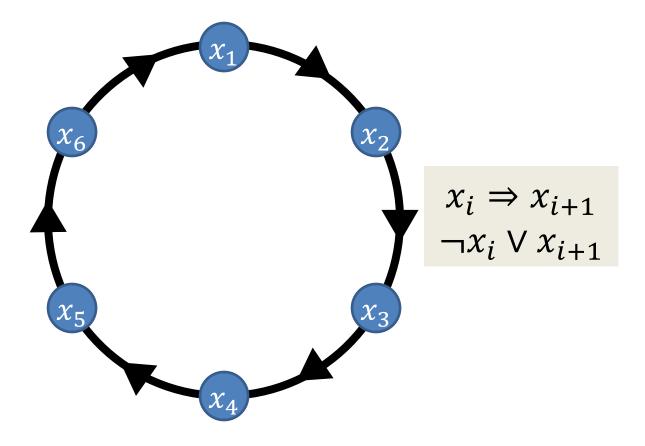
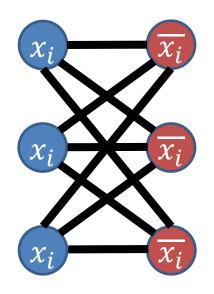
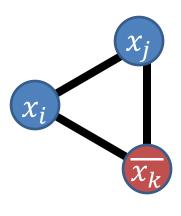

Typical Approximation Factors

Approximation Factor	Minimization Problems	Maximization Problems
$1 + \varepsilon$	Planar/ <i>H</i> -minor-free/2D e.g. dominating set	Planar/ <i>H</i> -minor-free/2D e.g. independent set
Θ(1)	Steiner tree, Steiner forest, Traveling Salesman,	Maximum coverage, Max cut
$\Theta(\log^* n)$	Asymmetric k-center	
$\Theta(\log n)$	Set cover, Dominating set, Node-weighted Steiner tree 	Unique coverage, Domatic number
$\Theta(\log^2 n)$	Group Steiner tree	
$\Omega(\log^2 n) \cap O(n^{\varepsilon})$	Directed Steiner tree	
$\Omega\left(2^{\log^{1-\varepsilon}n}\right)\cap O(n^c)$	Label cover (MinRep), $c = \frac{1}{3}$ Directed Steiner forest $c = \frac{4}{5} + \frac{1}{5}$	Label cover (MaxRep) - ε
$\Omega(n^{1-\varepsilon}) \cap \tilde{O}(n)$	Chromatic number	Independent set = clique

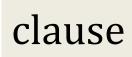
Reductions


Ę


[Crescenzi 1997]


3SAT-3 e.g. [Papadimitriou & Yannakakis 1991]

Ę


Independent Set [Papadimitriou & Yannakakis 1991]

variable

