Parameter $k = \text{function: instance} \rightarrow \mathbb{N}$
- usually one of the numbers in instance
- sometimes hard to compute e.g. OPT

Parameterized problem = decision problem + parameter
- e.g. (k-)Vertex Cover: is there a vertex cover of \(\leq k\)?
 - \(k\) is the natural parameter: comparing with OPT
- e.g. Vertex Cover with respect to OPT (Vertex Cover)
 - similar but \(k\) not given
 - for \(k=0,1,2,\ldots\): run k-Vertex Cover
- e.g. Vertex Cover w.r.t. crossing number

\[\text{XP} = \{ \text{parameterized problems solvable in } n^{f(k)} \text{ time} \} \]

Fixed-parameter tractable (FPT)
= \{ parameterized problems solvable in \(f(k) \cdot n^{O(1)} \) time \}
= \{ parameterized problems solvable in \(f(k) + n^{O(1)} \) time \}
- motivation: confine exponential to parameter \(k\) which may be \(<<\) problem size \(n\)

Example: (k-)Vertex Cover
- \(\text{XP}\): guess \(k\) vertices, test coverage \(|V|^{k} \cdot |E|\)
- \(\text{FPT}\): take edge, guess endpoint, delete, repeat \(2^k\) "bounded search tree technique" depth \(\leq k\)
EPTAS in PTAS with running time \(f(1/\epsilon) \cdot n^{O(1)} \)

- i.e. FPT w.r.t. \(1/\epsilon \)

\[\Rightarrow \text{FPT w.r.t. natural parameter } k \quad (\Rightarrow \text{w.r.t. } \text{OPT}) \]

- \(\epsilon \text{ FPT } \Rightarrow \epsilon \text{ EPTAS} \)

Parameterized reduction: \((A, k) \rightarrow (B, k')\)

- instance \(x \) of \(A \) \(\Rightarrow \) instance \(x'=f(x) \) of \(B \)

\[f(k(x)) \cdot |x|^\omega \text{ time } \Rightarrow |x'| \leq f(k(x)) \cdot |x|^\omega \]

- answer preserving: \(x \text{ YES for } A \Leftrightarrow x' \text{ YES for } B \)

 \(\text{(just like NP/Karp reductions)} \)

- parameter preserving: \(k'(x') \leq g(k(x)) \)

 \(\text{for some } g: \mathbb{N} \rightarrow \mathbb{N} \)

- \(B \in \text{FPT } \Rightarrow A \in \text{FPT} \)

\[\forall x \text{ parameter blowup} \]

Nonexample: independent set \(\rightarrow \) vertex cover

\((G, k) \quad \Rightarrow \quad (G, n-k)\)

- preserves answer but \underline{not parameter}

- indeed, vertex cover \(\in \text{FPT} \)

 but independent set is \(\text{W[1]} \)-hard

\[\Rightarrow \epsilon \text{ FPT unless } \text{FPT=\text{W[1]}} \]

Example: independent set \(\rightarrow \) clique \(\quad \) (or vice versa)

\((G, k) \quad \Rightarrow \quad (\bar{G}, k)\)
Canonical hard problem for \(W[1] \): (analogy to \(\text{NP} \))
- \(k \)-step nondeterministic Turing machine
 - given nondeterministic Turing machine
 - code, state, finger to \(k \)-cell memory?
 - \(O(n) \) lines, \(\Theta(n) \) options, \(\Theta(n) \) states
 - (guess can have \(n \) choices/branches)
- does some choice sequence finish in \(k \) steps?

Reduction to Independent Set:
- \(k^2 \) cliques, \(k' = k^2 \Rightarrow 1 \) node per clique
- clique \((i,j) \) represents memory cell \(i \) at time \(j \) (\(n \) choices) + state of machine
 - (e.g. PC=which of \(n \) instructions next)
- add edges to forbid certain transitions \(j \to j' \); omit edges for allowed nondet. trans.

Reduction from Independent Set: \(k' = \Theta(k^2) \)
- guess \(k \) vertices
 - \(\Theta(k) \)
- for each pair of these vertices:
 - \(\Theta(k^2) \)
 - check no edge (lookup table in code)

\(\Rightarrow \) both \(W[1] \)-complete
Clique in regular graphs: reduction from Clique
- $\Delta = \text{max. degree}$
- Δ copies of graph
- vertex v of degree $d \Rightarrow v_1, v_2, \ldots, v_\Delta$ copies
 - add $\Delta - d$ vertices
 - biclique between $\&$
 $\Rightarrow \Delta$-regular
- add no cliques (≥ 3):
 new vertices in no Δ

Independent set in regular graphs - just take complement

Partial vertex cover:
are there k vertices that cover l edges?
- FPT w.r.t. l
- $W[1]$-complete w.r.t. k

Reduction from Independent set in regular graphs:
- $k' = k$
- $l' = \Delta k$

Multicolored clique: — like (Numerical) 3DM
- given graph & vertex k-coloring
- find k vertices, one of each color, that form a k-clique
 [Fellows, Hermelin, Rosamond, Vialette - TCS 2009]

Reduction from Clique:
- vertex $v \rightarrow k$ copies v_1, v_2, \ldots, v_k
 colors: $1, 2, \ldots, k$
- edge $(v, w) \rightarrow$ edges (v_i, w_j) $\forall i \neq j$
- $k' = k$
- k-clique \iff k-colored k-clique

Reduction to Clique:
- nothing: coloring \Rightarrow all cliques are multicolored

Multicolored independent set — just take complement
Shortest common supersequence:
- given \(k \) strings over alphabet \(\Sigma_i \) & number \(l \)
- is there a common supersequence of length \(l \)
- \(W[1] \)-hard w.r.t. \(k \) for \(|\Sigma| = 2 \) \([\text{Pietrzak-JCSS2003}]\)
- reduction from Multicolored Clique

Reduces to restricted form where input strings never repeat character twice in a row parameterized by \(k \) & \(\Sigma \)
- add new symbol \(s_i \) after every character in string \(i \) \(\Rightarrow \) no repeats
- \(k' = k \)
- \(|\Sigma'| = |\Sigma| + 1 + k \)
- \(l' = l + \text{total length of input strings} \)

Reduces to Flood-It on trees w.r.t. \# colors \((|\Sigma|) \) & \# leaves \((k) \)
Dominating set: (based on Cygan et al. book 2015)

Reduction from Multicolored independent set:
- vertex → vertex
- connect each color class in clique
- also add 2 dummy vertices to each clique
- \(k' = k \) ⇒ dominating set chooses one vertex from each clique, representing one vertex of each color in ind. set
- for each edge \((v, w)\):
 - add vertex connected to all vertices in color classes of \(v \) & \(w \), except \(v \) & \(w \)
 ⇒ dominated \(⇔ \) \(v \) & \(w \) not both chosen (i.e. independent set)

\[\Rightarrow W[1]-\text{hard} \]
\[\wedge W[2]-\text{complete in fact} \]
\[\nRightarrow \notin \text{FPT unless } \text{FPT} = W[2] \] (weaker assumption)
\[\Rightarrow \text{reverse reduction impossible unless } W[1]=W[2] \]

Reduction to Set Cover: same as \(L_{11} \)
- vertex \(v \) → set \(N(v) \cup \exists v \exists \)
- \(k' = k \)
Weighted Circuit SAT (Circuit k-Ones)
- given acyclic Boolean circuit & parameter k
- can we set k inputs to 1 to get output = 1?

\[W[P] = \{ \text{parameterized problems reducible to Weighted Circuit SAT} \} \]

- \(\text{depth} = \text{longest input}\rightarrow\text{output path} \)
- \(\text{weft} = \max \# \text{big gates on input}\rightarrow\text{output path} \)

 \(\text{not } O(1) \text{ inputs: e.g. } \geq 3 \text{ inputs} \)

\[W[t] = \{ \text{parameterized problems reducible to } O(1)\text{-depth weft}-t \text{ Weighted Circuit SAT} \} \]

\[= \{ \text{parameterized problems reducible to depth}-t \text{ output=AND Weighted Circuit SAT} \} \]

\[W[*] = W[O(1)] \]

- \(W[1]\text{-complete} \)
 - weighted \(O(1) \)-SAT
 \(\text{(big AND of small ORs)} \)

- \(W[2]\text{-complete} \)
 - weighted CNF-SAT
 \(\text{(big AND of big ORs)} \)
 - k-step 2-finger nondeterministic Turing machine
 \[= 2\text{-tape} \]

- \(W[\text{SAT}] = \text{reducible to SAT} \)
 - SAT \(\rightarrow \) CNF-SAT reduction adds extra vars.
 - so weighted problems not the same