shared objects that sometimes fail to meet their

specifications. It is shown, here, that it is indeed possible to use a set of objects
some of which are faulty (at each of three levels of the hierarchy: read/write,

test-and-set, and read-modify-write) to produce compound objects that are

fault tolerant. The highest level of the hierarchy (exemplified by our read-mod-

i&-write) is universal, that is, allows the construction of any other shared

object. A result of our constructions is that any shared memory object Y has a

fault tolerant construction from any object type X in the highest level, that is,

a construction from a set of objects of type X some of which may be faulty.

1See, for example, Burns and Peterson [1987], Lamport [1986], Singh et al. [1994], and Vit6nyi and
Awerbuch [1987].

Computing with Faulty Shared Objects 1233

It should be clear that a shared object is very different from local processor

memory. However, the distinction between shared object and shared memory is

less straightforward. A shared memory typically consists of a set of memory

locations that can be used for storing and retrieving data by several different

processors, and is not used for synchronization. A shared object includes a set

of semantic rules that restricts the behavior of the object that thus can be used

for synchronization. A shared memory can be used to build shared objects by

adding either hardware or software protocols to enforce the timing/coordina-

tion features of the shared object.

Since a shared object is defined by its behavior, it can be implemented in

many ways, either through hardware or through the combination of software

and hardware. Thus, the failure of a shared object can occur in many ways. Our

intent is that the model of shared object failure should cover all possible

failures in implementation. Hardware implementation can fail in several ways:

the data contained in the object can be corrupted, the control logic can

incorrectly order events, or requests can be lost due to switching failures.

Software protocols can fail in several ways: a buggy protocol entering an

infinite loop, a protocol mistakenly allowing a process to affect memory not

assigned to it, or a protocol receiving data in an order for which no contingency

had been planned.

One might attempt to apply common techniques for dealing with faulty local

memory to faulty shared objects. These techniques include keeping many

copies of each datum or, in general, using some type of redundant coding that

allows errors to be detected and/or corrected. Unfortunately, a shared object

is much more complex to implement than a memory cell of a uni-processor;

that is, common primitives such as read-modify-write or even simple reads and

writes require a memory which is much more than a passive repository of data

(see, e.g., Smith [1982]). The use of standard redundancy techniques within the

memory associated with the object will not, for example, prevent a loss of

access to the object through protocol failure.

If redundancy is spread across objects, then the encoding is subject to the

timing inconsistencies that are the bane of all distributed algorithms. Tech-

niques to recti~ faults in shared memory objects will necessarily have to

incorporate distributed coordination techniques. It is precisely how to supply

redundancy while maintaining distributed coordination which is the subject of

this paper,

After a discussion of shared object failures and the specification of faulty

memory primitives (in Section 2), the body of this paper presents a sequence of

constructions that use faulty shared memory objects. Section 3 presents ele-

mentary relations among general fault-tolerant constructions, showing how

different constructions can be composed. Section 4 begins with constructions of

reliable read/write memories from faulty read/write memories. Following

Lamport [1986], we present simple constructions of safe and regular registers

and conclude with a construction of a reliable atomic register from faulty

atomic registers. In Section 5, reliable test & set objects from similar objects,

some of which might be faulty, are constructed.
In Section 6, implementations of consensus are studied, using unreliable

read-modifi-write primitives. The constructions in this section demonstrate that

faults do not qualitatively decrease the power of these primitives, in that they

retain their positions in the memory hierarchy of Herlihy [1991]. Moreover, in

1234 Y. AFEK ET AL.

combination with the earlier register results, our consensus constructions can

be used to implement the universal construction of Herlihy [1991]. Hence, for

example, faulty read-modify-write primitives can be used to implement any

shared object. The paper closes with a discussion of open problems.

1.1. RELATED WORK. Theoretical research on fault-tolerance in shared

memory systems typically studies process failures and assumes that the shared

objects are reliable. 2 This paper describes the first study of the tolerance of

distributed systems to general faults in shared objects. 3 Memory failures are

restricted only either in total number, or in the number of data objects that

may be affected, without any restriction on the timing of the faults. Some

previous research has explored failures which are restricted to occur during

specific periods of time. For example, such constrained memory faults are

studied in work on self-stabilizing systems defined by Dijkstra [1974]. Self-stabi-

lizing systems are required to recover once the final memory fault has oc-

curred, and the system is in an arbitrary state. That is, self-stabilizing protocols

may start at any erroneous, globally inconsistent state and must always reach a

correct global state satisfying particular safety requirements.

Three previous papers investigated initialization failures, a special case of

self-stabilization [Fischer et al. to appear; 1993; Moran et al. 1992]. In that

model, only the initial state of shared objects may be corrupted, while the

initial state of the processors is not corrupted (e.g., the program counters). In

this paper, the corruption may repeat at any time during the run.

In Section 6 of this paper, we use implementations of consensus to explore

properties of faulty shared memory. The consensus problem is fundamental in

distributed computing and is at the core of many algorithms for fault-tolerant

distributed applications. Much is known about the consensus problem in other

fault models.4 Sections 4 and 5 investigate the question of constructing reliable

registers in an unreliable environment. This relates to the fundamental prob-

lem of implementing one type of shared object from another. Previous work on

shared object implementations includes Bloom [1987], Burns and Peterson

[1987], Herlihy [1991], Lamport [1986], Li et al. [1989], Plotkin [1988], Singh et

al. [1994], and VitAnyi and Awerbuch [1987].

As noted above, there is a relationship between implementing a parallel

processor shared memory and the construction of shared objects. Implement-

ing shared objects of any type in a network-based machine is difficult. The task

of including coordination protocols and fault tolerance could not begin without

the basic mechanisms for sharing. One approach to providing sharing is to use

local caches to hold pieces of global data required by each processor. Special

operating system functions and hardware remove from the user the burden of

coordinating the accesses to the shared data. One such system has been

proposed, implemented and analyzed in Li and Hudak [1989]. The KSR,

DASH, and Alewife machines are a few examples of machines that use such

‘See, for example, Abrahamson [1988], Afek et al. [1993], Bloom [1987], Burns and Peterson
[1987], Chor et al. [1987], Herlihy [1991], Lamport [1986], Plotkin [1988], Rabin [1982], Singh et al.
[1994], and Vit~nyi and Awerbuch [1987].
3Concurrently and independently of our work, Jayanti et al. [1992] have addressed similar
~roblems (see Section 7 for more on this paper).
See, for example, Abrahamson [1988], Aspnes and Herlihy [1990], Chor et al. [1987], Fischer

[1983], Fischer et al. [1985b; 1985c], Loui and Abu-Amara [1987], and Saks et al. [1991].

Computing with Faulty Shared Objects 1235

distributed shared memory [Bell 1992]. Another, more software-oriented, ap-

proach is implemented in the Linda system [Carriero and Gelernter 1989]. In

Linda, an abstract tuple space is shared (instead of cache lines or pages), and

operations are available to insert and delete tuples. Obviously, the choice of

one of these methods of implementing sharing (or any of many other clever

techniques) will affect the types of errors expected from shared objects. We

expect that our ideas on fault tolerance will be specialized to various imple-

mentations in order to increase efficiency.

2. Specifying Faulty Shared Memoiy Objects

We consider a collection of asynchronous processes that communicates via a

collection of shared memory objects. The shared memory may consist of a

variety of shared data objects. These shared objects are subject to faults. Each

fault of a shared object is modeled as a state change that appears to be atomic

with respect to the processes’ operations. The local (nonshared) memory for

each process is assumed to be reliable.

An object @’ shared by n processes can be specified via a state machine in

which the state transitions are labeled by the invocations and responses of

operations performed by the processes.

Definition 2.1. A sequential specification of an object type is a quintuple

{Q, S, 1, R, 8} where:

● Q 1Sa ~finite or infinite) set of states.
● S G Q 1s a set of initial states.

●I=(lrwl, ..., lnu~) is an n-tuple of sets, where each Inui is a set of

symbols denoting the operation invocations by process i. Let Irm = IJ i lnui.

. R = (Resl, Res~) is an n-tuple of sets, where each Resi is a set of

symbols denoting the operation responses for process i. Let Res = U ~Resi.

● Define the set of operations by process i on @ to be @pi = Inui x Resi, all

the two-character strings of invocations and responses by i, and let

Op = U iopi. Then 8 c Q x Op X Q is the transition relation.

This state machine denotes a set of (finite and infinite) strings, obtained by

concatenating the edge labels along paths in the state transition graph. The

sequential runs of @ are the (finite and infinite) prefixes of these strings.

(Taking prefixes allows runs to end with a pending invocation, that is, an invi

by some process i with no succeeding response, resi, by i).

Operations on shared objects are required to be total: for every state s ● Q,

every process i, and every inui ● Invi, there exists resi = Resi and s’ e Q such

that (s, inuiresi, s’) = 8.

The sequential specification allows operations to be specified as atomic state

transitions. However, in asynchronous concurrent systems operations have

duration and can overlap in time. This is modeled by allowing the interleaving

of invocations and responses by different processes, so that between the

invocation and response by one process may be any number of invocations or

responses by other processes. Thus, concurrent runs of the object are modeled

as elements of (Inu + Res)m (i.e., finite and infinite runs). Specific correctness

conditions constrain these runs by relating them to those in the sequential

specification. One such correctness condition is linearizability [Herlihy and

Wing 1987].

1236 Y. AFEK ET AL.

We next define the notion of linearizable runs of an object @. Given a string

of events a = (Inu + Res)m, define a partial order, <. on the events in a as

follows: a +. b if and only if either (1) both a and b are invocations or

responses of the same process (have the same subscript) and a appears before

b in a, or (2) a is a response that precedes the invocation b, in a. Then a is

atomic if there is a sequential run ~ of @, containing exactly the events in a
and such that the total order <~ is an extension Of <. .

Some widely studied objects are not atomic—the regular and safe registers

defined by Lamport [1986] are the best-known examples. In Section 4, we will

define safe and regular runs for register objects.

A fault in an object run is modeled as a transition to an arbitrary state.

Hence, a faulty object extends the set of operations of @ with a set of fault

operations, Op~ = {F(s’)ack: s’ = Q}. The transition relation 8 is augmented

to include (s, F(s’)ack.s’), for every s, s’ ● Q. Occurrences of these operations

in a run are faults of the object. Hence, the sequential specification of the

faulty object now includes faults, and atomic runs of the faulty object are

defined as before.

If all the shared objects in a shared memory may fail then obviously the only

constructions possible are those in which processes work in isolation and do

not communicate. Therefore, some constraints are imposed on the occurrence

of memory faults:

—We use m to denote the total number of memory faults (fault operations) in

a run of a system.

—We use ~ to denote the total number of objects in a system that may be

affected by memory faults in a run (or collection of runs) of a system.

A data object is k-faulty in a run or set of runs if it suffers at most k faults.

That is, at most k fault operations, in which this object is involved, are invoked

during each run. A data object is ~-@dty if there is no finite bound on the

number of faults it suffers.

2.1. IMPLEMENTATIONS. Whatever the types of fault, we are concerned

with the construction of high-level objects from potentially-faulty primitive

objects. For the purposes of this paper, h suffices to consider an implementa-

tion of an n-process high-level object @ from a set of primitive objects

{a,, . . . ,@k} as a set of procedures for each process. Invocations and responses

of these procedures are identified with those in the specification of @. The

procedures are allowed to do local computation, and communicate only by

making invocations and receiving responses from the primitive objects
{@,,..., @~}. Hence, runs of the implementation of @ consist of sequences

containing invocations and responses to the high-level object @, local steps of

the procedures, and invocations and responses to the primitive objects

{@l,..., @’k}.

The runs are constrained in the obvious way to respect the control flow of

the individual procedures, allowing arbitrary, asynchronous interleaving be-

tween the threads of distinct processes. Moreover, the subsequences of invoca-

tions and responses to each primitive object must satisfy the specification of

that object. Given these constraints, the subsequences of high-level invocations

and responses to & must in turn satisfy the specification of @.

Computing with Faulty Shared Objects 1237

To provide fault-tolerance against process failure, most of the implementa-

tions are also required to be wait-flee; that is, any single high-level operation

op (procedure invocation) must terminate, regardless of the steps taken by any

other high-level operations, provided the local actions and low-level operations

of op are allowed to progress [Lamport 1986].

This informal notion of implementation may be made precise using any of

several formalisms [Herlihy and Wing 1987; Herlihy 1991; Lamport 1986;

Lynch and Tuttle 1987].

In this paper, we require the constructions to tolerate a certain number of

memory faults. But we further require the constructions to be strongly wait-free;

that is, operations must return (perhaps with an incorrect value), even if too

many faults occur. That is, any high-level operation by a process must termi-

nate its execution, regardless of the number of shared memory faults and

independent of the steps taken by other processes. Thus, a strongly wait-free

construction may correctly implement a shared object for only a bounded

number of memory faults, but each high-level operation by a nonfaulty process

must still terminate, even if the bound on the number of memory faults is

exceeded in a given run. This property is important in composing implementa-

tions, as in Theorem 3.2. (Strong wait-freedom is a special case of gracejldly

degrading constructions [Jayanti et al. 1992]. See also the discussion in Section

7.)

In order to quantify the cost of having a certain number and type of memory

faults, we define a function, CONST, which represents the number of copies of

one type of object, some of which are faulty, that are necessary in any strongly

wait-free construction of a reliable n-processor object (of the same or other

type):

Definition 2.1.1.

—CONST(X, m, Y) ~f the number of n-processor objects of type X required

in any strongly wait-free construction of one n-processor object of type Y,

which is reliable in the presence of at most m memory faults among the type

X objects.

—CONST(X, (~, k), Y) ‘~f the number of n-processor objects of type X re-

quired in any strongly wait-free construction of one n-processor object of

type Y, which is reliable if at most f of the type X objects maybe k-faulty

(k can be CO).

Our results will typically be of the form CONST(RMW, m, consensus) s 2m

+ 1,an upper bound on the number of read-modify-write registers sufficient

for a strongly wait-free implementation of consensus when m memory faults

may occur, or CONST(RMW, m, consensus) > 2m + 1,a lower bound on the

number of read-modify-write registers necessary to implement consensus if m

memory faults may occur.5

2.2. ALTERNATE FAULT MODELS. The fault model in the previous section

assumes that faulty objects send signals that are syntactically correct, if

semantically absurd. A seemingly more malicious fault model might allow

5The lower bounds for specific problems in this paper hold for constructions that are reliable but

are not necessarily strongly wait-free. That is, the strongly wait-free assumption is not needed.

1238 Y. AFEK ET AL.

faulty objects to behave arbitrarily, never responding to requests, sending

syntactically incorrect replies, or sending replies for which there have been no

requests. Objects which may not respond to requests are studied in Jayanti

et al. [1992] and are shown to be too weak to be useful in fault-tolerant

constructions.

Consider objects which respond with syntactically senseless replies (a write

acknowledgment for a read operation, for example), or which spontaneously

send replies with no associated requests. It is simple to simulate the model

considered in this paper, by interposing code locally at each process. This code

substitutes arbitra~ syntactically correct responses for syntactically incorrect

responses (substituting a read of any value for the write acknowledgment) and

discards unanticipated responses. Once the request/response pattern is syntac-

tically correct, faulty write operations can be used to explain the semantic

absurdities.

Other less general types of faulty runs might include objects that never

change their value (after becoming faulty all reads return the same value

regardless of any write command), objects which occasionally miss a write (the

written value is never available to a read), and objects which occasionally

return the wrong value (some reads return arbitrary values or return values

which are not consistent with any ordering of the writes). Alternatively, the

timing of the faults might be restricted; for example, all memory faults might

occur before any process takes a step. Jayanti et al. [1992] define additional,

weaker (i.e., more constrained) fault models, which they call crash and omis-

sion. (A discussion of this paper appears in section ‘7.)

3. General Constructions

Recall the notation CONST(X, k~, Y) indicates the minimum number of ob-

jects of type X needed to construct an object of type Y for runs in which the

total number of faults is at most k~. Since these runs include those in which at

most ~ faults occur among at most k of the components of type X, we have

the first part of the theorem below,

THEOREM 3.1

—CONST(X, (~, k), Y) < CONST(X, kf, Y).

—CONST(X, f, Y) < CONST.(X, (f, f), y).

The second part of the theorem says it is no harder to survive a total of f

faults than to survive at most f faults each, among at most f components.

The next theorem demonstrates the importance of self-implementations: If

objects of type X can be composed to create an object of the same type that is
tolerant of t > 1 faults, then that construction can be bootstrapped to over-

come any larger number of faults. (Throughout, logarithms are base 2 unless

otherwise noted.)

THEOREM 3.2. For any f and t, f > t >0,

let L = log,+ ~ CONST(X, (t, IXJ),X). Then:

CONST(X, (f,@), X) s ((t + l)f)~.

PROOF. As illustrated in the left side of Figure 1, assume that there is a

base construction of a reliable object of type X, using C = CONST(X, (t, ~), X)

strongly wait-free objects of type X, t of which may be ~-faulty.

Computing with Faulty Shared Objects 1239

Base construction of X

from 3 objects of type X,

Embedded object

primllive Obje Ct

High-level construction of X

from 3 embedded objects of type X,

each constructed from 3 primitive

objects of type X.

~G. 1. Constrictions in the proof of Theorem 3.2.

The goal is to construct a strongly wait-free object X that is reliable, even if

~ of the primitive objects are w-faulty. Consider the following idea: take the

base construction, which survives up to t faults among the C primitives of type

X. Call each of these C primitives “embedded objects”, and now implement

each of the C embedded objects using the same base construction. The result,

as illustrated on the right side of Figure 1, is a construction of X from C2

primitive objects of type X. Moreover, each of the embedded objects is

resilient to t faults of the true primitives, and the single high-level object is

resilient to t faults of the embedded objects.

Consider next how many primitive faults are necessary to cause the high-level

object to fail: at least t + 1 of the embedded objects must fail, and each of

these embedded objects will be correct unless at least t + 1 of its primitive

objects fail. Hence, the high-level object is resilient to (t + 1)2 – 1 primitive

faults. The strong wait-freedom of the base construction ensures that the

embedded objects return some value, even if t + 1 or more primitive objects

fail.

The theorem follows by applying this idea recursively. First, recursively

construct C strongly wait-free objects of type X, each of which is resilient to

[~/(t + l)J faulty objects, then use these C objects to construct a single object
X, using the t fault construction. The result is an object that can tolerate the

fault of t of the embedded [~/(t + 1)] resilient objects.
By recursion, each of the C embedded objects, c, will behave in a fault-free

manner, provided no more than 1~/(t + 1)j of the primitive objects used to

construct c are faulty. If more than [~\(t + 1)]primitives in c fail, then c may

no longer behave correctly, and may appear to be faulty, to the higher level

1240 Y, AFEK ET AL.

construction. But by the strong wait-freedom of the construction, calls to c will

at least return.

In order to cause the highest level of the recursion to exhibit faulty behavior,

~ + 1 of the C embedded objects must exhibit faulty behavior. For one of the

embedded objects to fail, there must be at least [~\(t + 1)1 memory faults in

it. Since the total number of faults is ~ and ~ – t[~\(t + 1) 1s ~/(f -t 1), none

of the C – t other embedded objects is faulty. Hence, the final construction is

tolerant of at least ~ memory faults.

The total number of X objects used in this construction is:

CONST(X, (~, CZJ),X)

= CONST(X, (t, @),X) “ CONST(X, ([~/(t + 1)1, ~), X)

< CONST(X, (t, ~), X) LIOg’”’fJ+l

s CONST(X, (t, ~), X)logt+f+l

= ((t+ l)f)L.

Time complexity grows similarly: suppose in the base construction of X, that

T is an upper bound on the number of primitive operations needed to

implement a single high-level operation on the constructed object. Then in the

recursive construction to overcome ~ faults, each high-level operation requires

at most TIOgr+1~+ 1 = ((t + l)~)log’+’ ~ operations on primitive objects. ❑

Fault-tolerant constructions can be composed with fault-intolerant construc-

tions in obvious ways:

THEOREM 3.3. For any f, m >0, and for all k = {1,... } U {w},

CONST(X, (f, k), Z) < CONST(X, (f, k), Y) oCONST(Y, (O, k), Z);

CONST(X, m, Z) s CONST(X, rn, Y) ‘ CONST(Y, O, Z).

PROOF. The theorem follows by taking a fault-intolerant construction of an

object of type Z from objects of type Y, but constructing each object of type Y

in a fault-tolerant way from potentially-faulty components of type X. •l

A less obvious composition allows faulty objects of type X to be used in a

strongly wait-free, but otherwise fault-intolerant construction of objects of type

Y. If the X objects are in fact faulty, the result will be an object of type Y that

may be m-faulty, but can then be used in fault-tolerant constructions. Note,

that in the following theorem CONST(X, (O, ~), Y) is the usual space complex-

ity of wait-free constructions of Y from X;

THEOREM 3.4. For any f >1,

CONST(X, (~,~), Z) < CONST(X, (O, CO),Y) . CONST(Y, (f, ~), Z).

4. Read/Write Registers

One approach to tolerating faulty read/write registers is to add a software

layer between the faulty memory and the user that looks to the user like

fault-free memory. In this section, it is shown that this is possible for safe,

regular, and atomic read/write registers. That is, we construct safe, regular,

Computing with Faulty Shared Objects 1241

and atomic read/write registers from a collection of the corresponding primi-

tives, f of which may be w-faulty. (Henceforth, we use “atomic register,”

“read/write register,” and “atomic read/write register” interchangeably.)

Atomic registers can be specified using sequential specifications, as de-

scribed in Section 2. Safe registers, as defined by Lamport [1986] have behavior

that is sensitive to concurrency. Hence, we directly specify the legal runs of a

safe register (over a data domain V): A safe register may be accessed by two

processes. One performs read operations, which return values from V, and the

other performs write operations, which take values as arguments. A sequence

of invocations and responses of these operations is safe if and only if the

invocations and responses by each process alternate appropriately, and each

read operation that is not concurrent with a write operation returns the value

written by the last write operation that precedes the read, or returns the initial

value, if there is no such write. (Hence, read operations that are concurrent

with writes may return any value.)

Regular registers are also sensitive to concurrency, but are more constrained

than safe registers. They are defined as safe registers, except that read

operations must return a value of a write that is either concurrent with the

read, or k the last write (or initial value) that precedes the read [Lamport

1986].

A pair of read and write procedures is safe (or regular) if all concurrent

executions give rise to safe (or regular) sequences of invocations and responses.

The notion of a fault in a safe or regular register is introduced, in the spirit

of that of atomic objects, as an atomic write operation (by some outside agent).

A sequence of invocations and responses for a safe register is called m~azdty if,

m is the smallest number such that it is possible to produce a legal sequence of

a safe register from the original sequence by adding m instantaneous write

operations (strings of the form W(ui)ack). (Note that m may be infinite.)

Faults of regular registers are defined analogously.

Next we prove that, one reliable, strongly wait-free, multi-reader\ single-

writer safe register can be constructed from 2f + 1 similar registers, f of which

may be ~-faulty, but cannot be constructed from 2f such registers, f of which

may be l-faulty.

THEOREM 4.1

—CONST(safe,(f, CO),safe) < 2f + 1.

—CONST(safe, (f, 1),safe) > 2f.

PROOF. For the upper bound, a simple construction works: the writer writes

the 2~ + 1 registers, and the reader reads them. If the reader sees a majority

value (~ + 1 with the same value), then it returns that value; otherwise it

returns any value. Each high-level operation requires 2f + 1 operations on

primitive registers.

For the lower bound, assume to the contraiy that there is a solution using 2f

registers. Without loss of generality, let the initial value in the high-level object

be O. Let the initial values of the primitive registers rl, ..., rzf be z-q, ..., uz~,
respectively.

Let a be a run in which process pl runs alone and performs a single write of

1 to the high-level register. Let the final values of the registers rl,. ... r2f in a

be U1, uz~, respectively.

1242 Y. AFEK ET AL.

Now consider a run ~ in which pz runs alone and performs a single

high-level read operation, after ~ faults have changed the initial values of

rf+ l>...> r-2f touf+ l,..., Uzf, respectively. Hence, pz finds the registers holding

values Ul, ..., uf, uf+l, ..., Uzf. Since pl has taken no steps in E, the read by

pz must return O. But ~ is indistinguishable by pz from a run y that extends

the run a in which pl wrote 1, by ~ faults that change the values of rl,. ... rf

back to Ul,. ... Uf, respectively, followed by a single high-level read operation

by p2. Hence, the read by pz in y (and so in the indistinguishable ~) must
return the 1 written by p ~, a contradiction, ❑

In addition to bounding the number of primitive objects, the last argument in

the above proof also shows that at least 2f + 1 primitive operations are

necessary in order to implement high-level read or write operations, thus

matching the upper bound in the theorem. Note that the lower bound also

holds for constructions that are not strongly wait-free.

Since the upper bound holds for an infinite number of faults per object, and

the lower bound holds for one fault per object, the first part of the corollary

below follows. The second part is a consequence of the first part and Theorem

3.1, which implies CONST(,safe, (m, 1), safe) < CONST(sufe, m., safe) s

CONST(safe, (m, m), safe).

COROLLARY 4.2. For all k ● {1,... } u {~},

CONST(safe, (f, k), safe) = 2f + 1.

CONST(safe, m., safe) = 2m + 1.

In what follows, registers are assumed to be single-reader/single-writer.

Since a single (reliable) safe bit is sufficient to implement a regular bit

[Lamport 1986], and regular registers are stronger than safe registers, it follows

from Theorems 3.3 and 4.1 that CONST(bina~_safe, (f, ~), bina~_regular) =

2 f + 1. Moreover, given the fault-tolerant construction in Theorem 4.1, one

can construct any reliable (multi-reader/multi-writer, arbitrary value) atomic

register by composing with fault-intolerant constructions from safe bits,b ap-

pealing to Theorem 3.3. For example, a construction due to Tromp [1989]
produces a binary atomic register from three safe bits (three are necessary

[Lamport 1986]); thus,

CONST(binary-safe, (f, w), binary-atomic)

< CONST(binaU_safe, (f, ~), bina~–safe)

- CONST(binay_safe, (O, ~), birzaV_atornic)

=6f+3.

Define a V-register to be a read/write register on (arbitrary) value do-

main V.

A fault-intolerant construction by Peterson [1983] produces an atomic V-reg-

ister from three safe V-registers and four atomic binary registers, Appealing as

above to Theorems 3.3 and 4.1, each of the three safe V-register can be

‘See, for example, Bloom [1987], Burns and Peterson [1987], Lamport [1986], Li et al. [1989],
Peterson [1983], Peterson and Burns [1987], Singh et al. [1994], and Tromp [1989].

Computing with Faulty Shared Objects 1243

implemented reliably from 2f -t 1 unreliable safe V-registers, and as above,

each of the four atomic binary registers can be implemented from 6~ + 3

unreliable safe bits.

Another fault-intolerant construction due to Tromp [1989] produces an

atomic V-register from four safe V-registers and eight safe binary registers. As

above, each of the four safe V-registers can be implemented reliably from

2~ -t- 1 unreliable safe V-registers, and the 2~ + 1 unreliable safe binary

registers suffice to reliably implement each of the eight safe binary registers.

In an earlier version of this paper [Afek et al. 1992], a construction is given

(Figure 1 in that paper) that constructs a reliable atomic V-register from
8~ + 2 atomic V-registers, ~ of which may fail, and hvo reliable atomic binary

registers. As above, the two atomic bits can each be implemented from 6~ + 3

unreliable safe bits.

We conclude:

THEOREM 4.3. One reliable, strong~ wait--ee, atomic V-reg”ster can be con-

structed from the combinations of primitive registers below, where in each case, up

to f of the primitive registers may be ~-faul~:

—6f + 3 safe V-registers and 24f + 12 safe binary registers ([Peterson 1983] and

Theorem 4.1];

—8f + 4 safe V-registers and 16f + 8 safe bina~ registers ([Tromp 1989] and

Theorem 4.1);

—8 f + 2 atomic V-registers and 12f + 6 safe bina~ registers ([Afek et al. 1992]

and Theorem 4.1).

If we consider the construction of atomic registers only from faulty atomic

registers of the same type, the construction from Afek et al. [1992] dominates

(using V-registers to implement safe bits):

COROLLARY 4.4. CONST(atomic, (f, CO),atomic) s 20f + 8.

Theorem 4.1 results in other CONST(safe, (f, CO),Z) theorems for any object

Z that is constructed from single-write\multi-reader safe registers. Shared

memory algorithms such as Lamport’s “Bakery” mutual exclusion algorithm

[Lamport 1974], which originally uses 2n registers, can now be implemented

from faulty memory using 4nf -t- 2n safe registers, f of which may be faulty

(following Theorems 3.3 and 4.1).

Fault-tolerant constructions of read/write registers can also be used modu-

larly in randomized constructions of higher-level objects, such as consensus

objects.7 (Since deterministic construction of consensus objects from read/write

shared memory is impossible [Loui and Abu-Amara 1987; Herlihy 1991], the

latter constructions rely on randomization to reach consensus within finite

expected time.) These randomized constructions will behave correctly so long

as the assumed fault bound is not exceeded in any of the modular read/write

register components.

However, replacing the read/write registers in such randomized algorithms

to produce reliable implementations of higher-level objects will not, in general,
result in strongly wait-free implementations: To be strongly wait-free, such

7See, for example, Aspnes and Herlihy [1990], Chor et al. [1987], Herlihy [1991], and Saks et al.
[1991].

1244 Y. AFEK ET AL.

constructions must at least terminate if the fault bound is exceeded. But when

the number of faulty read/write registers in the randomized implementation of

a consensus object exceeds the assumed bound, the runs of the algorithm may

no longer satisfy the required probabilistic properties. For example, although

calls to the no-longer reliable read/write registers must still return (since the

component constructions are strongly wait-free), they could return erroneous

values so as to force an infinite, undecided run, which in the fault-free case

must have probability O. (A shared coin could always appear to return “heads”.)

Then calls to the randomized consensus object would remain pending forever,

exhibiting a fault mode not exhibited by the components. (The processes

cannot use a counter to detect such failures, because every randomized

construction must have low-probability runs of any length.)

5. Test& Set Objects

Atomic registers do not provide a very strong memory primitive—even the

simple task of two-process consensus is impossible with just atomic registers

and requires a stronger primitive such as test & set [Herlihy 1991; Loui and

Abu-Amara 1987]. In this section we provide constructions of test& set objects

from similar objects, some of which maybe faulty.

A test&set register is a concurrent object accessible by the processes sharing

it through the operations test& set and reset. The sequential specification of

the object is most simply understood as operations on a binary register,

initialized to O. The test & set operation atomically reads the register, writes 1

into it, and returns the value read. The reset operation writes O. If the object is

faulty, the failure operation fault(0) and fault(l) have the obvious effect (of

writing O and 1, respectively, into it). The processes are constrained in their use

of the reset operation—a process should invoke the reset operation only if the

object has been set; that is, since the last reset was invoked, a test& set has

returned O. If the processes violate this well-formedness condition, then the

object may exhibit arbitra~ behavior. (This restriction is consistent with

applications of test & set in operating systems, See, for example, Peterson and

Silberschatz [1985], Section 5.2.2. In this paper, we do not investigate fault-

tolerant constructions of test & set objects in the absence of this restriction.)

The main construction of this section, given in Figure 5, implements an

n-process test &set object from similar registers, one of which may be faulty. By

Theorem 3.2, this construction can be extended to a construction that tolerates

f faulty registers. This construction is built upon a single-use test&set object,

defined as follows:

Definition 5.1. A single-use test& set object, is an object in which each

process is allowed to perform only one test& set operation and which has no

reset operation. That is, the single-use sequential specification is that the first

test & set operation returns O and all others return 1.

Terminology. Throughout this section the following distinction between the
primitive objects and high-level objects is made: The unreliable primitive test&

set registers which are the elementa~ building blocks in all the constructions,

are referred to as primitive registers and the operations on them are p-test& set

and p-reset. All the constructed objects will be referred to as high-level objects.

We also refer to the test& set object as a multi-use test& set, to distinguish it

Computing with Faulty Shared Objects 1245

from the single-use primitives. Throughout, we say that a test& set operation

has won the test & set, or is successjid, if the response to the operation is O

(i.e., the process succeeded in changing the value from O to 1); if the response
is 1, the operation is said to have lost,

5.1. SINGLE-USE TWO-PROCESS TEST & SET. Consider the following simple

strategy to construct a single-use, 2-process test & set object. Each process

executes the test & set operation on all the registers in an array, and considers

itself successful if and only if it succeeds on the majority of the registers. This

strategy does not tolerate even a single faulty register. Each of two processes

might win exactly half of the correct registers, and then the faulty register

could cause both processes to decide they succeeded or both to decide they

have lost.

On the other hand, the majority strategy on an array of just three test& set

registers, at most one of which is faulty, has the following two properties:

(1) If there are no faults, then the majority strategy works correctly, and

(2) If only one process at a time is attempting to perform a test& set, then
again it works correctly.

The construction in Figure 2 (a schematic is part of Figure 3) makes repeated

use of these properties.g

THEOREM 5.1.1. There is a strong~ wait-free, single-use, two-process test&set

construction from 7 test&set registers, 1 of which may be ~-faulty (Figures 2 and

3):

CONST(single_use_ 2_process_ T&S, (1,CXJ),single_ use_2_process_ T & S) <7.

PROOF. The sequential specification of single-use, two-process test& set is

very simple. The first test & set operation returns O (winning) and the second

returns 1 (losing). We will demonstrate that every run of our protocol can be

serialized to meet the specification. We start by proving three properties on all

runs of the protocol. Then these properties are used to specify a correct

serialization.

Denote the first action of each process operation by request, and the last

action return (0) (if it wins in the construction) or return(1) (if it loses in the

construction). Throughout this proof we denote by p-win (p-lose) an operation

that wins (loses) on one of the seven primitive test & set registers, The two

processes are denoted PI and Pz. The existence of a serialization follows from

the following three properties:

(1) There is at most one return(0) action. A single_ use_2_process-test & set

operation returns O only if it read O in at least two of the three test & set

registers in C (Lines 5 and 6). If there is no fault in C, then it cannot be that

both PI and Pz have read O in at least two registers of C. If, on the other

hand, there is a fault in C, then both registers A and register B are correct. In

this case at most one process, say PI, p-wins in -4. Therefore, the other

process, here Pz, p-wins at B and loses without touching any primitive

test & set in C (Lines 2 and 3). Thus, it cannot happen that both processes win

and perform a return(0) action.

8A construction which reduces the number of primitive objects needed from seven to six primitive
registers is devised in Merritt and Orda [to be published].

1246 Y. AFEK ET AL.

shared A[l ..3], B, C[l ..3]: primitive test&set registers, initially O

function singlemse12_pr0 cees-test&set % return O (win) or 1 (lose)

1: sum := O

2: for i := 1 to 3 do sum := sum + p-test8set(A[i]) od

3: if sum > 2 then if p-testtset(B)= O then return 1 fi ff Yo lost A and won B: lmt
4: $um := O % won A, or lost A and B: continues to C

5: for i := I to 3 do turn := sum + p-test& set(C[i]) od

6: if sum ~ 2 then return 1 else return O ff

end-function

FIG. 2. Single-use two-process test& set using seven test& set’s, one of which maybe faulty

(2) There is at most one return(l) action. Consider the first return (1) action

and assume without loss of generality that it is by process P1. If PI lost by

p-losing two out of the three primitive registers in competition C, then it must

be that both PI and Pz have reached C. This could happen only if there was a

fault in a register in A or in B, and thus the faulty primitive test& set is not in

C. But if there is no fault in C, then PJ must have p-won or will p-win at least

two of the primitive test& sets in C, and terminate as a winner in the overall

construction. If, on the other hand, PI lost by p-winning at B, then Pz has

visited or will visit C alone and terminates as a winner in the overall construc-

tion.

(3) Any return(l) action is preceded by a request action by the other process.

A losing process must have p-lost two out of the three primitive registers in at

least one of the competitions A and C. But at most one of these two p-losses

can be attributed to a faulty primitive test & set—the other p-loss must be

because another process has p-won in that primitive. Thus, the other process

must have taken at least one step.

By these properties any run is serialized as follows: The losing process, say PI

is serialized at the time of its return(1) action and PJ as winning at the time of

its request action. If there is only one process active, it wins and the operation

is serialized at the time of its request action. These serializations obey the

requirements of the serial specification.

The construction is obviously strongly wait-free, as each of the two processes

performs at most 7 operations on the primitive test& set registers before

terminating, and these are assumed to be wait-free. ❑

5.2. SINGLE-USE n-PROCESS TEST & SET. The construction in the last sec-

tion works correctly only in a system with at most two processes. In this

subsection, we introduce a mechanism that selects at most two out of n

processes, for any n >1. This new mechanism is used as a “doorway” to the

construction of the previous subsection, which selects exactly one winner out of

the two.9

‘The mechanism introduced in this subsection is very similar in its behavior to a 2-exclusion
algorithm. (2-exclusion [Afek et al. 1994; Dolev et al. 1988; Fischer et al. 1979, 1985a] is a
generalization of mutual exclusion in which up to two processes may be in the critical section at
the same time, but no more.) The difference between 2-exclusion and the mechanism presented
here is as follows. In a 2-exclusion algorithm, if two or more processes attempt to enter their
critical sections, then eventually at least two processes, out of n that t~, enter the critical section.
In contrast, in the “doorway” construct, if two or more processes try to enter then at most two
and at least one enter the critical section. (In this application, the critical section is the seven
object construction from the previous subsection.)

Computing with Faulty Shared Objects

close
(reliable atomic bit) •1

r 1---- ..-. ---- ---- ---- ---- --

I

I
I

I
I
I
I
I
I

I
I

Doorway
F1

At least one process

and at most two

processes win. F2

@-

— —

win lose

1

win ‘ose loseL --
r --

I
I
1
I
I
I
I
I
I
I
I
Iv
I
1
I
I

n

win lose
8
1
I
1

~o w

1
I

1
I
I
1
I
1
1
I
I
I

------ ------ ----- ------ J----- ----- ---- ----- ----

1

1

A
1
I

win

1“
lose

P

1
u.

I
I

1
win i

t
1
I
I
t

(1) (1)1

1247

FIG. 3. Schematic of single-use

set for n processes.

test &

I win lose lose I
I I
I Two processes single-use test-and-set. I
I I
L ------ ------ ------ ------ -- J

If there are no faults, then two primitive test& set registers can be used to

ensure that at most two processes pass the doorway, by having each p-test& set

the two registers, and pass if successful in at least one. However, if one of the

two registers is faulty, then at least one process and as many as n may enter

(because the faulty one may let everybody win). To overcome this problem, we
require the processes to go through two such gateways. That is, we maintain

two pairs, FI and Fz, of primitive test & set registers (see function doorway in
Figure 4). To pass the doorway, each process must successfully p-test&set one

register in each of the two pairs, otherwise the process returns 1 for its

test & set operation. (In the OR operations in the function doorway (Lines 1

and 2) only one successful clause needs to be executed. That is, if the first

clause is true, then the second need not be executed—however, the construc-

tion is correct with either interpretation.)

The doorway implementation is given in Figure 4.1° The doorway guarantees

that at most two processes enter the two process construction; however, it

could be that one process is blocked in the doorway, while a faulty primitive

allows a later arriving process to pass it into the two process construction (left

10In the code, the execution of a return command terminates (exits) the operation.

1248 Y. AFEK ET AL.

shared F’l [1 ..2], F2 [1, ,2]: T&S registers, initially O

close: reliable atomic on {O, 1}, initially O

function s-testtset %return O (win) or 1 (lose)

1: if close = 1 then return(1) fl %exit if construct is closed

2: close := 1 %close the construct and continue

3: if doorrray then return (singlemse-2_process-t esttset) else return(1) fi

%from Figure 2

end-function

function dooruay %return true (passed) or false (lost)

1: if (p-testkset(F1[l]) = O) OR (p-test& set(F1[2]) = O) %see note o below.
2: thenif (p-testtset(F2[l]) = O) OR (p-tasttset(F2[2]) = O)

then return (true) fi fi %won at least one k F1 and one in F2: pass

3: return (false) %won at neither F1 nor at F2: do not pass

endlunction

“In the OR operations only one su~~~~~ful clause n~eds to be executed. That is, if the first

clause is true, then the second need not be ~X~Cuted—hoW~ver, the construction is correct
with either interpretation.)

—.—..
FI.% 4. Single-use n-process test& set using eleven test& set’s, one of which may be faulty, and

a reliab~~, atomic read/write bit (see also Figure 2).

as an exercise). This enables a scenario in which one process loses, and only

after it exits, the eventual winner starts. This violates the linearizability

requirement (operations must be serialized within the time interval in which

they are active), and can be resolved in several ways. The simplest solution is to

add a reliable multi-writer/multi-reader atomic bit, close as is suggested in

Afek et al. [1992a] (which can be constructed from unreliable primitive objects

as described in Section 4). Any process first reads the close bit, and if close = 1

it returns 1 and exits; otherwise it sets close to 1 and continues into the

doorway. This ensures that once a process has lost, no other process can later

start and win.

THEOREM 5.2.1. There is a strongly wait-free, n-process, single-use, test&set

construction from 11 test &set registers, one of which may be ~-faul@, and a single

reliable read/write bit (Figures 2, 3, and 4).

PROOF. It is argued above that at least one and at most two processes leave

the doorway and enter the single-use, two-process test & set. By Theorem 5.1.1,

exactly one of these will be the winner.

We serialize the winner with it’s high-level request, and the losers with their

returns. The winner’s read of close = O in line 1 of s-test & set must precede

either a loser’s read of close = 1 in line 1 of s-test & set, or (if the loser also

read close = O in line 1 of s-test& set), the loser’s write of close := 1 in line 2

of s-test & set. Regardless, the winner is serialized before all the losers.

As in the previous construction, this one is obviously strongly wait-free, as

each of the n processes performs at most two operations on the primitive

read/write register and 11 operations on the primitive test & set registers

before terminating, and these are assumed to be wait-free. ❑

5.3. MULTI-USE n PROCESS TEST& SET. This section extends the ideas of

the previous construction, resulting in a construction of a multi-use, n process

Computing with Faulty Shared Objects 1249

test & set object. A series of lemmas lead to the proof of the following

theorem. in Section 5.3.4.

THEOREM 5.3.1. There is a strongly wait--ee n-process multi-use test&set

construction from n + 10 test&set registers one of which may be ~-faulty and

3n + 13 reliable atomic registers (Figures 5 and 6).

5,3.1 Overview of the Construction. The single-use test & set provides a

simple lock: whichever process wins the test & set (reads O while setting to 1)

holds the lock. However, without the reset operation the lock cannot be

released, The construction in Figure 5 implements a multiple-user test & set,

that is, one that can be test& set and reset, and the picture in Figure 6

describes the shared data structure.

A simple way to add a reset operation to a high-level implementation of a

test & set object would be to simply reset the constituent primitive registers.

Unfortunately, in the constructions given above, resetting the primitive regis-

ters would interfere with the high-level test & set operations of other processes

and could cause incorrect behavior of the high-level test & set object.

The first observation towards an implementation of a multi-use test& set

object is that in the n process single-use construction of the previous subsec-

tion, if a process tries to perform a high-level test& set an arbitrary number of

times, it is guaranteed that it will lose in all its repeated attempts (unlike the

two process single-use construction where a process may try only one time).

Given this observation, a simple solution that uses an unbounded number of

primitive test & set registers and read/write bits would work as follows: divide

the collection of test& set registers into bundles of 11 test& set registers and

one bit, and enumerate the bundles 1,2, Use one atomic read/write

register as a pointer to the bundle that is currently in use. Once the high-level

test & set is set, it can be reset by simply incrementing the pointer. Processes

that have started the high-level test & set operation before the reset would

lose, since by the above observation they are blocked in the old copies, where a

winner was already declared.

This unbounded solution can be modified to use 1in primitive test& set

registers (one of which might be faulty) and O(n) reliable atomic registers, by

the following observation: All the bundles, except n of them, could be recycled,

since no process will ever access them again. This solution will require that

each process declare which copy it is using and that the resetter find a copy not

in use.

A still more efficient solution carries the recycling idea one more step.

Instead of duplicating and recycling the bundles, we reeycle the primitive

test & set registers (see Figure 5). This is possible by requiring each process to

declare which primitive test & set register it is using at each step that it is

taking (Line 9 of function test& set). The resetter will now search for 11

primitiue registers that are not in use (Lines 7–10 of function reset) and will

compose them into a new 1l-piece n-process single-use object. Thus, rather

than giving a pointer, it will have now to provide 11 pointers (current[l . . 11]in
the code) for the newly composed 1l-piece object. (The read\write bits are

replicated and reused similarly.) In this way, a solution is obtained that uses a

total of n + 10 primitive test& set registers (one of which might be faulty) and

O(n) reliable atomic registers.

1250 Y. AFEK ET AL.

Protocol for process p:
shared PTST: array [l..(n + 10)] of primitive tks with

p-test&set and p-reset operations

stop: reliable atomic on {O, 1} %written by winner, initially O

c~ose[l ..n]: reliable atomic on {O, 1}, initially O Yowritten and read by everybody

my.nezt[l..n]: reliable atomic on {1,. . . ,rt + 10} %written by owner

restart[l ..n]: reliable atomic on {O, 1} %initially 1

current [O..ll]: reliable atomic on {1, n + 10} %initially 1,2,...,11

local siate[l..ll]: local on {1,0,1}, initially 1

inasi[l.. (ri+ 10)]: local on {0,1}

function test&set

1: restart~] := O

2! mv-nezf[p] := CUrmrLf[O]

3: if stop = 1 then return(1) fi

4: if restart~] = 1 then return(1) fi

5: if c/ose[my-nezt~]] = 1 then return(1) fi

6: c/ose[my_rzezt~]] := 1

7: for i = 1 to 11 do state[tl := L od

8: while result (state) = L do

9: ~Y-~=tM := currcnt[next(~t~te)l
10: if stop = 1 then return(1) fl

11: if restart~] = 1 then return(1) fi

7cstart by ensuring that no one already won

%indicates which (close) bit is used

%check global stop bit,

%personal restart bit,

%and simulation’s close bit

%close the construction and continue

%do s-t.st~set step by step

7,indicates which tks register is used next

%check that no one already won

12: state[next(state)] := p-test* iet(PTS~my.nezt ~]])

od

13: return(resnlt(state))

end-function

function reset

1: stop ;= 1 %prevent anyone from winning

2: for i = 1 to n + 10 do inme[i] := O od %mark registers which

3: for i = I to n do if i # p then irsuse[my-nezt[i]] := 1 fi od %might be corrupted

4: j:=l

5: while inuse~] = 1 do j := j + 1 od %is register j used?

6: curreni[O] := j
7: j:=l

8, for i =1 tolldo % finds 11 PTSRS

9: while ‘inuse~] = 1 do j := j + 1 od

10: currenf[i] := j
od

11: c/ose[current[O]] := O %re-open the construct

12: for i = 1 to 11 do p-test& set(PTST(current[i]]);

13: p-reset (PZ’STlcurreni[i]]) od ?freset the tk registers

14: for i = 1 to n do restart [i] := 1 od % make everyone start again

15: stop := o
end_function

function result: returns L if the values in state indicate that the simulation of s-testkset

is incomplete. Otherwise it returns the value that is returned by the simulation.

function next: examines the values in staie and returns the index (between 1 and 11) of

the primitive register which should be accessed next in the simulation of s-test kset.

FIG. 5. Multi-use test & set.

Computing with Faulty Shared Objects 1251
-..------- ------- -----

1 % ,-,,1-r@”t
I

1

I

In
I

I o
. .

I
I ;{. .

--!-”-------1 J

t
I I : Pl\

PTST my_nexl Clcse

\

Ya----------------------z

slop

n H+

H /l--d

raw 1~

FIG.6. Shared data structure forthemultiple-use test &set construction.

To ensure that, while the resetter is composing a new 1l-piece copy, no

process is switching between registers, the resetter will set a multi-

write/multi-reader stop bit telling all other processes to lose and exit (Line 1

of reset). Every process tests the stop bit before each primitive operation

(Lines 3 and 10 of test &set). If the bit is set, the process aborts its high-level
test & set operation and returns with 1. The stop bit by itself is not sufficient

because a process performing a high-level test& set could be suspended

during the reset period, and not observe the stop bit being set. Such a process

could later access a primitive test & set register that it should not. Therefore,

another bit, called restart[p], is associated with each process p to detect if a

reset was taking place while it was not checking the stop bit: The restart bit

works as follows; when starting a high-level test & set operation each process

assigns O to its restart bit (Line 1 of test & set), and before finishing a

high-level reset a resetter assigns 1 to the restart bits of all processes (Line 14

of reset). Now, before performing each primitive operation a process checks

whether its restart bit is still O (Lines 4 and 11 of test & set). If not, it aborts its

high-level test & set operation and returns with 1. The combination of the stop

bit and the restart bits ensures that the primitive objects chosen by the resetter

are not in use, and that they will not be accessed until they are themselves
reset and the resetter assigns O to the stop bit.

The high-level test & set operation is now performed on the chosen 12

primitives by simulating the s-test& set operation (from Figure 4). The simula-

tion proceeds in iterations, such that in each iteration one primitive test& set

1252 Y. AFEK ET AL.

register is p-test & set (see Figure 5), A local state variable, state, records the

history of the s-test& set simulation. This variable contains eleven fields, each

corresponding to one of the eleven primitive test & set registers in s-test& set,

as in Figure 4. The values of the fields are L , 0 or 1, and are initialized to L ,

indicating that no calls to the primitive registers have been made. Each call to

a primitive test & set register is made to simulate a call in s-test& set, and the

return value is assigned to the corresponding entry in state.

Two functions are defined on state. The function result returns L if the

values in state indicate that the simulation of s-test& set is incomplete. It

returns O (or 1) if the values indicate that the simulation is complete and

returned O (or 1). The function next examines the values in state and returns

the index (between 1 and 11) of the primitive register that should be called

next in the simulation of s-test & set, given the results currently recorded.

5.3.2 Well-Formed Executions. The use of the primitive test & set registers

in the construction is designed to work correctly only in constrained environ-

ments, in which a p-reset operation is invoked only if a p-test & set has

returned successfully since the last invocation of p-reset. The constructions’

calls to these primitives depend, in turn, on their behaving properly. This

complicates the proof, which must avoid circular reasoning.

Accordingly, a system execution is well-formed for a multi-use test& set

register (either a faulty primitive or high-level reliable construction) if the

number of calls to the reset operation is either equal to or one less than the

number of successful returns for calls to the test & set operation, in every

prefix of the execution. That is, the sequence of successful returns from

test & set and of calls to reset operations strictly alternate, beginning with a

successful return from a test & set operation. Hence, in well-formed execu-

tions, the reset and test & set operations can all be serialized so that successful

test & set’s alternate with reset’s, and every unsuccessful test& set is ordered

after a successful test& set and before the next reset. In environments that

violate well-formedness for a test & set register, calls may not terminate and

can be serialized arbitrarily. (That is, anywhere within their interval, without

regard for semantics of the operations.)

Hence, regardless of whether an execution is well-formed, we have defined a

serialization and can consider calls to primitive test & set registers as single

atomic events. Given an execution of the high-level reliable multi-use construc-

tion, we reason about this serialization, and argue that the execution is

well-formed for each primitive. Then, we conclude that the atomic events have

the appropriate semantics (are ordered as described in the preceding para-

graph).
The fact that well-formedness is maintained for each primitive test & set

object is proven by induction on an execution a of the high-level construction.

Given a prefix, a’, of the execution that is well-formed for each primitive, we

will want to reason that an extension of the prefix is also well-formed for each

primitive. To do so, we need to use the semantics of (well-formed) executions

of these primitives. The semantics are in turn encoded in the serialization of

each primitive. Hence, we need to relate serializations of a and of a’. That is,

we want to reason, not about the execution, a, but a serialization, ~, of the

execution. In the induction step, we have a well-formed prefix a‘ of the

execution. Any serialization ~‘ of a’ obeys the semantics of the test & set

Computing with Faulty Shared Objects 1253

primitives. To use this fact to reason about /3 and hence a, we choose the

serialization ~ so that it has f3’ as a prefix. The following technical lemma

assures us this is possible:

LEMMA 5.3.2,1. Let a be an execution of a system containing a test& set

register, r. Let a‘ be the longest prejik of a that is well- foimed for r. Then there is

a serialization of a‘ which is a prefix of a serialization of a.

PROOF. If a is well-formed, then a = a’ and we are done. Otherwise, let

~ be a serialization of a and /3’ be a serialization of a’. The serialization we

want is ~‘(~ – ~ ‘). (That is, append to /3’ the subsequence of events in ~

that are not in ~‘. This may move the serialization of some operations that are

pending in a’, but serialized early, until after /3’.) ❑

By restricting the class of serializations as described in Lemma 5.3.2.1, we

can consider calls to primitive test & set objects, within executions of the

reliable multi-use construction, as consisting of single atomic events. (Because

Iinearizability is a local property [Herlihy and Wing 1987], it suffices to

consider each primitive separately in Lemma 5.3.2,1.) Moreover, in any well-

formed prefix of the execution, these atomic events obey the test& set seman-

tics.

5.3.3 Propetiies of the Constmction. Each call to the reset function begins

with an assignment, “stop T= 1” (reset Line 1), and shortly before terminating,

assigns 1’s to the restart bits (reset Line 14).

Definition 5.3.3.1. For a process p, execution a, and call to the reset

function within a, we say that the reset function call is actiue for p within the

subinterval of a that begins with the initial assignment of the reset function,

(stop := 1) (reset Line 1), and ends with the assignment (restati[p] = 1)

(reset Line 14).

We say that calls to reset are sequential in an execution a if each call

executes its final assignment to stop (reset Line 15) before the next call begins.

For now we state lemmas for executions which are assumed to satisfy this

property. Note, in particular, that when calls to reset are sequential, stop = 1

is invariant during reset function calls, up to the final atomic assignment

stop := O (reset Line 15).

LEMMA 5.3.3.2. Let a be an execution in which calls to reset are sequential,

such that the two steps (restart[p] := O) (test& set Line 1),and (if stop = 1)

(test &set Line 3 or 10), area subsequence of a from a single call to test & set
by process p. If a call to the reset fimction is active forp at any point between the

(restart[p] := O) step and the (if stop = 1) step, then either stop = 1 in the if

test (test & set Line 3 or 10), or restart[p] = 1 in the next step of p which is (if

restart[p] = 1) (test&set Line 4 or 11).

PROOF. Since a call to the reset function is active for p between the

(restati[p] := O) step and the (if stop = 1) step, at that point stop = 1. If this

is still true during the (if stop = 1) step, we are done. So assume that stop = O

during the (if stop = 1) step. It follows that some assignment to stop occurs
after the point in which the reset function is active for p, and before the (if

stop = 1) step. Since only calls to reset assign to stop, as their last step (reset

Line 14), and reset’s are sequential, the reset which is active for p must assign

stop := O between the (restart[p] := O) step of test& set and if (if stop = 1)

1254 Y. AFEK ET AL.

step. This in turn implies the assignment (resturt[p] := 1) occurs between the

(restart[p] := O) step and the (if stop = 1) step. Only p assigns O to restart[p]

(test & set Line 1); it follows that restart[p] = 1 during the (if restart[p] = 1)

step. ❑

LEMMA 5.3.3.3. Let a be an execution in which calls to reset are sequential.

(1) Let (restati[p] ‘= O), (p-test& set(P7’ST[indl)), where 1 s irzd s n + 10,
be a subsequence of a ji-om a single call to test &set, by process p (Function

test & set Lines 1 and 12). No call to p-reset(PTST[ind]) occurs after

(restart[p] := O) and before (p-test& set(P7’ST[ind])).

(2) Let (restart[p] ‘= O), (read(close[indl) = 1) be a subsequence of a from a
single call to test& set, by process p (Function test C%set Lines 1 and 5).
No assignment of O to close[ind] (Function reset Line 11) occurs ajler

(restart[p] := O) and before (read(close[ind]) = 1).

(3) Let (restart[p] ‘= O), (read close[ind] = O), (close[indl ‘= 1) be a subse-

quence of a from a single call to test& set, by process p (Function

test & set Lines 1, 5, and 6). No assignment of O to close[ind] occurs ajler

(restart[p] := O) and before (close[ind] := 1).

PROOF. We prove the first case—the others are similar. The call to the

test & set function by p includes the following sequence of steps:

restart[p] := O (test & set Line 1)

my_next [p] := ind (= current [next(state)]) (test& set Line 9)

stop = o (test & set Line 10)

restart[p] = O (test & set Line 11)

p-test & set(PTST[ind]) (test & set Line 12)

By the previous lemma, no call to reset is active for p at any point between

(restart[p] := O) and (stop = O).

Consider a call to reset that is active after (stop = O) and that calls p-reset

(reset Line 13) before the end of p-test& set(PTST[ind]). This call to reset

reads my_next[p] = ind (reset Line 3) between (stop = O) and (p-test&

set(PTST[ind])). Hence, it will mark this register in use, and will not run

p-reset on P7’ST[ind].

It follows that no reset that runs p-reset(PZ’ST[ind]) is active for p after

(stop = O) and before the end of p-test & set(P7’ST[ind]), The first part of the

lemma follows. ❑

LEMMA 5.3.3.4. Let a be an execution in which calls to reset are sequential.

In a, no primitive test& set register, PTST[ind], is p-reset concurrently with any

other call to register PTST[ind].

PROOF. Since calls to reset are sequential, any two p-reset operations are

sequential. The previous lemma implies that calls to p-test& set(PTST[ind])

cannot be concurrent with calls to p-reset(PTST[ind]). ❑

LEMMA 5.3.3.5. Let a be an execution in which calls to reset are sequential.

Then for every primitive test & set register, PTST[ind], a is well- foimed for

PTST[ind].

Computing with Faulty Shared Objects 1255

PROOF, A simple induction on the prefixes of a, using Lemma 5.3.3.4.

That is, let a’m be a prefix of a, where a’ is well-formed for IL’W[ind]. By

induction and the semantics of the register P7’ST[ind], a ‘n is well-formed if T

is any event other than the request for a reset of PTST[ind]. This request

occurs within a call to p-reset(ITST[irui]), (Line 13) which has just run a

p-test & set(PTST[ind]) operation (Line 12). By Lemma 5.3.3.4, all other

operations on PTST[ind] in a’ terminated before that p-test& set(PTST[ind])

began. Hence, the p-test & set(P7’ST[ind]) returned successfully if the number

of other successful p-test & set(PTST[ind]) operations in a‘ is equal to the

number of calls to p-reset(PTST[ind]), and returned unsuccessfully if the

number of other successful p-test& set(PTST[irzd]) operations in a’ is one

more than the number of calls to p-reset(PTST[ind]). Hence, the new request

does not violate well-formedness. o

Definition 5.3.3.6. For any execution a and any call to test& set by process

p in a, the reset preceding that call to test& set is the call to reset which

executes the step (re,start[p] := 1) (Line 14) most recently before the first step

of the call to test& set (that is, Line 1 (restati[p] := O)). If no such reset

exists, we say the call to test& set has no preceding reset.

LEMMA 5.3.3.7. Let a be an execution in which calls to reset are sequential.

(1) Suppose p-test & set(PTST[indl) is called during a call to test& set by
process pin a. Then ind was written to current by the reset preceding the call

to test& set, (or was in the initial state of current, if there is no such reset)

and no later reset assigns ind to current until after the call to p-test&

set(PTST[ind]).

(2) Suppose close[indl is read during a call to test&set by process p in a. Then
ind was written to current[O] by the reset preceding the call to test&set, (or

was in the initial state of current[O], if there is no such reset) and no later

reset assigns ind to current[O] until after the read and subsequent wrRe of

close[ind].

PROOF. We prove the first case—the second is analogous. The call to

test & set includes the following sequence of steps:

restart[p] := O (test & set Line 1)

rny-next[p] := ind (= current [next(state)]) (test& set Line 9)

stop = o (test &set Line 10)

restart[p] = O (test &set Line 11)

p-test & set(PTST[ind]) (test &set Line 12)

By Lemma 5.3.3.2, no reset is active for p at any point between the steps

(restart[p] := O) and (stop = O). As in the previous lemma, any reset which is

active for p after stop = O either sees my _next[p] = ind, and will not write iruf

to current, or reads my_next[p] after the call to p-test& set(PTST[ind]), and

so will not assign anything to current until after this call. ❑

LEMMA 5.3.3.8. Let a be an execution in which calls to reset are sequential.

Let P and Q be the corresponding sets of primitive registers (test&set and

read/write) accessed in two different calls to test& set. Either the two calls to

1256 Y. AFEK ET AL.

test & set have the same preceding reset, or every primitive register (test&set or

read/write) in P n Q is either p-reset or assigned O between the jirst call and the

second.

PROOF. Suppose x E P n Q and that the two calls to test& set have

different preceding reset operations. We assume that the primitive is a

test & set register, x = PTST[ind],—the proof for the read/write primitives is

analogous. Denote the two calls to p-test & set(PTS7’[ind]) by n and ~, with n

occurring before @ in a, where m is an operation of process i, and @ is an

operation of process j. We have the following two sequences of operations

in a:

li) restart[i] := O (test &set Line 1)
2i) rny_next[i] := ind (test & set Line 9)

3i) stop = o (test & set Line 10)

4i) restart[i] = O (test &set Line 11)
.5i) (p-test& set(PTST[ind])) = m (test & set Line 12)

lj) stop := 1 (reset Line 1)
2j) my_next[i] + ind (reset Line 3)
3j) p-reset(PTST[indl) (reset Line 13)

4j) restart[i] f= 1 (reset Line 14)

5j) (p-test& set(PTS7’[ind])) = @ (test & set Line 12)

Here, li–5i are steps from the call to test& set that includes n, and steps 1,–4,

are steps from the reset operation that precedes the call to test & set that

contains @ (there must be such by the assumption).

To establish the lemma, it suffices to show that line 3j, (p-reset(PTS7’[ind])),

comes after n. Suppose it came before n (5i). Since line 1~, (restart[i] := O),

precedes the assignment to restart[i] in line 4j, and the reads in lines 3i and 4i

return O, Lemma 5.3.3.2 implies that line lj is ordered after line 3i. Since in

turn line 3j is ordered before line 5i, the read of my_next[i] in line 2j should

return ind, a contradiction. ❑

Definition 5.3.3.9. Given an execution a of the construction, any set of calls

to test& set which have the same preceding call to reset (or which all have no

such preceding call) are called a collection of calls to test & set.

LEMMA 5.3.3.10. Let a be an execution of the construction. Then a satisfies

the following propetiies:

(1) a is well$ormed for the reliable high-level multi-use test&set object. More-
over, each reset operation jinishes its jinal assignment to the stop bit before

the next successyld test & set operation returns.

(2) calls to reset are sequential,
(3) the reads and writes of the close bits and calls to p-test & set made by each

collection of calls to test& set are a prejik of a run of the w-test & set

construction.

PROOF. Note first that the first invariant implies the second.

The proof is by induction on the length of the execution, with a trivial basis.

Consider a finite execution CZ’T, where a’ satisfies the conditions of the

lemma, and m is the next step by the construction. We must show that the first

and third invariant are maintained in CY’V.

Computing with Faulty Shared Objects 1257

—Suppose the next step is a call to reset. By induction, a’ is well-formed for

the reliable high-level multi-use test & set object. Thus, the environment is

required to preserve this property. The first invariant follows, and the third

is immediate.

—Suppose the next step is a step of a primitive register. The first invariant is

immediate. By induction, calls to reset are sequential in CY’T. Lemma 5.3.3.5

implies that a ‘T is well-formed for the primitive, and Lemma 5.3.2.1 implies

the sequence of steps of the primitive in a’m obey test& set semantics.

Lemmas 5.3.3.7 and 5.3.3.8 imply the second invariant.

—Suppose the next step is the successful return, T, of a call to test&set by

process p. We must show there is a reset call which runs through its final

assignment to stop, since the last such successful return, ~, of a call to

test &set. By induction, the properties of su-test & set and the last invari-

ant, each collection of calls to test& set can have at most one successful

call. Hence, the two calls to test& set, which return with ~ and ~, are not

from the same collection. (That is, they have different preceding calls to

reset.) Let rm and r+ be the corresponding calls to reset preceding T and @

(That is, rn and r+ consist of the subsequences of events of a for the two
calls.) Since calls to reset are sequential, @ precedes w, and well-formedness

holds for calls to reset, it follows that the beginning of rfi follows @

Since m- is the successful return of a call to test& set, the third invariant

implies this call simulated a successful call to su-test & set, and hence must

read stop = O at some point. By Lemma 5.3.3.2, rm is not active for p during

some interval beginning with the first step of the call to test& set. It follows

that the final assignment to stop in rn must precede n. ❑

5.3.4. Proof of Theorem 5.3.1. Let a be an arbitrary, finite run of the

construction. Without loss of generality, assume all operations of a are

complete. (Recall the construction is strongly wait-free, if calls to primitives are

strongly wait-free. By Lemmas 5.3.3.10 and 5.3.3.5, a is well-formed for each

primitive, and so calls to primitives are strongly wait-free.)

We must show that each test& set and reset operation can be appropriately

serialized. We proceed as follows. Each successful test & set operation is

serialized at the point of its assignment to re.start(test & set Line 1), which is

obviously within its interval. Each reset is serialized either at its final assign-

ment to stop (Line 15), or just before the serialization of the successful

test &set operation that returns next, whichever is earlier. Lemmas 5.3.3.10

and 5.3.3.2 imply this is within the interval of the reset, indeed, no earlier than

its first assignment to the array restart (Line 14 of the reset function). By

Lemma 5.3.3.10, the sequence of serializations is of the appropriate form:

“successful test & set, reset, successful test& set, reset,”

It remains to show that given this partial serialization, the unsuccessful

test & set operations can all be serialized, within their interval, after a success-

ful test & set and before the next reset.

We consider the unsuccessful calls to test& set depending upon how they

return. It suffices to show that these calls cannot begin and end between the
serialization of a reset and before the serialization of the next successful

test & set.

Suppose an unsuccessful call returns because of losing the test on stop (Line

3 or 10 of test& set). We argue that the call can be serialized at the point of

1258 Y. AFEK ET AL.

this read of stop = 1. A call to reset is in progress when this read occurs. If

that call to reset is serialized at the point where it assigns stop := O (Line 15),

then the read of stop = 1 falls between the previous successful return to

test & set and the serialization of the reset. Alternatively, suppose the call

to reset was serialized just before the serialization of the next successful call to

test & set. Then these two serialization points are adjacent, and the read

comes either before or after both. By Lemma 5.3.3.10, the next reset cannot

have begun, and the read of stop = 1 is a correct serialization point.

Suppose an unsuccessful call returns because of losing the test on resku-t[p]

(Line 4 or 11 of test& set). Then a call to reset assigns to restmt[p] (Line 14)

after the test & set begins and before the read of restart. If the reset operation

is serialized during the unsuccessful call, we can serialize the latter just before

the reset. If it is serialized after the unsuccessful call, then since the reset does

not begin until after the previous successful call to test & set, there is an

interval during the unsuccessful call, between the previous successful call to

test & set and the reset. Last, suppose the reset is serialized before the

unsuccessful call begins. Then it has been serialized early because the following

successful test & set was also serialized before the unsuccessful call begins (at

its assignment to restart). The return of that successful test& set follows the

reset’s final assignment to stop (Line 15), which in turn must come after the

unsuccessful call to test & set, and the next reset must begin even later.

Hence, there is a period after the serialization of the successful test& set and

before the next reset.

Finally, consider the unsuccessful calls to test& set which lost because they

are unsuccessful in the simulated calls to su-test & set. By Lemma 5.3.3.10 and

the semantics of the single-use test & set, this can happen only if there is a

successful simulated call to su-test & set, by a call to test & set in the same

collection. Moreover, this simulated call to su-test & set, (by the serialization

of su-test & set), begins before the unsuccessful simulated call ends, since it

can be serialized before the serialization point of the simulated unsuccessful

call. That successful simulated call to su-test & set is within a successful call to

test & set which has been serialized even earlier, when it assigns to restart,

before its simulation started.

It remains to argue that no reset is serialized after the serialization point of

the successful test & set and before the beginning of the unsuccessful call to

test & set. Because the unsuccessful test& set progressed to run at least one

step of the simulation, Lemma 5.3.3.2 implies no reset is active for this process

during an interval of its operation. Hence, any reset serialized before the

unsuccessful call must be the call to reset which precedes the unsuccessful call,

or is even earlier. But these calls to reset are also serialized before the
successful call to test & set.

Note that each high-level test & set operation requires at most a constant

number of operations on the primitive shared objects, and each high-level

reset operation requires at most O(n) operations on the primitive shared

objects. ❑

6. RMW Registers and Consensus

To complete our investigation of memory fault-tolerance we turn to the

read-modify-write register. Herlihy [1991] showed that reliable read-modify-

Computing with Faulty Shared Objects 1259

TABLE I. NUMBEROFREGISTERSI_JSEDTO REACH CONSENSUSIN THE PRESENCEOF FAULTS

Number and type # RMW regs. # atomic bits # bits in
of faults used used RMW reg.’s Algorithm

f ~-faulty (f+ 1)2 o 4 Afek et al. [1992b]
f ~-faulty f+l 4f2i-6f+2 2 36.1
f ~-faulty 2f+l o 4+210gf $6.1
m-faults 2m+l o 4 $6.2

write (RMW) is a universal shared memory primitive: any other shared object

can be simulated using RMW, This follows because RMW registers can be

used to solve n-process consensus, which is itself universal.

Briefly, RMW registers enable a process to atomically read a register and,

based on the value read, to write a new value. Alternatively, a consensus object

is accessed by n processes, each with an input value, inputP c { – 1,+ 1}.A

process decides on a value output if it writes output to its write-once output

register, The requirements of the consensus problem are that there exists a

decision value u such that each non-faulty process eventually decides on v and

that u is the input value of some process.

In this section, several different constructions of fault-tolerant consensus

objects are presented. These constructions use a variety of read-modify-write

and atomic registers, and tolerate different types of faults. Table I summarizes

these constructions.

6.1. UNBOUNDED FAILURES PER REGISTER. We start by presenting a con-

struction (Theorem 6,1.1) of a consensus object from ~ + 1 ternary RMW

registers and a quadratic number of atomic bits, such that ~ of them may be

co-faulty, We then show in Theorem fj. 1.5, how to encode all of the atomic bits

and the ternary RMW registers into 2~ + 1, O(log ~)-bit wide, RMW registers.

We support these upper bound with two lower bounds, (Theorem 6.1.4) that

~ + 1 RMW registers are always necessary, and (Theorem 6.1.5) that a total of

2f + 1 registers (RMW andior read\write) are necessa~.

THEOREM 6.1.1. For any f >0, there is a strongly wait-free consensus con-

struction usingf + 1 terna~ RMWregisters and 2(2f + 1)(f + 1) = 4f 2 + 6f + 2

atomic bits, at most f of which are ~-faul~.

PROOF. The construction is shown in Figure 7. This figure uses the notation

lock(r) and unlock to mark the beginning and end of atomic, exclusive access

to shared RMW register r. That is, it is assumed that a process can lock only
one register at a time, that a process does not fail between pairs of lock(r) and

unlock statements, and that any non-faulty process that reaches a lock instruc-

tion eventually executes it,

The construction uses two ideas, The first is that consensus is trivially

achieved with one non-faulty, ternary RMW register. The register is initially set

to O, the first process to do a RMW sets the register to its input value, and all
processes agree on the value written. The second idea is to use validation bits

to ensure that an invalid value cannot be chosen. Before proposing a value in a

RMW register, a process establishes it as valid by writing to many validity bits.

Before adopting a value from a RMW register a process confirms its validity by

1260 Y. AFEK ET AL,

Protocol for process p, input~ G {-1, +1}:

shared r: array[l ..}+ I] of ternary RMW registers %initialfy each register = O

shared v: array [l..j+l][l..2j +1][–1, I] of atomic bi~ % initially each bit = O

local decidep ,z: ranges over {-1,0, +1}, initiafly o

1: z := inputp %Set initial value of z

2: fori=ltoj+ldo

3: for j = I to 2j+I do u(i, j, z) := 1 od %Establ~h validity of cu~~t value at this stage

4: lock(r(i))

5: if r(i) = O then r(i) := z fi %Vote for x at this stage

6: tmp := r(i)

7: unlock

8: count := O %Adopt this stage’s vote if it is valid

9: for j = 1 to 2f+l do if u(i, j,tmp) = 1 then ~~~nt := co~nt + 1 H od

10: if counf > \+l then z := tmp fi
ll:od

12: dec:dep := z

FIG. 7. Consensus in the presence of ~, ~-faulty registers. The construction uses ~ + 1 RMW
registers and 4~ 2 + 6~ + 2 atomic read/write bits.

reading the validity bits. Faults in a RMW register therefore cannot convince a

process to choose an invalid value.

The two ideas are combined as follows: The construction proceeds in ~ + 1

stages. Each stage is assigned a RMW register and two sets of 2f + 1 atomic

bits. One set of bits is called the ualidity bits for value + 1 and the other set the

validity bits for value – 1. In each stage the processes validate their current

value using the appropriate validity bits, attempt to write their value in a RMW

register reserved for this stage, and adopt the value written in this register if it

is valid.

More specifically, the value x is marked valid in stage i by ensuring that all

2 f + 1 stage-i validity bits for value x are set to 1. (In Figure 7, Line 3, these

bits are denoted u(i, *, x).) The attempt to write a value at stage i is made to

the ith RMW register (Lines 4 to 7). A process writes its value if and oniy if

the register was O prior to the RMW. The value x is considered valid by a
process checking its validity at stage i if and only if at least f + 1 stage-i

validity bits for value x are set to 1 (Lines 8 to 10). (Note there is a

straightforward generalization of this construction, to solve consensus for any

bounded set of input values, by adding additional validity registers for each.-
value, and approp~iate RMW values.) -

LEMMA 6.1.2. (VALIDIm). In tlae protocol of Figure 7, processes decide

on valid values.

PROOF. A stronger statement is proved: the value of the local variable

always valid after Line 1 has been executed.

only

x is

For each process the variable x is modified only in Line 1 and possibly ~ + 1

times at Line 10. We inductively prove that no variable x can be changed to an

invalid value. Suppose all changes numbered less than i were to valid values

(the assignment in Line 1 for some process serves as base cases). Next it is
shown that the change numbered i is to a valid value.

Computing with Faulty Shared Objects 1261

If change number i is an execution of Line 1, then it is to an input value

which is by definition valid and the induction holds. If, on the other hand, the

change is due to an execution of Line 10 then it must be the case that the for

loop at Line 9 read at least f + 1 validity bits set to 1 for the new value of x.

These bits are initially O (meaning not valid for all stages) and at least one is a

field of a nonfaulty register. This nonfaulty bit could only be nonzero (valid) if

it were written by some process at an earlier time. But processes only write

these bits (at Line 3) when they correspond to their current value of x. By

induction, the earlier values of x were valid and thus the nonfaulty bit

corresponds to a valid value of x and the new, adopted value of x is valid. ❑

LEMMA 6.1.3. (AGREEMENT). Every process that writes a value in decideP

writes the same value.

PROOF. In any execution, there is at least one stage in which the RMW

register which is written is nonfaulty. Call the first such stage g. The first

process to attempt a read-modify-write at g will succeed in writing its value,

call it Xg. Furthermore, it will have first established the validity of x~ for stage

g. Since the nonfaulty validity bits are set to 1 but never set to O, the f + 1

nonfaulty validity bits at stage g will always show Xg as valid for stage g. All

subsequent processes will thus be able to successfully confirm the validity of X8

for stage g, Since register g is nonfaulty all subsequent processes will also

agree that its value is Xg. Thus, all processes will adopt the value X8 at stage g.

Using stage g as a base case, we now show that if all processes agree on

value Xg at the end of stage i > g, then all processes agree on value Xg at the

end of stage i + 1.Since all processes agree on value Xg at the end of stage i

they will all set validity bits for the value x~ at stage i + 1. None will set

validity bits for the value –X8 at stage i + 1.Thus, regardless of the value of

the i + 1st RMW register no process can switch its value to –xg. ❑

Note that each process performs 4 f 2 + 6f + 2 primitive operations on the

read/write registers, and f + 1 primitive RMW operations. Hence, the con-

struction is strongly wait-free. This fact, together with Lemmas 6.1.2 and 6.1.3,

concludes the proof of Theorem 6.1.1. ❑

Complementing Theorem 6.1.1, we have a simple lower bound that shows

that the number of RMW registers used in the proof of Theorem 6.1.1, f + 1,

is optimal.

THEOREM 6.1.4. There does not exist a strongly wait-free consensus construc-

tion which tolerates f ~-faul~ registers and uses fewer than f + 1 RMW registers

and any number of read/wn”te registers.

PROOF. Since a fault could erase the effect of every operation in an
w-faulty RMW register, this object can be trivially implemented by an object

that always returns the initial value and uses no shared primitive objects. Thus,

f ~-faulty RMW registers and any number of reliable read\write registers are

no more powerful for solving consensus than the read/write registers alone.

The theorem follows from the impossibility of consensus from read/write

registers [Herlihy 1991; Loui and Abu-Amara 19871. ❑

If only RMW registers are used, we have the following tight bound:

THEOREM 6.1.5. If only primitive ~-faulty RMW registers are used to solve

consensus, and if as many as f of the registers may be faulty, then 2f -t 1

1262 Y. AFEK ET AL.

(logarithmic-size) IWIW registers are both necessary and suficient:

CONST(RMW, (~, ~), consensus) = 2f + 1.

PROOF. The lower bound, CONST(H, (~, ~), consensus) > z~, is a

corolla~ of a stronger lower bound (for a weaker fault model), Lemma 6.2.2 in

the next subsection.

The upper bound, CONST(M, (~, GO),consensus) s 2~ + 1, is proved by

modifying the construction used in the proof of Theorem 6,1.1. The modifica-

tion encodes the ~ + 1 ternary IIMW registers and the 0(~ 2, validity atomic

bits into 2~ + 1 RMW registers of size 4 + (2[log f I)-bits.

Each of the 2f + 1 RMW registers in the new construction is divided into

three fields: decide, uplus, and vminus. The f + 1 ternary RMW registers are

simulated by the decide field of the first f + 1 new RMW registers. This is

possible since RMW registers can be read-modify-written in one field without

affecting the values in any other field.

The encoding of the validity bits relies on the following two observations

about the construction. First, a value is valid in stage k if and only if its validi~

was established in all stages i, i < k, and second, once valid in stage k a value will

rzeuer be invalidated in stage k. Thus, instead of recording the validation for each

stage separately, it is enough to record for each value the maximum stage in

which it is valid. Of course, since f of the RMW registers could be faulty, we

repeatedly record this information in all the 2f + 1 RMW registers. Each of

the fields uplus and vminus can encode the values O through f + 1 and is

initially O. The setting of bit u(i, j, 1) in the previous construction is now

performed by setting the uplus field of register j to be equal to i if it is found

to be less than i. The bit u(i, j, 1) is read as 1 if the value of the vplus field of

register j is greater than or equal to i and as O otherwise. The bit u(i, j, – 1) is

handled in the same way.

In this construction, each process now performs 4f2 + 7f + 3 primitive

RMW operations. ❑

6.2. BOUNDED FAILURES PER REGISTER. For a bounded number of faults

per register, we are able to fully characterize the number of RMW registers

required for consensus:

THEOREM 6.2.1

—CONST(RiMW, (f, 1),consensus) = 2f + 1.

—CONST(RJIW, m, consensus) = 2m + 1.

PROOF. Lemma 6.2.2 (below) implies the lower bound:
CONST(RMW, (~, 1), consensus) > 2~ while Lemma 6.2.3 implies the upper

bound: CONST(RMW, m, consensus) s 2m + 1. Together with Theorem 3.1,

these imply the theorem. ❑

LEMMA 6.2.2. There is no n-process consensus construction using fewer than

2 f + 1 primitive objects, at most f of which may be l-faulty, and which survives

[n/21 process failures.

PROOF. The proof is by contradiction. Assume to the contrary that there is

a solution using 2f primitive objects. Let the initial internal states of the

registers rl, ..., rz~, be Ul, ..., u2f, respectively.

Computing with Faulty Shared Objects 1263

The process-failure assumption requires that in any run in which only half

the processes, pl, ..., Pr. /21 take StePS1 they must eventually decide. ~SO> if
their inputs are identical, the validity condition requires that they must decide

on that value, as they do not know whether the other decision value is an input

of some process. Thus, there is a failure-free, finite run a where half the

processes run alone with input + 1 and decide on +1. Let the final internal

states of the primitives rl, ..., rzf, inabeul, ..., u ~~, respectively.
NOW consider a run in which the other processes, p,. /21+ ~, ..., P. take stePs,

run alone with input – 1, but find the primitives initially are m states

Ul, ..., Uf, Vf+l> . ..7 Vzf. This is consistent with a run in which pl,..., p,. ,2,

have taken no steps and ~ faults have changed the internal states of r + ~,..., r2~

to Uf+l,..., Vzf, respectively. Hence, pf~ /Z1+ 1, ..., dP. must all deci e – 1. But
this run is also consistent with a run in which pl, . . . 7Ppl/21 have all-eadY

decided +1, and ~ faults have changed the internal states of rl,.. ., rf back to

U*, ..., u~, respectwely. Hence, p,. ,21+ 1,..., P. must all decide +1) a contra-
diction. ❑

Note that this lower bound depends on a weaker progress assumption than

wait-freedom, which requires each process to make progress regardless of

whether the others take steps. By [n/21 process failures, we mean that the

construction need only be correct in runs in which at least 1n/21 processes are

guaranteed to make progress, (A process may wait for 1n/2] – 1 other

processes to take steps.)

Moreover, the bound also does not depend on the behavior of the construc-

tion when the object fault bound is exceeded. (It does not depend on a

requirement that the construction be strongly wait-free.)

LEMMA 6.2.3. For any m >0, there is a strongly wait-free consensus construc-

tion using 2m + 1 faulty RMW registers, provided the total number of memoy

failures is at most m:

CONST(RMW, m, consensus) s 2rn + 1.

PROOF. The proof of this lemma is based on the construction in Figure 8,

which solves strongly wait-free consensus using 2 m + 1 faulty RMW registers,

provided the total number of memory failures is at most m. The correctness of

this construction is a consequence of the series of lemmas in the next

subsection.

6.3. PROOF OF THE UPPER BOUND. In Figure 8, the input to process p is

initially assigned to register inputP, local to p, and an appropriate output value

must be assigned to register decideP. As in Figure 7, Figure 8 uses the notation

lock(r) and unlock to mark the beginning and end of atomic, exclusive access

to shared RMW register r.

In the construction, there are 2m + 1 shared registers r[i], 1< i < 2m + 1.

Each register contains three fields: uote, plus, and minus. The Boolean plus

and minus fields are used to check that the associated value (from { – 1, + 1}) is
the input to some process, and hence is valid. This is assured by a discipline in

which every process initially indicates that its input is valid by setting the

appropriate 2m + 1 fields to 1 in lines 1–3. This guarantees that henceforth,

any other process reading these fields will find at least m + 1 of them 1, and

1264 Y. AFEK ET AL.

Pnotocol fir process p, inpufp E {-1, +1}:

type reg = record [minus, plus: in {O, 1} vote in {-1,0, +1}]

shared r: array [l..(2na + 1)] of reg, initially all (0,0,0)

local deeidep: in {-1,0, +1}, initially O

begin Main

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

1:
2:

3:

4:

.5!

6:

1:

2:

3?

4:

5:

6:

7:

8:

9:

10:
11:

12:

13:

14:

15:

16:

17:

18:

19:

1:

2:

for i= 1 to2m+l do %indicate that inpufp is valid

if inputp = +1 then RA4W(r[i], pius, 1)

else RMW(r[~, minus, 1) fi od

d := inputp
for i= 1 to2rn+l do %push sum away from O

RMW(r[i], vofe, d)
sum := o
for j = 1 to i do sum := sum + RMW(r[j], vo!e, d) od %sum of r[l] . .r[i]

d := valid(sum) od

decideP z= d %make final decision

end -Main

function RMW(reg, jield, t): integer %set reg. field from O to t if reg.jield was O

lock(reg)

if reg.jie[d = O then reg. field := t fi

tmp := reg.jield

unlock

return(trnp)

end-function

function valid(v): integer %return sign(u) if valid, otherwise return inputP

if u = O or sign(u) = sign(inptitp)
then return (inputp)

else srn := O

forj=lto2m+ldo

if sign(v) = +1 then sm := sm + r[j].plus

else sm := sm + r~]. minus ff

od

ifsm<m

then ~eturn(inputp)

else

for j= 1 to2m+l do

if sign.(v) = +1

then RMW(r~], p/us, 1)

else Rk4W(r~], minus, 1) fi

od

return (sign(v))

ft

tl

end~unctien

function sign(z): integer

case z of:

o: return(0)

<0: return(-1)

>0: return(+l)
end_function

%V is not valid

%V is valid

%ensure that v’s validity is stable.

FIG. 8. Consensus in the presence of m memory failures.

Computing with Faulty Shared Objects 1265

conclude the value is valid. In turn, any process finding at least m + 1 of the

plus (respectively, minus) fields 1, sets all of them to 1 (in lines 12–16 of

function ualid) before otherwise acting on the knowledge that + 1 (respectively,

– 1) is valid. This is necessary to ensure the stability of the validity. Otherwise

some process with input u could write it in lines 1–3 to only m + 1 registers

and stop, then some process would confirm u valid, but yet another would not

be able to confirm because some of the m + 1 registers have failed.

Fori=l,2,..., 2m + 1 each process scans the vote fields of the registers

r[l] ““” r[i — 1]and tries to write the sign of the sum of the previous registers to

r[i].uote, or its own value if the sum is either O or is not valid. At the end, it

scans once again all the registers, and decides on the sign of this final sum.

The proof of correctness proceeds as follows: Note first (from lines 5–9 in

the main protocol body) that each process’s protocol performs 0(nz2) primitive

wait-free operations before deciding and terminating. Hence, the construction

is strongly wait-free, and it suffices to consider only complete runs, those in

which every process has terminated. Thus, the construction is correct if its

complete runs satisfy the validity and agreement conditions. The construction

is analyzed under a stronger fault model which allows m independent faults to

occur to each of the uote, plus, and minus fields of the shared registers, up to

3m faults in all. These faults are modeled as assignments to the appropriate

register fields. The validity condition is proven in a straightforward manner

(Lemmas 6.3.1). Subsequently we argue that the construction is correct if and
only if each of a constrained set of executions is correct (Lemmas 6.3.2, 6.3.3,

6.3.5). These executions are shown to satisfy an invariant that implies the

agreement condition (Lemmas 6.3.6–6.3.8).

Note that nowhere in any process’s code is a shared register field ever set

to o.

LEMMA 6.3.1 (VALIDITY)

(1) No process p writes to a plus (respectively, minus) jield unless either inputP =

+ 1 (respectively, inputP = – 1),or the process has previous~ observed 1 as

the value in m + 1 of the plus (respectively, minus) fields.

(2) No process writes to a plus (respective{y, minus) jield unless + 1 (respectively,

– 1) is the input of some process.

(3) No process decides + 1 (respective~, – 1) unless the process has previously

observed 1 as the value in m + 1 of the plus (respectively, minus) jlelds.

(4) No process writes + 1 (respectively, – 1) to a vote jield without jirst assigning

1 to the plus (respectively, minus) fields of all 2m + 1 registers.

Two complete runs a and /3 are similar if each process has the same input

value in a as in ~, and each decides on the same value in a as in /3.

Next, note that the read-modify-write in line 8 modifies r[j].vote only if

r[j]wote is first observed to be O. Since the same process will have either set or

observed r[j].uote # O in an earlier scan, this observation of O and resulting

modification (in Line 8) is due to a memory fault on r[j].uote.

LEMMA 6.3.2. For any complete run ~, there is a similar run a, such that a

contains no more memoy faults than B, and such that in a no memo~ fault

assigns O to any vote jield.

1266 Y. AFEK ET AL.

PROOF. Let ~ be a complete run of the form ~1(r[j].uote t= O)~z, where

(r[j].uote := O) is a memory fault. There are several cases:

—No operation in ~z references r[j].uote.

Then, PI ~z is a complete run that is similar to ~, has no more memory

faults than ~, and has one fewer (faulty) assignment of O to a uote field.

—The first reference to r[j].uote in ~2 is a memory fault. That is, ~z can be

written as PS(r[j].uote = u)~d, where ~~ contains no reference to r[j].uofe,

r[j].uote = u is a memory fault and u = { – 1, 0, 1}. Then, ~1 ~~{r[j].uote :=

u) ~q is a run of the construction that is similar to ~, contains no more

memory faults than ~, and has one fewer (faulty) assignment of O to a uote

field.

—The first reference to r[j].uote in ~z is a read-modify-write.

That is, flz can be written as ~~(r[j].uote = O; r[j].,vote Z= u)~4, where

(r[~].vote = O; r[j].uote = v) is the read-modify-write by some process p, and

p~ contains no explicit reference to r[j].uote. Note that the read-modi$-write

operations to the vote fields change the value only when it is zero. Then,

pl(~[jl.~ote ‘= U)ps(r[jl.uote = V)134, where (r[jl.uote ‘= u) is a fault, is a
run of the construction that is similar to /3, cent ains no more memory faults

than ~, and has one fewer (faulty) assignment of O to a uote field. This run is

similar to ~ since in the construction a process does not distinguish between

the case where its read-modify-write operation actually modifies the value of

r[j].uote to u and the case in which v was found in r[j].wxe by the read-mod-

ify-write operation that attempts to write u in it.

In each case, the number of faulty assignments of O to a vote field decreases

by one. The lemma follows by induction. ❑

LEMMA 6.3.3. Any complete run has a similar run, with no more memory

faults, in which no memo~ fault occurs at r[j].vote when the value is O.

PROOF. Let ~ be a complete run of the form P1(r[j].uote = v)~z, where

(r[j].uote := u) is a memory fault and the value of r[j].uote after ~1 is O.

Moreover, let this be the first such memory fault in ~. By the previous lemma,

it suffices to assume that no memory fault assigns O to a vote field in ~. Since

no process ever writes O to any uote field, it follows that the value of r[j].uote

is O throughout fll. There are several cases:

—Either u = O or no operation in ~z references r[j].uote. Then, PI ~z is a

complete run that is similar to ~, has one fewer memory fault than p, and

has one fewer (faulty) assignment to r[j].uote when the value is O.

—u # O and the first reference to r[j].uote in ~z is a memory fault. That is, ~z

can be written as p~ (r[j].uote := u’)p4, where f$ contains no reference to

r[j].uote and u’ = { – 1,0, 1}. Then, PI ~~(r[j].uote := U’)fta is a run of the

construction that is similar to ~, has one fewer memory fault than ~ and the

same number of (faulty) assignments to r[j].uote when the value is O.

—u + O and the first reference to r[j].uote in ~z is a read-modify-write. That
is, ~z can be written as ~~(r[j].vote = u)@i, where (r[j].uote = u) is the

conditional test of the read-modify-write by some process p, and P3 con-

tains no explicit reference to r[j].uote. Since the value of r[j].uote is O

throughout fll, this read-modify-write operation is from line 6 of Main, and

the value returned is discarded by the executing process. Hence,

Computing with Faulty Shared Objects 1267

pl Ps(r[j].uote = O; r[j].vote ‘= u’)(r[jl.uote ‘= u)f14 is a run of the con-
struction that is similar to @, has the same number of memory faults as ~,

and one fewer (faulty) assignment to r[j].uote when the value is O.

In each case, the total number of memory faults is either reduced, or the

total number remains the same, with one fewer (faulty) assignment to r[j].uote

when the value is O. The lemma follows by induction. ❑

Definition 6.3.4. A legal run, is a run in which any memory fault to a vote

field either changes its value from + 1 to – 1 or vice-versa.

LEMMA 6.3.5. Any complete run has a similar legal run with no more memory

faults.

PROOF. By the previous two lemmas, it suffices to consider complete runs

in which no memory fault assigns O to a uote field, or over-writes a O in a vote

field. The remaining alternatives are memory faults which write + 1 or – 1, but

do not change the value. These faults can be trivially deleted, resulting in a run

satisfying the conditions of the lemma. ❑

Call read-modify-write operations to vote fields that actually change the

value successfid read-modifi-writes. Call the i – 1 reads by p immediately

preceding a successful read-modify-write to r[i].uote by p in line 6 of Main, the

collect for that write.

LEMMA 6.3.6. In any legal run a, there are exactly 2m i- 1 successful

read-modifi-writes, one to each vote field. Furthermore, the collects for any two

such successjid read-modifi-writes are not concurrent: if i < j, the collect for the

successjid read-modifi-write to r[i].uote precedes the success-l read-modifi-write

to r[i].uote, which in turn precedes the collect for the success@l write to r[j].vote.

PROOF. By definition, every legal run is complete and the memory faults to

vote fields change the value from + 1 to – 1, or – 1 to + 1. In complete runs,

every process executes a read-modify-write on each vote field, so each is

changed from O to + 1 or – 1 at least once. Once set, being non-zero is stable,

so each vote field has exactly one successful read-modify-write.

The condition on collects holds trivially if both successful read-modify-writes

and their collects are by the same process. Suppose the read-modify-writes are

by different process, p and q, to r[i].uote and r[j].uote, respectively. Note that

q does an unsuccessful read-modify-write to r[i].uote before the collect for

r[j].uote begins. Hence, the successful read-modify-write to r[i].uote by p

precedes this. The condition follows. ❑

Let Sk be a state of the system in a legal run of k atomic operations, and let

RF~ be the remaining unexecuted faults to vote fields in a run, that is, m

minus the number of such faults so far. Let ZS~ be the number of O’s in the

vote fields in registers in Sk, define Zk to be the sum of the vote fields in sk,

~~fl~ lr[i].uote, and finally, define Ak to be I~~1 + ZS~ – 2~k.

LEMMA 6.3.7. Ak >0, for any k >0.

PROOF. We consider the changes to these parameters that can result from

any single step of the construction. That is, let m be a step in a legal run that

changes the state from Sk to Sk+ ~.

1268 Y. AFEK ET AL,

(1) m is a memoy fault. That is, m is r[i].uote := u, where the value of

r[i].uote is –u in Sk. Note that ZS~+l = ZS~ and RF~fl = RF~ – 1.

Here, there are four key subcases.

(a) Sk = O. Then l~k+ll = 2, and A~+l = A~ + 4.

(b) O < IZ,I < 12,+,1.Then 12~+11 = 1~~1 + 2, and again A~+l = A~ + 4.

(c) O < 1~~1 = l~~+ll. Then lZk+ll = Ilikl = 1, and A~+l = A~ + 2.

(d) 1~~+11 < llZkl.Then l~k+ll = lZkl – 2, and A~+l = A~.

(2) visa successji.d read-modijj-write. That is, ~ is r[i].vote = O; r[i].uote := u.

Then, ZS~. ~ = Zsk – 1, RFk+l = RF~, and ~~+1 = ~~ + v. There are

two key subcases:

(a) l~kl < lZk+ll. Then 1~~+11 = 1~~1 + 1, and A~+l = A~.

(b) 1~~+11 < l~~l. Then 1~~+11 = 1~~1 – 1, and A~+l = Ak – 2.

(3) T is any other atomic step. Then, ZS~, ~ = ZS~, RF~, ~ = RF~, and I~~+ ~I

= l~~l. Hence, A~ = A~+l.

In every (sub)case but one (2b), the value A~+ ~ is greater than or equal to

A~. The problematic case is the occurrence, then, of read-modify-write opera-

tions that decrease the value of 121, Intuitively, such operations occur because

faults have occurred so as to cause a process to inadvertently “move” the value

of 12 I in the wrong direction. We claim that, for each such read-modify-write

operation that decreases IZ I by 1, there must be an earlier matching fault of

type la, lb, or lC that increases IZI by at least 2. This claim is proved below by

induction, thus completing the proof of the invariant.

The proof of the claim proceeds by induction on the prefixes of the run.

Clearly the invariant holds for the empty run (RFO = m; ZSO = 2m + 1; and

IXOI = O). Let am be a prefix of the run, where m is the (k + l)st atomic
operation and the invariant holds for every state SO,..., Sk. By the analysis

above, no atomic step of the construction can falsify the invariant unless case

2b applies. In this case, rr is a successful read-modify-write by some process p,

(r[i].uote = O; r[i].uote = u), and 1~~+11 = 1~~1 – 1. Note that Z, # O.
Since, in case (2b) Zk # O and this is a legal run (in which no memory fault

overwrites a O in a vote field), i > 1. Moreover, by Lemma 6.3.6, a = al

(r[i - 1].uote = O; r[i – 1] = u’)a,m, where (r[i – 1].uote = O; r[i - 1] =

u’) is the successful read-modify-write to r[i – 1].vofe and there are no

successful read-modify-write operations in az. Let Sj be the state at the

beginning of CYz,just after the successful read-modi~-write to r[i – l],uote. By

induction, Aj > 0. Also by Lemma 6.3.6, CYzcontains the i – 1 reads in the
collect by p that precedes w. In addition, since none of the operations in az

are successful read-modify-writes, by the analysis above A j < “”” < A~.

Next, consider the sequence of values Zj, ~~. observe that since the run

is legal, and because there is no successful read-modify-write operation in az,

the value of Z never changes by only 1 in az. We examine cases depending on

the sign of the sum collected by p, and show that a fault described in case la,

lb, or lC must occur in az, implying Ak >3, and so Ak+ ~ >1,

The collect sums to a valid value. There are two subcases.

—Some Z, in Zj,. . ., Zk has the same sign as the sum collected.

Computing with Faulty Shared Objects 1269

Since lZ~+ ~I = 1~~ I – 1, it must be that the sign of the value written by n-(~~)

is different than the sign of ~~. Thus, the sign of 2X (= sign of sum

collected = sign of u) is different than the sign of Z~. Hence, there exist Z,

and 2,+ ~ in this sequence such that either ~, = O and IX,+ 1I = 2, or IX,l =

l~.+ll = land ~,= –2,+1. Then either A,+l = A,+ 4 >50r A,+l = A,+2
> 3, respectively. (This must be due to a fault of type lb or lc, above.) Thus,

A~ z A,+l >3 and hence, A,~l >1.

—No E in ~j, ~~ has the same sign as the sum collected.

By definition, the sign of the sum collected must be the sign of a majority of

the i – 1 registers read in the collect. Thus, a majority of the i – 1 registers

each have the same sign as the COIIect and as u at some point in the interval,

but not at the end of the interval, Then, a fault in the interval must change the

value of at least one of these, from u to – u. That is, there exist 2, and 2,+ ~ in

this sequence such that IZ,+ ~1= IZ,I + 2, and A,+ ~ = A, + 4>5. Hence,

A ~+1 >3.

The collect sums to O. There are two subcases,

—Some 2X in ~j,. . . . Xk has value O.

Since Xk # O, some fault must move the sum from O. That is, there exist ~,

and 2,+ ~ in this sequence such that 2, = O and IX,+ 1I = 2. Hence, A,+ 1 = A,

+4>5and A~+l>3.

—No X in ~j,..., ~~ has value O.

That is, half the registers are read as positive, and half as negative, Suppose

first that there exist 2, and X,+ ~ in the sequence ~j,..., Zk that have different

sign: that IZ,I = IZ,+II = 1 and Z, = –Z,+l, Then, A,+l = A, + 2>3 and

A~ >3. Hence, A~+l >1.

Suppose next that all of Zj, Zk have the same sign. Since 1~~+ ~1= lZ~ +

u I < I~~ 1,their sign is different than u ‘s. The COIIect read half the registers with

uote = – u and half with vote = u. Since all the 2 have sign different than u,

some fault changes a value from u to – u in cq. That is, there exist 2, and

Z,+l in the sequence such that 12,YII = 1X,1 + 2, and A,+, = A, + $ z 4 z 5.

Hence, A~,l >3.

The collect is nonzero and invalid.

By Lemma 6.3.1, all i – 1 of the earlier successful read-modify-writes wrote

the single valid value, u, yet the sum of the collect had opposite sign. Hence, in

a at least (i/21 registers had faults changing the value from u to – u. Recall

that RF~+ ~ is m minus the number of faults in am; hence, RF~+ ~ < m – [i\21,

and 2RF~~ ~ s 2m – 2[i/21 s 2m – i. Hence, we have

>lZ~+ll +2m+l–i–(2m– i)

n

1270 Y. AFEK ET AL.

LEMMA 6.3.8 (AGREEMENT). All processes decide on the same value.

PROOF. Consider Sk in the system state Sk, immediately after the last

register, r[2m + 1], has been written. By Lemma 6.3.7, 2RF~ < 112k1. Hence-

forth, the number of remaining faults is insufficient to change the sign of Zk,

or reduce it to O. Since all the reads in any final collect (upon which any

decision is based) are made after Sk, all processes decide on the same

value. ❑

Recall that a register is k-faulty if it can change its value spontaneously,

without any process writing into it, at most k times, Lemma 6,2,3 and Theorem

3.1 imply the following:

COROLLARY 6.3.9. For any 1 s k s m, there is a strongly wait-free consensus

construction using 2m + 1 l?iWW registers where at most 1m/k] registers are

k-faulty:

c0NsT(m4aklc0nsensus)‘2m+1
6.4. UNIVERSAL CONSTRUCTIONS. Herlihy [1991] defined the notion of a

universal object, as an object that can be used to construct a wait-free

implementation of any other object. He showed that consensus and other

objects for n processes are universal for systems with at most n processes.

Herlihy’s construction required atomic registers over an unbounded domain.

Recently, Jayanti and Toueg [1992] showed how to bound the register size in

Herlihy’s construction.

THEOREM 6.4.1 (HERLIHY). Consensus objects together with atomic registers

are universal, provided none of them are faulty: For all objects X,

CONST((consensus, atomic), (O, ~), X) < ~.

PROOF. For any number of processes n, Herlihy [1991] gives an explicit

construction from n-processor consensus and atomic registers that uses 0(n3)

reliable atomic read/write registers of unbounded size and 0(n3) reliable

consensus objects over a bounded domain. Simple extensions of known con-

structions can be used to implement multi-valued consensus from binary

consensus and n read/write registers [Plotkin 1988]. (Each process p writes its

input to a read/write register rP, initialized to some invalid value, then

processes use binary consensus on log n consensus objects to agree on the
index q of a register r~ that contains a valid value.)

Although the construction does not tolerate faults, it must be strongly

wait-free. Herlihy’s [1991] construction includes a loop with an exit condition

dependent on values read from shared memory. If a fault occurs, the construc-

tion may loop forever, so this precise construction is not strongly wait-free.

However, there is a bound on the number of low-level operations on shared

data that are required to implement a single high-level operation. Hence, this

construction can be made strongly wait-free by adding an exit condition when

the bound on the number of low-level steps is exceeded. Other constructions

such as Plotkin [1988] can be modified similarly. ❑

Computing with Faulty Shared Objects 1271

THEOREM 6,4.2

—RMWregisters are universal objects, if a bounded number of them are ~-faulty:

For all objects X, and for all f < ~,

CONST(RMW, (f, ~), X) < w.

—Consensus objects together with safe registers are universal objects, if a bounded

number of them are w-faul~: For all objects X, and for all f < ~,

CONST((consensus, safe), (f, ~), X) < CO.

PROOF. Note first that it is trivial to use a RMW register as a strongly

wait-free implementation of an atomic register: CONST(RMW, (O, ~), atomic)

= 1. From this observation, Corollary 4.4 and Theorem 3.4, we have

CONST(RMW, (f, ~), atomic) s 20f + 8 and from Theorem 6.1.5 we have

CONST(RMW, (f, ~), consensus) = 2 f + 1. Composing these two facts with

the construction in Theorem 6.4.1, and appealing to Theorem 3.3, proves the

first part of the theorem.

To prove the second part of the theorem, known fault-intolerant construc-

tions of atomic registers from safe registersll can be made strongly wait-free as

was done above with Herlihy’s construction: CONST(safe, (O, m), atomic) s m.

Composing these constructions and Theorem 6.4.1, we obtain CONST((con-

sensus, safe), (O, M), R&fW) s w. The result follows by the first part of the

theorem and Theorem 3.4. ❑

The proof of the second part of this theorem can be readily generalized:

THEOREM 6.4.3. Suppose X is a universal object, in the sense that for all

objects Y, there is a strongly wait-jiee construction of Y jiom X. Then there is a

fault-tolerant construction of Yfiom X: For all objects Y, and for all f < w,

CONST(X, (O, m), Y) < ~ == CONST(X, (f, ~), Y) < ~.

In their recent paper on memory faults, Jayanti et al. [1992] give a direct

fault-tolerant, strongly wait-free construction of consensus from consensus,

which they use in an alternative proof of the second part of the previous

theorem: consensus objects and registers can be used in fault-tolerant, strongly

wait-free universal constructions.

7. Discussion, Open Problems, and More about Related Work

There remain many unresolved issues related to shared memory failures in

distributed systems. Faulty versions of other shared data objects, such as

multi-valued test & set registers, m-registers, and compare & swap registers,

are of interest. Based on the constructions presented in this paper, fault

tolerant construction of fetch-and-add and swap shared objects are presented

in Afek et al, [1993b]. We have tight bounds on only a few problems; more

efficient constructions and corresponding lower bounds would also be interest-

ing.
It would be particularly interesting to implement memory-fault tolerant data

objects directly from similar, faulty objects, such as test & set from test & set,

11See, for example, Bloom [1987], Burns and Peterson [1987], Lamport [1986], Li et al. [1989],
Peterson [1983], Peterson and Burns [1987], Singh et al. [1994], and Tromp [1989].

1272 Y. AFEK ET AL.

without using atomic registers, or read-modify-write from read-modify-write,

without the overhead of a universal construction.

All our solutions are deterministic. It would be interesting to explore the use

of randomization to tolerate memory failures. Also, there is much work to be

done in exploring the effect of memory failures in other models, such as

synchronous or semi-synchronous models.

Earlier, we referred several times to a paper by Jayanti et al. [1992] that

explores other interesting issues related to memory failures, as well as indepen-

dently proving some of the same results presented here. Our fault models allow

the study of individual faults within an object, setting the stage for an

investigation of transient fault behavior. The work of Jayanti et al. [1992]

assumes an object is either permanently faulty or completely reliable, but

studies a range of fault types, from extremely malicious nonresponsive faults,

to benign crash behavior.

These definitions coincide in our notion of ~-faulty objects, which corre-

spond to responsive, arbitrary failures in the work of Jayanti et al. Specific

results by Jayanti et al. that are identical or closely related to ours include:

—A version of Theorem 3.2 that states general conditions on self-implementa-

tion, in any fault model, that suffice to apply the same recursive construction

used in our proof,

—Composition results similar to Theorems 3.3 and 3.4.

—Register constructions analogous to Theorems 4.1, 4.3, and Corollary 4.4.

—A direct, fault-tolerant and strongly-wait free construction of consensus

from consensus, which is used to prove universality results analogous to the

second part of Theorem 6.4.2 and to Theorem 6.4.3.

The generalization of Theorem 3.2 depends on a notion of gracejidly degrad-

ing construction that generalizes our notion of strongly wait-free construction.

Gracefully degrading constructions from potentially faulty low-level primitives

are required to exhibit the same type of fault behavior, when too many

primitives fail, as the low-level primitives themselves suffer. Gracefully degrad-

ing constructions in different fault models can be composed in general ways,

just as we compose strongly wait-free constructions in the ~-fault model. We

believe this generalization of strong wait-freedom is an important contribution.

Jayanti et al. [1992] also investigate an interesting range of fault models

distinct from those we study, focusing on computability and universality issues,

They show that unresponsive faults (in which invocations to objects may not

evoke replies) are essentially impossible to overcome. In addition to the

arbitra~ fault model, they study two weaker responsive fault models, omission
faults and crash faults. They show universal gracefully degrading constructions

for omission faults, and argue that crash faults are too benign. That is, even if

the low-level primitive objects fail by crashing, it is essentially impossible to

create abstract components that gracefully degrade (or exhibit only crash faults

when too many primitives crash).

Following on this work, three of us have defined a benign fault model

intermediate in power between the omission and crash fault models, and shown

that it supports universal, gracefully degrading constructions [Afek et al. 1993].

ACKNOWLEDGMENT. The authors benefited substantially from the efforts of

outstanding referees. They caught several errors and omissions, and the pre-

sentation is much improved, in clarity and style, from our original draft.

Computing with Faulty Shared Objects 1273

REFERENCES

ABRAHAMSON,K. 1988. On achieving consensus using a shared memory, In Proceedings of the

7th ACM Symposium on Principles of Disti’buted Computing (Toronto, Ont., Canada, Aug.

15-17). ACM, New York, pp. 291-302.

AFEK, Y., ATTIYA, H., DOLEV, D., GAFNI, E., MERRITT, M., AND SHAVIT, N. 1993. Atomic

snapshots of shared memory. J. ACM 40, 4 (Sept.), 873–890.

AFEK, Y., DOLEV, D., GAFNI, E., MERRITT, M., AND SHAVIT, N. 1994. A bounded first-in,
first-enabled solution to the l-exclusion problem. ACM Trans. Program. Lang. Syst. 16,3 (May),
939-953.

AFEK, Y., GAFNI, E., TROMP, J., AND VITLNYI, P. M. B. 1992a. Wait-free test-and-set. In
Proceedings of the 6th International Workshop on Distributed Algorithms. Lecture Notes in
Computer Science, vol. 647. Springer-Verlag, New York, pp. 85–94.

AFEK, Y., GREENBERG, D., MERRITT, M., AND TAUBENFELD, G. 1992b. Computing with faulty
shared memory. In Proceedings of the llth Annual ACM Symposium on Principles of Distributed

Computing (Vancouver, B. C., Canada, Aug. 10-12),

AFEK, Y., MERRIn, M., AND TAUBENFELD, G. 1993a. Benign failure models for shared mem-

ory. In Proceedings of the 7th International Workshop on Distributed Algorithms. Lecture Notes in
Computer Science, vol. 725. Springer-Verlag, New York, pp. 69-83.

AFEK, Y., WEISBERGER, E., AND WEISMAN, H. 1993b. A completeness theorem for a class of

synchronization objects. In ~oceedings Ofthelzth ACM $wosium onfi@leS OfDiSm”bU@d
Computing (Ithaca, N.Y., Aug. 15-18). ACM, New York, pp. 159-170.

ASPNES, J., AND HERLIHY, M. 1990. Fast randomized consensus using shared memory. J.
Algorithms, pages 281–294, September.

BELL, G. 1992. Ultracomputers: A teraflop before its time. Commun. ACM 35, 8 (Aug.),

27-47.

BLOOM, B. 1987. Constructing two-writer atomic registers. In Proceedings of the 6th ACM

Symposium on Principles of Distributed Computing (Vancouver, B. C., Canada, Aug. 10-12).

ACM, New York, pp. 249-259.
BURNS, J. E., AND PETERSON, G. L. 1987. Constructing multi-reader atomic values from

non-atomic values. In Proceedings of the 6th ACM Symposium on Principles of Distributed

Computing (Vancouver, B. C., Canada, Aug. 10-12). ACM, New York, pp. 222-231.

CARRIERO, N., AND GELERNTER, D. 1989. Linda in context. Commun. ACM 32, 4 (Apr.),
444-458.

CHOR, B., ISRAELI, A., AND LI, M. 1987. On processor coordination using asynchronous
hardware. In Proceedings of the 6th ACM Symposium on Principles of Distributed Computing
(Vancouver, B.C., Canada, Aug. 10-12). ACM, New York, pp. 86-97.

DOLEV, D., GAFNI, E., AND SHAVIT, N. 1988. Towards a non-atomic era: l-exclusion as a test
case. In Proceedings of the 20th Annual ACM Symposium on Theo~ of Computing (Chicago, Ill.,
May 2-4). ACM, New York, pp. 78-92.

DIJKSTRA, E. W. 1965, Solution of a problem in concurrent programming control. Commun.
ACM 8, 9 (Sept.), 569.

DIJKSTRA, E. W. 1974. Self-stabilizing systems in spite of distributed control. Commun. ACM

17, 9 (Nov.), 643-644.

FISCHER, M. 1983. The consensus problem in unreliable distributed systems (a brief survey). In
Foundations of Computation Theoiy, M. Karpinsky, Ed. Lecture Notes in Computer Science, vol.

158. Springer-Verlag, New York, pp. 127-140.

FISCHER, M., LYNCH, N., BURNS, J., AND BORODIN, A, 1979. Resource allocation with immunity
to limited process failure. In Proceedings of the 20th IEEE Annual Symposium on Foundation of

Computer Science. IEEE, New York, pp. 234-254.

FISCHER, M., LYNCH, N., BURNS, J., AND BORODIN, A. 1985a. Distributed FIFO allocation of
identical resources using small shared space. Tech. Rep. MIT/LCS\TM-290. Laboratory for
Computer Science, Massachusetts Institute Technology, Cambridge, Mass.

FISCHER, M., LYNCH, N.j AND MERRITr, M. 1985b. Easy impossibility proofs for distributed
consensus problems. Dist. Comput. 1, 1,26–39.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985c. Impossibilhy of distributed consensus with
one faulty process, J. ACM 32, 2 (Apr.), 374–382.

FISCHER, M. J., MORAN, S., RUDICH, S., AND TAUBENFELD, G. The wakeup problem. SL4M J.
Comput. to appear.

FISCHER, M. J., MORAN, S., AND TAUBENFELD, G. 1993. Space-efficient asynchronous consensus

without shared memory initialization. Inf. Proc. Lett. 45 (Feb.), 101–105.

1274 Y. AFEK ET AL.

HERLIHY, M. 1991. Wait-free synchronization. ACM Trans. Prog. Lang. ,$yst. 13, 1 (Jan.),
124-149.

HERLIHY, M. P., AND WING, J. M. 1987. Axioms for concurrent objects. In Proceedings of’ the
14th Annual ACM Symposium on Principles of Programming Languages (Munich, West Germany,

Jan. 21 -23). ACM, New York, 13-26.

JAYANTI, P., CHANDRA, T., AND TOUEG, S. 1992. Fault-tolerant wait-free shared objects. In

Proceedings of the 33rd IEEE Annual Symposium on Foundation of Computer Science. IEEE
Computer Society Press, New York.

JAYANTI, P., AND TOUEG, S. 1992. Some results on the impossibility, universality, and decidabil-
ity of consensus. In Proceedings of the 6th International Workshop on Distributed Algorithms.
Lecture Notes in Computer Science, vol. 647. Springer-Verlag, New York, pp. 69–84.

LOUI, M. C., AND ABU-AMARA, H. H. 1987. Memory requirements for agreement among
unreliable asynchronous processes. Aduarrces in Computing Research. 4, 163– 183.

LAMPORT, L. 1974. A new solution of Dijkstra’s concurrent programming problem. Comrrum.
ACM 17, 8 (Aug.), 453-455.

LAMPORT, L. 1986. On interprocess communication, parts I and II. Dist. Comput. 1, 77-101.

LI, K., AND HUDAK, P. 1989. Memory coherence in shared virtual memory systems. ACM

Trans. Comput. Syst. 7, 4 (Nov.), 321-359.
LI, M., TROMP, J., AND VITANYI, P. M. B. 1989. How to construct concurrent wait-free

variables. In Proceedings of the International Colloquium on Automata, Languages, and Program-

ming. Lecture Notes in Computer Science, vol. 372. Springer-Verlag, New York, pp. 488–505.
LYNCH, N. A., AND TUTTLE, M. 1987. Hierarchical correctness proofs for distributed algo-

rithms. In Proceedings of the 6th Annual A CM Symposium on Pn”nciples of Distn”buted Computa-

tion (Vancouver, B. C., Canada, Aug. 10–12). ACM, New York, pp. 137–151. Expanded version

available as Tech. Rep. MIT/LCS/TR-387. April 1987. Massachusetts Institute of Technology,
Cambridge, Mass.

MERRITT, M., AND ORDA, A. Efficient test& set algorithms for faulty shared memory. Unpub-

lished note.
MORAN, S., TAUBENFELD, G., AND YADIN, I. 1992. Concurrent counting. In Proceedings of the

Ilth Annual ACM Symposium on Principles of Distributed Computing (Vancouver, B. C., Canada,

Aug. 10-12). ACM, New York, pp. 59-70.
PETERSON, G. L. 1983. Concurrent reading while writing. ACM Trans. Prog. Lang. Syst. 5, 1

(Jan.), 46-55.
PETERSON, G. L., AND BURNS, J. E. 1987. Concurrent reading while writing II: The multi-writer

case. In Proceedings of the 28th IEEE Annual Symposium on Foundation of Computer Science

(Oct.), IEEE, New York, pp. 383-392.
PmERsoN, J. L., AND SILBERSCHATZ, A. 1985. Operating System Concepts. (Third edition).

Addison-Wesley, Reading, Pa,

PLOTKIN, S. A. 1988. Chapter 4: Sticky Bits and Universality of Consensus, Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, Mass.

RABIN, M. O. 1982. N-process mutual exclusion with bounded waiting by 4 log n shared

variables. J. Comput. Syst. Sci. 25, 66–75.
SAKS, M., SHAVIT, N., AND WOLL, H. 1991. Optimal time randomized consensus—making

resilient algorithms fast in practice. In Proceedings of 2nd Annual ACM–SL4M Symposium on
Discrete Algorithms (San Francisco, Calif., Sept. 27-28). ACM, New York, pp. 351-362.

SINGH, A. K., ANDERSON, J. H., AND GOUDA, M. G. 1994. The elusive atomic register. J. ACM
41(2), 311.

SMITH, A. J. 1982. Cache memories. Comput. Suru. 14, 473-540.
TROMP, J. 1987. How to construct an atomic variable. In Proceedings of the 3rd International

Workshop on Distributed Algorithms, J. C. Bermond and M. Raynal, eds. Lecture Notes in
Computer Science, vol. 292, Springer-Verlag, New York, pp. 292–302.

VITI.NYI, P. M. B., AND AWER~UC~, B. 1987. Shared register access by asynchronous hardware.
In Proceedings of the 27th IEEE Annual Symposium on Foundation of Computer Science. IEEE,
New York, 233-243.

RECEIVED SEPTEMBER 1992; REVISED JULY 1995; ACCEPTED JULY 1995

Journal of the Association for Computing Machinery, Vol. 42, No. 6, November 1995

