6.892: Algorithmic Lower Bounds, Spring 2019

Prof. Erik Demaine, Jeffrey Bosboom, Jayson Lynch

Problem Set 5

Due: Tuesday, March 12, 2019 at noon

Problem 5.1 [Consecutive Sets]. Prove that the following problem is NP-complete.
Consecutive Sets: Given a collection of (unordered) subsets $S_{1}, S_{2}, \ldots, S_{n}$ of a finite alphabet Σ, and a positive integer k, is there a string w over the alphabet Σ with length at most k such that, for each S_{i}, the elements of S_{i} occur (in any order) as some consecutive characters $w_{j}, w_{j+1}, \ldots, w_{j+\left|S_{i}\right|-1}$ of w ?

Hint: Reduce from some version of Hamiltonicity.

