Long-lived Adaptive Collect with Applications

(Extended Abstract)
Yehuda Afek Gideon Stupp Dan Touitou
Computer Science Dep., Computer Science Dep., Interdisciplinary Center,
Tel-Aviv University, Tel-Aviv University, Herzliya,
Israel 69978. Israel 69978. Israel 46150.
afek@math.tau.ac.il. afek@math.tau.ac.il. dant@idc.ac.il.
Abstract exclusion algorithm [18] takes a constant number of steps

if one processor runs alone and a linearNnnumber of
A distributed algorithm is adaptive if the worst case step steps if two or more processes run concurrently. Other adap-
complexity of its operations is bounded by a function of the tive (sometimes calleths) algorithms have been since de-
number of processes that are concurrently active during the signed [18, 4, 2, 19, 10, 6, 9, 7].

operation (rather than a function oW, the total number Long-lived and adaptive algorithms in the read/write
of processes, which is usually much larger). In this paper shared memory model have been previously presented only
we present long-lived and adaptive algorithms for collectin o the renaming problem [11, 2, 3]. General methodologies
the read/write shared-memory model. Replacing the readsfor |ong-lived adaptive algorithms have been presented only
and writes in long-lived shared memory algorithmswithour i 3 model that uses strong synchronization primitives such
adaptive collect results in many cases in a corresponding a5 read-modify-write, or load-linked and store-conditional
long-lived algorithm which is adaptive. Examples of such [4]. This paper presents building blocks and tools with
applications, which are discussed in the paper are atomic- which many long-lived algorithms in the read/write model

shapshots, anétexclusion. can be transformed into their corresponding adaptive ver-
Following the long-lived and adaptive collect we present gjgns.

a more pragmatic version of collect, calledtive set This
algorithm is slightly weaker than the collect but has several
advantages. We employ this algorithm to transform algo-
rithms, such as the Bakery algorithm, into their correspond-
ing adaptive long-lived version, which is more efficient than
the version that was obtained with the collect.

Previously, long-lived and adaptive algorithms in this
model were presented only for the renaming problem [2].
A one-shot and adaptive collect algorithm was presented in
[10].

The strongest form of adaptiveness in the read/write
shared memory model has been defined and achieved in the
recently presentedhg-lived renaming algorithms [11, 2,

3]. In these specially tailored algorithms the complexity of
an operation is a function of thgint contentiorof the op-
eration, defined as the maximum number of processes ex-
ecuting concurrently at some point during the operation’s
interval. However, these renaming algorithms, as they are,
turned out to be useless in transforming other long-lived al-
gorithms into their adaptive variants.

Methods for converting algorithms into their adaptive
) versions have been presented in the read/write model but
1. Introduction only for particularone-shotalgorithms [10, 14]. The ba-
sic idea in the transformation suggested in [14] assumes
Traditionally, the efficiency of a distributed algorithmis that one-shot single-writer-multi-reader algorithms take the
measured as a function &f, the total number of processes simple form in which each procegs alternates between
that may participate in the algorithm. However, recently it writing its own variableC; and collecting the values of all
has been observed that the worst case complexity of disthe variable€,, ..., Cx. The transformation then replaces
tributed algorithms could perhaps be made adaptive, thateach of the collects with the one-shot adaptive collect proce-
is, bounded by a function of a significantly smaller quan- dure of Attiya and Fouren [10]. For many one-shot single-
tity, the number of concurrently participating, or actually writer-multi-reader algorithms, this transformation removes
active processes [4]. For example, Lamport’s fast mutual any dependence of the step complexitynresulting in

one-shot adaptive multi-writer-multi-reader algorithms. runs alone and has to return a vectorMdfvalues inO(1)

The piece whose absence prohibits the application ofprimitive operations). Therefore, our implementation uses
a similar transformation fotong-lived algorithms in the registers that can hol¥ values (as is also the case with the
read/write model, is a long-lived adaptive collect algorithm. atomic snapshot algorithm of [1]). Furthermore, in our col-
In this paper we provide this piece by presenting such an al-lect algorithm, only in terms of shared memory operations
gorithm and demonstrating its applications. First we define the complexity is adaptive. The number of operations each
two variants of adaptive and long-lived collect, the standard process performs on itecal memory is linear inN (due
collectandactive-set Given these two variants the contri- to local operations on the siZ€ registers). However, first

butions of the paper are as follows: notice that remote (shared memory) accesses are consider-
o ably more expensive than local memory accessesnsiy,
Basic building blocks: in part we overcome this problem as discussed below.

In an attempt to overcome the two drawbacks above
1. Along-lived and adaptive to point-contentionim- namely, size of registers and the complexity in terms of the
plementation of the standard collect is given and number of local operations, we notice that there are algo-
proved. rithms (e.g., Bakery algorithm) in which not all the values
returned in a collect operation are important. Rather, only
the values of currently participating processes are relevant.
For such cases we can redefine a variant of collectathe
tive set which can be implemented in shared memory and
local memory adaptive step complexities. Furthermore, we
are able to implement the active set with standard size reg-

Applications of the building blocks: isters O(log V) bits each).
In the active set algorithm we deal with a more basic
problem of collecting the processes for which an active
1. The long-lived and adaptive collect is employed fiag is set. In this problem there ale single-writer-multi-
to transform the snapshot algorithm presented reader boolean registet®;, . . ., Fiv, one for each process.
in [1] and thel-exclusion algorithm presented Three concurrent operations are supported byttie set
in [5]. The resulting algorithms are long-lived join, leave andget_set. In join process; writes true in its
and adaptive to the interval contention (a weaker flag F;. In leave it writes false to its flagF;. In aget_set
form of adaptiveness, defined below). operation a process returns the set of processes that are cur-
2. We specially tailor the transformed atomic- rently active. That is, thget_set must return any process
snapshot algorithm to get adaptiveness to the whose flag is true from before thyet_set starts until after
point-contention. it finishes, and it must not return a process whose flag was
false during the entire same period. It may or may not re-
turn any other process. Using the active-set we implement
a weak-collect by first performinget_set and then read-
ing the private single-writer-multi-reader registers of these
active processes.

To get some sense of the difficulties in designing long-

2. Along-lived and adaptive implementation of the
active-set is presented and proved. Although
this algorithm satisfies slightly different proper-
ties then the standard adaptive collect it has sev-
eral advantages as discussed below.

3. The application of the long-lived adaptive active-
set algorithm to transform the Bakery mu-
tual exclusion algorithm into a corresponding
long-lived and adaptive algorithm is presented.
We also discuss similar applications to the
exclusion, and thd-assignment algorithm of

Burns and Peterson [12]. lived and adaptive collect we briefly review here the one-
shot version. The one-shot collect algorithm of Attiya and
The first building block, which is simply calledol- Fouren [10] uses a large binary tree with a splitter[20] ob-

lect, is non-sequentially specified just like the traditional ject in eachnode. Abstractly, the splitter object is a shared
collect: There areN single-writer-multi-reader registers device that returns a special value to a process that accesses
Ci,...,Cy, one for each process. To write in the collect the splitter alone and before any other processlecasssed
procesp; writes its value inC;. To perform collect a con- the splitter, such a process is said to have won or captured
current process reads tihé registers, one at a time in an the splitter. All the processes thatcess the dipter concur-
arbitrary order, and returns the vector of values read. Sincerently with others or after it has been already touched, are
our implementation of the above specification is adaptive to split into two sets such that not all the processes accessing
the (point) contention, it uses multi-writer-multi-reader reg- the splitter are @ced in the same set. Notice that it is possi-
isters. Moreover, because each operation returns a vector dble for no process to return the special value when accessing
size N there can be nadaptivecollect that uses registers a splitter (i.e., it is possible that no process wins a splitter).
of size smaller thaV (consider the case that one process To perform an update in the collect object a process starts at

the root of the binary tree and traverses down until it wins PntContg) = max |Cont(a'8")]

a splitter, marking all the splitters it has touched as it goes o'p' prefix ofa'p

down. Then, the process writes its value in a register asso4ntuitively, the interval contention of a subsequegids the
ciated with the splitter it has captured. To perform a collect number of different processes that were active, (i.e., par-
a processor performs a DFS traversal of the marked nodesicipating) duringd while the point contention is the maxi-
of the tree collecting all the values it observes during the mum number of process active at any point of time dufing
traversal. The difficulties in making this algorithm long- Clearly, for any subsequen@e PntContg) < IntCon{(3).
lived, are first, how to un-mark nodes when processes finish Given an operationp, we define theexecution interval
their update without the concurrently traversing (collecting) of op, denoted3(op) as the subsequence®starting at the
processes being confused, and second, where would the vainvocation ofop and ending at the completion op. The
ues written by processes that have left be found. That is, ainterval contentiorandpoint contentiorof an operatiomp
process doing collect when the contention is very low is not are defined as IntCoffi(op)) and PntCor{3(op)) respec-
allowed to perform a DFS to reach deepoagh locations tively. Inthe rest of the papek,denotes the PntCoit(op))

in the tree. One of the major achievements of this paper isof some operationp, unless it is specifically said to repre-
an algorithm that overcomes these difficulties. sent IntCor(i3(op)).

Notice that in our mechanical transformations, even The step complexity of an algorithm &laptive to in-
though we use a long-lived and adaptive to point-contentionterval contentionif there is a bounded function S, such
collect, the resulting algorithms are nataessarily adaptive that the number of steps performed by any proggss
to the point-contention. Sometimes the resulting algorithmsany execution interval of an operatiop; of A is at most
are adaptive to the interval-contention. We speculate that inS(IntCont{8(op;))). Similarly, the step complexity of an al-
many cases there is no automatic transformation that wouldgorithm isadaptive to point contentiafthere is a bounded
result in a point-contention variant of an algorithm, while function S, such that the number of steps performed by any
such a transformation into an interval-contention variant ex- processp; in any execution interval of an operatiep; of
ists. A is at most $PntContB(op;))).

Clearly, the contention of an execution interval is
bounded byrn, the total number of processes. Therefore,
in an adaptive algorithngp; terminates within a bounded
number of steps op;, regardless of the behavior of other

We assume a standard asynchronous shared-memorprocesses. Thus, an algorithm with adaptive step complex-
model of computation, following, e.g., [15]. A system con- ity is necessarilyvait-free
sists of N processesps, . . ., py, COMmunicating by read-
ing and writing to shared registers; we assume dwmth 3 Adaptive Collect
process can read from and write to any regigtaul{i-writer
multi-readerregisters).

The following is a non-sequential specification of long-
lived collect: There arév single-writer-multi-reader regis-
tersCy, ..., Cn, one for each process. To write process
simply writes the value ir;. To perform collect a concur-
rent process reads theé registers in an arbitrary order and
returns the vector of values read.

2. Preliminaries

3.1. Algorithm overview

The algorithm uses aN? entries array in which pro-
cesses store their values. To perform an update a process
temporarily captures an entry in the array, in exclusion, as
close to the beginning of the array as possible. It records the
X X) . value it writes in the multi-writer-multi-reader register as-

Consider some executianof a long-lived algorithmy; sociated with this entry of the array and releases the entry.
below,a’ is some finite prefix o&. At this point the process has successfully stored its value

Proces; is participatingat the end o&’, if o’ includes i the system, later updates will not overwrite it. However,
an invocation of some operation dfby procesg; without 3 subsequent collect will have to scan the array to find the
the matching response. Tlaetive processeat the end of new value. If this collect happens with low contention (e.g.,
o', denoted Corft'), is the set of processes participating in solo) such a scan would make it not adaptive. There-
at the end ok’. Given a subsequengof o, lete’8 be fore, before finishing the update the process has to bubble

the shortest prefix ot that containg, we define thenter- up its value to the beginning of the array. Future collects
val contentiorof 8 and thepoint contentiorof 5, denoted then start at the beginning of the array, and in the absence
IntCon{g) and PntCor{f3) respectively, as follows: of contention find the necessary values at the beginning of
the array. In bubbling up, a process iterates on the entries

IntCon{(B3) = | U Con{a's")| of the array from the entry it has captured up to the top (be-

a'pr prefix of arp ginning) of the array. In each such entry it recursively per-

Algorithm 1 Code for adaptive collect for procegs

Type:
pid = processid] ... N andl;
item = (pid, val, timestamp);
itemSet = Set ofitem;

Shared:
A[1..2N?]: atomic MRMW registers of type

itemSet;
last[1 .. 2N ?]: atomic MRMW registers of typgid;
C[1..N][1..2N?]: atomic SWMR registers of type
itemSet each irtialized to0;

Local registers global to the program:
indez;
timestamp;,

proceduraupdate(val)
refresh({{p, val, timestamp)});
timestamp.=timestamp+1;

1
2

functioncollect() returnsitemSet

3 s:=gather(1);
4 refresh(s);
5 returns;

functiongather(¢) returnsitemSet

6 g:=last[t];

7 tmp=Clq][t];

8 if (tmp = L) then

9 tmp:=merge(gather(¢+1),A[¢]);
10 returntmp;

procedurgefresh(itemsSet S)

11 indez := 2k%-rename(p); Il from [3]
12 Alindez]:= merge(4[indez], S);

13 2k%-release-name(indez);

14 for (t = indez down tol) do

15 Clp][t]:=L1;

16 last[t]:=p;

17 Cp][t]:=gather(t);

od;

functionmerge(ltemSet S, ItemSet T)
The function merges the two sets,
leaving for each process only the
most recent entry according to the timestamps.

18

forms a sub-collect of the values recorded in the part of the
array which is below this entry, and records this collect in a
privatesingle-writer-multi-reader register that is associated
with this entry.

To perform a collect a process starts at the top (begin-
ning) of the array collecting values as it goes down. A key
point is that the number of entries the collecting process
scans depends on the point-contention it encounters. In the
absence of contention it finds the necessary values at the
first entry of the array. As described, the collect is regular,
i.e., the first of two sequential collects that overlap a write
of value “new” may return “new” while the later might re-
turn “old”. To prevent this we require each collect to write
the values it has read (perform apdate()), thus ensuring
that any later collect returns the same or later values.

To capture an entry in the array in exclusion we use
the long-lived and adaptiv@k?-renaming algorithm of
[2, 3] whose step complexity i© (k) adaptive to point-
contention (Line 11 in Algorithm 1). After acquiring a
nameindez the process adds its value to a register asso-
ciated with entryindez in the array (Line 12 in Algorithm
1). It then releases the acquired name (Line 13) and starts
the bubbling up process.

In the bubbling up process the updater goes through the
entries of the array from the index it had captured to the
top. In each entry it performs a sub-collect of the bottom
part of the array (Functiogather) and records it with this
entry (Line 17). To do that we associate with each entry
a pointer, calledast, that points to the single-writer-multi-
reader register of the last process that has recorded a sub-
collect with this entry. The process performs the bubbling
up through an entry in a particular order: First it writes
L in its single-writer-multi-reader register associated with
this entry (calledC|[p][:] for proces in entryz), secondly
it writes its name intdest, and finally performs the sub-
collect and records its result ifi[p][<] (Lines 15 to 17).

This particular order of recording collected informa-
tion in each entry guarantees the following property: If
a processg read last[i] = p and subsequently it reads
C|p][¢] = vector then any update that has recorded infor-
mation below entry in the array and has terminated before
g readlast[i] is included in thevector. Furthermore, ify
observe<’[p][i] = L then it knows processis concurrent
with its operation and by the adaptiveness it may now per-
form a few more operations, in particular recursively gath-
ering the information at entry/+ 1 (Line 9 in the code).

Since the name procegggets from the renaming algo-
rithm is at most2k?, and thegather procedure takes at
mostO(k?) the total step complexity of thepdate() and
of collect is at mostO(k*).

To be able to distinguish new values from older values
we add to every value written by every process a sequence
number. When procegsadds its information to entry|[4]

it erases the last value it wrote there (if any). When two Lemma 3.2 Lete be an execution of tredaptive collect al-
sets of values are merged (recursive collect operation andyorithm, and letg be an execution afather(z) contained
content of A[] of some entry, Lines 9 and 12), the value ine. Assume thaR; is the set of alrefresh operations
with the larger sequence number is taken for each process.that started before the end gather(z) and R; is the set of

The proof of correctness and that the complexity of ei- all refresh operations that crossed before the beginning

ther thecollect or update is O(k*) are given in Sections

of gather(z), then for every process if Recent, g, is de-

3.2 and 3.3, where it is proved that the adaptive collect sat-fined thens, contains a triplet = (p, val, ts) s.t.,t € R;
isfies the following two properties (these are the propertiesandt > Recentp g, .
used to prove the correctness of the algorithms that use the

adaptive collect):

Proof: We show that the claim holds for every prefix of
e by induction on the length of the prefixes. Lgtbe a

1. For each process the collect() operation returns a valuecall togather(z) and letp be some process and assume that
that was written either by the last update operation to Recenty,r, is defined. Letr be an execution ofefresh
end before the collect() has started or by a later updatesuch thatRecent, r, € s,. According to the algorithm,

operation which is concurrent with the collect().

2. In two sequential collect€;1 and C2, such thatC2
starts afteC'1 ends, for each procegsC2[j] is a value
that was writen not before valu@l[j] was.

Collect

3.2. Correctness of Adaptive

(sketch of proof)

Any executionr of procedurerefresh has a set, of

a procesg returns fromgather(z) either (1) after read-
ing some process id in last[x] and then reading a nah-
valuec[q'][X]= s (lines 7,8) or(2) after merging the result
of gather(z + 1) with the content ofd[x] (Line 9).

Casel. Since procesg’ assignedl to c[q’][X] before
writing its id into last[x] (Line 15) we may deduce that the
value read inC[q'][X] is the result of agather(z) call per-
formed byg’ afterg’ wrote its id intolast[x]. If » crossed
z beforeq’ executedgather(z), according to theniduction
hypothesis the set returned by the executiogather(z)

triplets that is passed to the procedure as a parameter. GiveRY ¢’ contains a triplet = (p, val, ¢s) which is more recent
a setR of proceduraefresh executions, we say that some thanRecentp,g,. If r crossedr after the beginning of'’s

triplet ¢ = {p, val, ts) is in R, denotedt € R if there is

somer € R such thatp, val, ts)c s,. Given an execution
g (c) of gather (collect), we denote by, (s.) the set of
triplets returned by (c).

execution ofcollect(z), the process executingmust have
overwritteng’ in last[z] with its own id before it was read
by ¢- a contradiction.

Case 2. If the entry slot ofr is greater thane,

The following lemma states that any value returned by then according to thenduction hypothesis, the call to

gather was once added by somefresh call. This lemma

gather(z + 1), which is completely included in the call

is easily proved by induction on the prefixes of the adaptive t0 gather(z), returns a triplet = (p, val,ts) which is

collect execution.

Lemma 3.1 Let e be an execution of thadaptive collect
algorithm, then for any prefipre of e if R is the set of
refresh operations that started duringre, then any regis-
terin C and in A contains triplets that are itR. Moreover,
if g is an execution ofather completely included ipre
then any triplet returned by is in R.

Given two triplets = (p, val, ts) andt’' = (p, val',ts")
we say that' is more recentthant (denotedt’ > i) if
ts’ > ts. Given a setR of refresh executions and a
processp we define themost recentriplet of p in R, de-
noted Recent, r t0 be (p,val,ts) € R, s.t., for every
t = (p,*,*) € R, Recent(, ry > t. If R does not con-
tain any triplet(p, val, ts) thenRecent, g is undefined.

Given an execution of refresh, we define thentry slot
of » to be the index returned by ti2&2-rename algorithm
in Line 11. Given an executionof refresh with entry slot
z, we say that crossedslotz’ < z if the process executing
r has already changddst[z'] to its id (Line 6).

more recent thatRecent, r,. Now, since during the call
to merge, only updates with higher timestamps than those
returned fromgather(z + 1) are chosen we are done. As-
sume that the entry slot of is itself, by Line 12 and
by Lemma 3.1 wheg readsA[z], it must contain a triplet

t = (p, val, ts) which is more recent thaRecent, r,. W

The following lemma follows immediately from the fact
that the result of @ollect is gather(1).

Lemma 3.3 For every execution of collect and every pro-
cesy if s, contains a triplet of the forrh = (p, val, ts) then
t is more recent than all the tripletgodated by before the
beginning ot.

Since everycollect performs arefresh(s) wheres is the
collect result, due to the previous lemma we may state:

Lemma 3.4 Letc andc’' be two executions afollect and
assume that' starts completely after the end othen for
every triplett in s(c), there is a triplet’ in s(c") which is
more recent thas.

3.3. Complexity (Sketch of analysis)

Assume thatp is a process executingather(z), we
say thatp skipsover a slotz if it reads last[z]= p’ and
C[p’][z]= L for some procesg’, and consequently has to
perform a recursive cajather(z + 1). In such a case we
also say thap skips over'.

By the algorithm, a process skips a slot when it encoun-
ters another procegéthat traverses this slot during its bub-
bling up procedure (lines 15— 17). Since procgssrites a
value different thanL, into C[p'][z] before climbing up to
slotz — 1, there is at most one ent§[p’][+] at any point of
time which is= 1. Hencep may skip over’ at most once
while p’ executes the bubbling up procedure aralgather
procedure.

Lemma 3.5 The largest slot index that can be reached dur-
ing an execution of proceduggather is g(k) + & wherek

is the point contention of thgather execution interval and
g(k) is the name complexity of the renaming algorithm used.

Proof. Let g be the execution of procedugather(x) by
procesgp. By the algorithmp performs recursive calls on
larger slots until it reaches slaf such thatlast[z']= p'
and C[p'][z']# L. We separate the slots skippedminto
two sets: all the slots in which the processes crosseg by
started their call toefresh afterp started the call tgather
and all the slots in which the processes crossed $tarted
their last call torefresh beforep started the call tgather.

If some procesg’ started a call toefresh afterp started its
call togather the point contention it encountered during the
renaming algorithm is at mo#t Consequently, the entry
slot of ¢’ is bounded by(%) and in such a cagemay cross

it only while skipping over slot$. . . g(k). If some process
p' started its last call toefresh beforep started its call to
gather, it may be crossed byat most once, while bubbling
up duringrefresh (lines 15— 17). [|

Since any execution ofather goes down at most to the
g(k) + k slots, and since(k) = 2k? we may conclude:

Theorem 3.6 The shared memory step complexity of
update andcollect is O(k*)

In Section 8 we show how to reduce the complexity of
procedureggather to O(k), which leads to an overall com-
plexity of O(k3) for theupdate andcollect operations.

4. Transformations With Adaptive Collect

Most long-lived algorithms in the read/write shared
memory model can be writen in the natural form in which
each process alternates betweeiting its private single-
writer-multi-reader register and reading all the registers.

Following [14] we transform any such algorithm by replac-
ing the writes with thaipdates from Algorithm 1, and the
read-all with thecollect. The transformed algorithm is in
many cases a long-lived and adaptive version of the original
algorithm. Examples of such algorithms are the snapshot
algorithm from [1] and thé-exclusion algorithm of [5].

Notice that unlike the adaptive collect procedure (Al-
gorithm 1) that is used in the transformation, the result-
ing algorithms are not necessarily adaptive to the point-
contention but rather they might be adaptive to the interval-
contention encountered. As in the collect procedure the lo-
cal step complexity of the transformed algorithms is not
adaptive. To overcome these disadvantages we present in
the next section a long-lived snapshot algorithm that is
adaptive to the point-contention, and in Section 6 we present
a long-lived and adaptivactive set. Using theactive set
we can transform the Bakery algorithm, thexclusion al-
gorithm [5] and thé-assignment algorithm [12] into corre-
sponding long-lived algorithms that are adaptive also in the
number of local operations performed.

5. Point Contention Adaptive snapshot

The snapshot algorithm, like the collect algorithm, sup-
ports two operations: assnapshot_update() operation
with which any process updates its value arsd¢an() oper-
ation in which any procegs collects the values written by
all the processes. The difference between a snapshot and a
collect is that the scans can be linearized with respect to the
update operations.

The snapshot algorithm in [1] is based on the idea that
in every update operation by processp first performs a
scan and then writes the scan result with the new update
value. To perform a scan, procesperforms two collect
operations. If the values of all the processes are the same
in the two collects (to make this check robust every new
value is tagged with a sequentially increasing label) the col-
lect is a valid snapshot. If not, the process is iterated and
another two collects are performed. This procedure contin-
ues untilp observes some processthat has changed its
value twice. Sincg made a scanscang, between its up-
dates,scang was performed during’s scan,scan,, and is
thus a valid returned value feean,. From this algorithm
it follows that a scan operation performs at mktcollect
operations, or that its step complexity is at me§&N),
wherek here is the interval contention of the operation, i.e.,
IntCon{B(scany)).

As we mentioned before, simple substitution of the col-
lect operation with an adaptive collect creates an adaptive
with respect to interval contention algorithm. Consider for
example the following scenario: during a snapslkagpro-
cesses update their values one after the other with no over-
lap in their executions. Still the scanning process fails to

obtain two consecutive identical colle@dimes. However, gorithm, there exists a total order among tean and
in this scenario the point contention is 2 but the algorithm snapshot_update operations, consistent with the partial

makesO(k) collect operations. order induced by the execution, such that, the sequential
The key idea in the modified snapshot algorithm, Algo- history[17] induced by this total orderi®rrect A sequen-

rithm 2, is as follows: lfscan, observed; with two differ- tial history is correct if evergcan returns for every process

ent valuesy; andv,, and latep observes any other process p the value written by the lasthapshot_update of p that

r reporting a snapshot in which appears with values, is serialized before thecan operation[1].

thenp may return this other snapshot for its scan operation. Let s ands’ be twoscan results. We say that is more

Since this scan by is linearized after processwrote v, recentthans, denoteds’ > s if for every proces, if s

it's linearization point is contained in the interval @fan,. contains a triplet = (p, val,ts) thens' contains a triplet

Moreover, if no suchr is observed but some processlid t' such that’ is more recent thah The next lemma states
change its variable, then the update operation of progess that every twascan results are comparable:

was concurrent with the second updategadnd hence at

the same time concurrent wislsan,,. Furthermores’s up- ~ Lemma5.1 For every two scan results,ands’, eithers >
date is concurrent with any other process that is observed tes’ or s' > s.

change its variable.)
Proof: Directly from Lemma 3.4.]

Algorithm 2 Code for adaptive with respect to point con-
tention snapshot for procegs
functionscan()
19 moved_id. =1
20 whiletrue do

Given an execution of the snapshot algorithm we define
the total order—, amongscan andsnapshot_update op-
erations in the following way: Lef and.S’ be twoscan
executions with results ands’ respectively and let/ and
U’ be twosnapshot_update operations performed by

21 a[l.. N]:=collect(); /I from Algorithm 1 andpy with time-stampgsy andtsy: respectively. We
22 b[1.. N]:=collect(); _ say thatS — §' iff s’ is more recent thas, U — § iff
23 if (vj € {1... N} alj].seq = b[j].seq) then s contains a triple{py, val, ts) such thatts > tsy:. Fi-

return (b[1].data, b[1].seq), nally if there is ascan operationS such that/ — S and
24 _ . -+, (b[N].data, b[N].seq)); S — U’, we say thal/ — U’. If there is no suctscan
25 else-ifmoved_id = L operation we ordel/ andU’ according to their respective
26 then for =1 toN) do /I'ocal access gnding points. The correctness of the following lemmas fol-
27 if(a[j].seq # bls].seq) then lows from lemmas 3.3 and 3.4.
28 moved _id.=j;
29 moved_seq:=b[j].seq; Lemma 5.2 The— total order is consistent with the partial
30 break; order induced by the execution.

od;
31 else Ilmoved_id # L Lemma 5.3 The sequential history induced by is cor-
32 forj =1toN do /l'local access rect.
33 if (b[j].view[moved_id].seq > moved_seq)
34 then returrb[5].view; Now we conclude:

od; od;

Theorem 5.4 The snapshot algorithm is a linearizable im-

lementation of the snapshot object.
proceduresnapshot_update(data) P P)

35 s[1..N]:=scan;
36 seq :=seq + 1;
37 update({data, seq, s[1..N])); // from Algorithm 1

5.2. Complexity

Lemma 5.5 If processp performs the while loog times
during an execution of the scan functiathout terminat-
ing then, the point contention of this scan execution is at
leastk.

5.1. Correctness proof (sketch), and com-
plexity Sketch of proof: Assume thap performedk iterations of
the while loop during the execution etan. For iteration
In order to prove that our implementation is a cor- i there is at least one process, denatgdsuch that dur-
rect atomic snapshot, we show that our implementation ising thei-th iterationp has reada[p;].seq#b[p;].seq. Let
linearizablg17]: for every execution of the snapshot al- z; be the content 0b[p;] during thei-th iteration. Clearly,

for everyi = 1...k p; updatedz; into the collect object
after p started thescan execution. According to the al-
gorithm for every:,j € {l...k}, ¢ # j, pi # p;, oth-

Theorem 5.6 The complexity of a scan or

snapshot_update operation isO(k*)

erwise the scan operation would have terminated by theg Active set

condition in Line 33. Moreover, for every = 2...k,
z;.view[p;].seq< z1.view|[ps].seq. Therefore, for every
1= 2...k, p; has started the update operation during which
it updatedz; into the collect objecbeforep; updatedz;
into the collect object and therefors, . . . px are all active

at that point of time. []

Algorithm 3 Code for active set for procegs

Type:
pid = processidl..N and.l;
pidSet = Set ofpid types;

Shared:
A[1..2N?], atomic MRMW registers of typgid;
last[1 .. 2N?], atomic MRMW registers of typgid;
C[1..N][1..2N?], atomic SWMR registers of type

pidSet, each intialized to0;

Local registers global to the program:

indez;

procedurgoin()

38 index :=2k?-rename(p);

39 Alindez]:={p};

40 bubble_up();
procedurdeave()

41 Alindez]:=0;

42 2k?*-release-name(indez);

43 bubble_up();

procedureget_set() returnspidSet.
returngather(1)

procedurebubble_up()

44 for (¢t = indez down tol) do

45 Clpl[t]:=L; /I different tharp
46 last[t]:=p;

47 Clp][¢t]:=gather(?);

od;

functiongather(t) returnspidSet.

48 g:=last[t];
49 temp:=C[q][t]; //tryto get the set from the last
process that updated this entry.
50 if (temp = L) then // some other process is active
therefore more operations are allowed.
51 tmp:=gather(t+1)UA[¢];
52 returntmp;

Although the adaptive collect presented in Section 3 en-
ables an automatic substitution of a standard collect oper-
ation it has two major drawbacks; the size of the registers,
which is unavoidable, and the non-adaptive local step com-
plexity. To deal with these drawbacks we suggest the
active set A new object which, in many cases, can substi-
tute for collect:

Definition 6.1 An active setobject supports the following
operations:

1. join(): with which a process joins the set.
2. leave(): with which a process leaves the set.

3. get_set(): which returns the current set of active pro-
cesses. More formallget_set() must return all the
processes that have finishéoin() before get_set()
has started and did not staleave() duringget_set().

It also mustnot return any process that has finished
leave() beforeget_set() started and has not started
join() during get_set().

Our implementation of an active set is such that the
step complexity of the operations depends both on the con-
tention and on the number of processes that are currently
in the set. l.e., if there ard4 processes in the set then
get_set() can takeO(M) steps, even if all the processes
have finished thgoin() and have not yet startddave().
Therefore, for this problem we redefine (from Section 2):
Processp is participating at the end o/, if ' includes an
invocation ofjoin by p without the response of the matching
leave by p. Fortunately, many non adaptive long-lived al-
gorithms may be transformed into their adaptive versions by
substituting the standard collects with a collect that is based
on the active set. In these algorithms only the values of
processes that are in certain region of the code are relevant
(e.g., outside the remainder section, in mutual exclusion al-
gorithms). Typically, in such an algorithm processtarts
with ajoin() and ends with deave(). Whenever a process
needs to collect information from the other processes, it col-
lects it only from the active processes as follows: it first per-
forms aget_set() and then collects the data only from the
processes in the set. If, for example, the number of collects
in the algorithm is constant, then the new transformed algo-
rithm is adaptive with respect to point contention (as origi-
nally defined) since procegds actually active between the
join() andleave(). For example, see Algorithm 4.

Algorithm 3 implements an active set (k'*), where
k' is the point-contention of operatiam, according to the

new definition ofparticipating given above. In the full
paper an active set algorithm similar to Algorithm 5 with
O(k'3) step complexity is presented.

During join() processp usesrenaming() to acquire a

ery mutual exclusion algorithm into an adaptive mutual ex-
clusion algorithm. Since in mutual exclusion a hungry pro-
cess must busy wait while other processes are in the critical
section the step complexity is redefined in this case as fol-
unique entry. This entry is assignedgaintil it performs lows: each spin-lock on a variable while it does not change
leave(). After getting an entryp writes its name in that en- is counted as one operation (in other words we count only
try and then propagates its name and the names of all thehe number of remote, un-cashed, accesses). To the best
processes it sees up to the beginning of the array (similarof our knowledge no adaptive mutual exclusion algorithm
to the adaptive collect algorithm). In tHeave() proce- was previously presented (Choy and Singh have presented
dure proces® erases its hame from the entry, releases thea mutual exlusion algorithm whose system response time
name it got, and again propagates this information up the ar-is adaptive, but not its step complexity [13]). Algorithm 4
ray. Theget_set() operation invokes thgather operation presents the code of the transformed adaptive Bakery mu-
which works like in the adaptive collect algorithm. Either tual exclusion algorithm. The correctness proof is given in
the last process to propagate up from enthas finished, Section 7.1.

in which case a correct return value can be read from its
dedicated register, or it is active and so tather() proce- Algorithm 4 Code for adaptive Bakery for process
dure can continue to the next entry. Notice that here, there Initially Number[i]=0 and

is only one value in each entry and merging &g'?) en- Choosing[i]=false, fori,1 < i < N.

tries takesO (k') time, even in local steps. In Section 6.1

we show how the algorithm is implemented using registers (entry)
of sizeO(log N) bits. 53 join();
The proof of correctness is very similar to the proof of 54 Choosing[p]:=true;
the adaptive collect (Section 3.2) and is given in the full 55 §:=get_set();
paper. 56 Number[p]:= max;cs(Number[j])+1;

57 Choosing[p]:=false
6.1. Adaptive Active Set: Reducing the 58 S:=get_set();
Register Size 59 once for every € § do
60 wait until Choosing[j]=false

wait until Number[4]=0 or
(Number[j],5) > (Number[p], p);

As the reader may notice, the only data structure that 61
uses large registers i€, where processes store the result

of a completedjather. One possible way to avoid using
large registers is to replace every entryGnwith a linked

list of process ids. In such case, a situation in which some 62

process executinggather(z) readsC|[p'][z].list while p’

is updatingC|[p’][z].list may occur. To overcome this prob-
lem we borrow a technique from [16] and we wrap ev-
ery list in C with two countersstart and done. When-
ever p' decides to alterC[p'][z].list, it first increments
C[p'][z].start changesC|[p'][z].list and then increments
C[p'|[z]).done. A processp reading C[p'][z].list, first
reads C[p'][z].done, collects the content ol[p'][z].list
and then readsC[p'][z].start. If the values read in
C[p'][z].done and Cp'][z].start differ, that means that
p’ was concurrently updating the list, and s@annot re-
turn the list but rather has to mergdz] with a the re-
sult of a recursive call tgather(z + 1). Notice, that one
can bound the number of values usedifp’][z]. start and
CI[p’][z].done using techniques from [8].

7. Local Adaptive Mutual Exclusion

(Critical Section)

(Exit):
Number[p]:=0;
leave();

(Remainder)

63

7.1. Correctness of the adaptive Bakery Al-
gorithm

Lemma 7.1 The adaptive bakery algorithm provides mu-
tual exclusion.

Proof: Assume by way of contradiction that two pro-
cessesp andg, are in the critical section at the same time.
According to the algorithmVumber[p] and Number|q] re-
main unchanged from the momemiandgq finish Line 56
until they leave the critical section. Lkibel, andiabel, be
the content oNumber[p] and Number|g] respectively dur-
ing that period of time. Assume w.l.0.g th@tbel,, p) >

Here (Algorithm 4) we demonstrate the usefulness of the (labely,). If the returned sef thatp gets from the sec-
long-lived and adaptive active set in transforming the Bak- ond execution ofget_set at Line 58 does not contaig,

then by Property 3 of Definition 6.1, does not complete

thejoin execution at Line 53 beforg starts theget_set at
Line 58. Therefore executes lines 55— 56 aftgrexecutes

Algorithm 5 Code forO(%) gather

Line 56 and consequently realdgel,, in Number[p] while
executing Line 56. In such cagtubel,,p) < (labely,q)
which is a contradiction to the assumption tfiabel,, p) >
(labely,q). Thereforeg € S. Assume thap completes
the execution of Line 61 with = g¢, by reading0 in
Number[q]. In order to pass the wait statement in Line 60
with j = ¢, p had to readalsein Choosing|g]. This may
happen either ifX) beforeg executes Line 54 o12] afterq
executes Line 60. In cas&)(g seedabel, while executing
Line 56 and(label,,p) < (labely,q). In case) p can-
not read O inNumber|[q]. Thereforep must readabel, in
Number|q] at least untily leaves the critical section and for
that reasom cannot enter the critical section at least uatil

leaves it. [| 64
65

The proof that the algorithm is lockout-free is the same as 66
in the original algorithm. 67
68

. 69

8. Adaptive collect, an O(k)gather procedure 70
71

The basic idea of th&(k) improvement of function
gather, is as follows: if the point contention of gather
execution ig, and procesg which executegather has al- 72
ready crossed (“skipped”) over other processes more than73
k times, there is at least one process crosseg that al-

ready completed its own execution géther. Therefore, 74
every process executirgather mantains a set of processes 75
it has crossed since the beginning of gaher execution. 76

From time to time, process checks if one of the crossed
processes has completed, and if streturns back” to the 77
entry in which the crossed process was crossed. We add78
for every procesy and every entryi a SWMR register 79
Clast[p][] that contains the result of the lagather(z) ex-
ecutionp has performed duringefresh. Clast[p][%] as op-

pose toC[p][%] is never set tal. In addition every process
keeps a tag/counter it incrememgch time it writes anew 80
gather result inC (Line 85). That tag value will be written 81

together with the process id, iast before thegather exe- 82
cution (Line 86), and together with the result of thether 83
in Clast (Line 88). In order to ensure@(k) collect com- 84
plexity each time it crosses some other progésgroces® 85
that executegather adds to a special setrossed, in its pri- 86

vate memoryp'’s id together with the associated tag value 87
and the slot number in whichandp' have met (Line 74). 88
Every timep executinggather accesses a new slot i it 89
search its set in order to find if one of the processes in the 90
set has completed tlgather execution it was doing whilg
crossed it. This is done, by comparing the tag associated to

Updated Data Structures
last[1 .. 2N *]: atomic MRMW registers
of typepid x Integer;
Additional data structures
Shared:
Clast[1...N][1...2N?],2N3 atomic SWMR
registers of typeet x Integer for each process,
Local registers global to the program:
TS an integer initialized to O;
each intialized to®;
functiongather(t) returnsltemSet.
crossed =0t = t;
pwr = 1l;ctr :=0;
while (true) do
(pr, ts) =last[t'];
tmp:=Cpr][¢'];
if tmp # L then
break;
if ctr=pwr then
pwr:= 2*puwr;
if crossed containg(g, t", ts') for some
process entryt’” and timestamps’
s.t., the timestamp in Clast[q][t?} ¢s’ then

th=t!
(tmp, ts):=Clast[q][t"];
break;
crossed:=crossedU{pr,t', is);
th=t'+1;
ctr .= ctr+1;
od;
while ¢’ > t) do
th=t'-1;

tmp:=merge(tmp, A[t"]);
od;
returnimp;
proceduraefresh(itemSet)
indez := 2k*-rename(p);
Alindez]:= merge(A[indez], 5);

2k%-release-name(indez);

for (¢t = indez down tol) do// Bubble up process
C[p][t]:=1L; /1 different tharj.
TS§:=TS5+1;

last[t]:=(p, TS);
c:=gather(z);
Clast[p][t]:= (¢, TS);
Clplth=c;
t:=t-1;

od;

p'’s id p has read iriast[¢] while crossing’ at entryz, with
the tag associated with the gather result now mantained in

Clast[p'][Z] (Line 71). If this is the case “jumps” back
to entry ¢, uses the content oflast[p][¢] as its own re-
sult of gather on entryi and in fact behaves as if it never
crossed ovep’ (Line 77). In the full paper we show that if
the point contention i#, after scanning: entries, a process
executinggather finds at least one process that was crossed[10]

by p and has terminated its ongoing collect and stored it in
Clast. Note that if a process would have to scan the set

after each entry i the complexity would b&(k?). For
that reason a process does not scan the set for every entry,
but only every2? entries forj = 0,1... (Line 69). In this
way, if the point contention i, the terminating process is
discovered after at mo&t slots, but the total work on the
setis stillO(k). The correctness and complexity of the new
algorithm are shown in the full paper.

Theorem 8.1 There is an implementation of Adaptive col-
lect in which the complexity afipdate and collect are
O(k3)

Acknowledgements: We would like to thank Hagit At-
tiya and Arye Fouren for many helpful discussions.

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots of shared memodpurnal
of the ACM 40(4):873—-890, September 1993.

Y. Afek, H. Attiya, A. Fouren, G. Stpp, and D. Touitou.
Long-lived renaming made adaptive. froc. 18th Annual
ACM Symp. on Principles of Distributed Computipgges
91-103, May 1999.

Y. Afek, H. Attiya, A. Fouren, G. Sipp, and
D. Touitou. Adaptive Long-Lived Renaming Using
Bounded Memory Subitted to DISC99, April 1999.
ftp://ftp.math.tau.ac.ipub/stupp/PAPERS/name99.ps.gz

Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In
Proc. of the 27th Ann. ACM Symp. on Theory of Computing
pages 538-547, May 1995.

Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit.
A bounded first-in, first-enabled solution to thexclusion
problem.ACM Trans. on Programming Languages and Sys-
tems 16(3):939-953, May 1994.

Y. Afek and M. Merritt. Fast, wait-fre¢2k—1)-renaming. In
Proc. 18th Annual ACM Symp. on Principles of Distributed
Computing pages 105-112, May 1999.

Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disen-
tangling multi-object operations. Broc. 16th Annual ACM
Symp. on Principles of Distributed Computjmqeages 111-
120, August 1997.

J. H. Anderson and M. Moir. Universal constructions for
multi-object operations. IProceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing
pages 184-193. ACM, Aug. 1995.

9]

11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

H. Attiya and E. Dagan. Universal operations: Unary ver-
sus binary. InProc. 15th Annual ACM Symp. on Principles
of Distributed Computingpages 223-232, May 1996. Ex-
tended version available as Technion Computer Science De-
partment Technical Report #0931, April 1998.

H. Attiya and A. Fouren. Adaptive wait-free algorithms
for lattice agreement and renaming. Pmoc. 17th Annual
ACM Symp. on Principles of Distributed Computipgges
277-286, June 1998. Extended version available as Tech-
nion Computer Science Department Technical Report #0931,
April 1998.

H. Attiya and A. Fouren. Adaptiveohg-lived renam-
ing with read and write operations. Technical Report
0956, Faculty of Computer Science, Technion, Haifa, 1999.
http://www.cs.technion.ac #/hagit/pubs/tr0956.ps.gz.

J. E. Burns and G. L. Peterson. The ambiguity of choosing.
In Proc. of the 8th ACM Symp. on Principles of Distributed
Computing pages 145-158, Edmonton, Alberta, Canada,
August 1989.

M. Choy and A. K. Singh. Adaptive solutions to the mutual
exclusion problem. IfProc. 12th ACM Symp. on Principles
of Distributed Computingpages 183—-194, August 1993.

E. Gafni. Public communication. 17th Annual ACM Symp.
on Principles of Distributed Computing, July 1998.

M. Herlihy. Wait-free synchronizatiorACM Trans. on Pro-
gramming Languages and Systeh3(1):124-149, January
1991.

M. Herlihy. A methodology for implementing highly con-
current data structuresACM Trans. on Programming Lan-
guages and Systenib(5):745-770, November 1993.

M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objectsACM Trans. on Program-
ming Languages and Systerh2(3):463—-492, July 1990.

L. Lamport. A fast mutual exclusion algorithm&SCM Trans.
on Computer Systents(1):1-11, February 1987.

M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mu-
tual exclusion algorithm. Information Processing Letters
45:137-142,1993.

M. Moir and J. Anderson. Wait-free algorithms for fast,
long-lived renaming. Science of Computer Programming
25(1):1-39, October 1995. Also in Proc. 8th Int. Workshop
on Distributed Algorithms, September 1994, 141-155.

