0-player games (simulations)
- polynomial # moves $\Rightarrow P$
- polynomial space \Rightarrow PSPACE
- infinite space \Rightarrow undecidable

Conway's Game of Life: [Conway 1970]
- cellular automata
- live cell lives \Leftrightarrow exactly 2 or 3 live neighbors
- dead cell becomes live \Leftrightarrow exactly 3 live neighbors
- PSPACE-complete in finite board
 - Turing machine simulation [Paul Rendell 2000]
 (pushdown automaton with 2 stacks)
 - undecidable in infinite board (dead outside input)
 - growing Turing machine [Paul Rendell 2000]
 - 2-counter machine = Minsky machine = exponential slowdown!
 [Conway, Berlekamp, Guy – Winning Ways 1982]
- wire, terminator, turn, delay
- shift: many offsets cause glider destruction
- AND & OR gates
- kickback \Rightarrow thinning \Rightarrow crossover
- split & NOT (complicated)
- counter registers, test, create, push/pull
- precise glider positioning away from guns
- self-destruction via boomerangs
Deterministic Constraint Logic (DCL)
- edges can also be active or inactive
- vertex active if its active incoming edges' weight ≥ 2
- in each round:
 - reverse inactive edges pointing to active vertices
 - reverse active edges pointing to inactive vertices
 - these are the new active edges

- PSPACE-complete even for planar AND/OR graphs
 - guarantee gadget inputs reverse at $t = 0 \mod 4$
 - quantifier gadgets use new "switch" & degree-2 vertices to control timing
 - CNF formula uses AND, OR, split gadgets which take inputs & return acknowledgments (fixes timing & "blow-back")
 - trick to guarantee first input of AND activates before second (if they both do)
- remove degree-2 vertices
 - edge -> 4-path & remove red-red vertices
 - remove blue-blue vertices
 - remove red-blue vertices (timing is OK)
- crossover gadget
Multiplayer games:
- typical question: given a game position, can next-player-to-move force a win?
- in worst case, other players collude against you, effectively acting as one player

2-player games:
- call players “white” & “black” (as in Chess, Go, …)
- polynomial # moves $\rightarrow \in \text{PSPACE}$

\exists move : A responses : \exists move : A responses : …
(I followed the rules & I won) \lor (you broke rules)

SAT games: [Schaefer – JCSS 1978]
- QSAT is a 2-player game: $G_{w}(\text{CNF})$
 - player 1 chooses x_1, player 2 chooses x_2, …
 - player 1 wins \iff formula satisfied

- impartial games: (both players have same moves)
 - on turn, player sets any unassigned variable

- partizan games: (different moves for players)
 - white variables & black variables (50/50%)
 - on turn, player sets unassigned var. of same color

- default game: player 1 wins \iff formula satisfied
- seek game: win if first to satisfy formula
- avoid game: lose if first to satisfy formula
- PSPACE-complete: \Rightarrow 11-CNF
 - impartial game positive 11-SAT
 - impartial game positive 11-DNF SAT
 - partizan game CNF SAT
 - impartial/partizan avoid positive 2-DNF SAT
 - impartial/partizan seek positive 3-DNF SAT
 - impartial/partizan avoid positive CNF SAT
 - impartial/partizan seek positive CNF SAT

Kayles: (\approx indep. set) [Schaefer - JCSS 1978]
 - (impartial) node Kayles:
 - on turn, player adds node to independent set
 - lose if can't move
 - (partizan) bipartite node Kayles:
 - white vs. black nodes is the bipartition

Geography: (generalization of word game) (\approx longest path)
 - given (directed) graph & start node for token
 - on turn, player moves token along (directed) edge
 - node geography: can't revisit nodes
 - directed PSPACE-complete [Lichtenstein & Sipser 1980]
 - undirected $\in P$ [Fraenkel, Scheinerman, Ullman 1993]
 - edge geography: can't revisit edges
 - directed PSPACE-complete [Schaefer - JCSS 1978]
 - undirected PSPACE-complete [Fraenkel, Scheinerman, Ullman - TCS 1993]
Reversi/Othello:
- move = ○ ○ ○ ○ ○ ⇒ ○ ○ ○ ○ ○
- reverse in between 1 & 8 directions

- PSPACE-complete [Iwata & Kasai - TCS 1994]
- polynomial # moves: move consumes board
- reduction from directed node geography in bipartite max-degree-3 graph
 - rightward chains are threats by black:
 - black takes \(\alpha \), then \(\alpha' \), then corner, then all of bottom territory ⇒ win
- white wins if black can't move
- degree-2 vertices: \(\rightarrow \) & \(\rightarrow \)
- degree-3 vertices: \(\rightarrow \) & \(\rightarrow \)
 - if double visited then white or black wins
 - by black or white chooses
ASIDE:

Bounded NCL:
- NP-complete
 - each edge can be reversed only once
 - NP-complete for planar constraint graphs with AND, SPLIT, OR, CHOICE vertices
differ in initial edge orientations
- planar via crossover
- similar to proof of Constraint Graph Satisfaction

Bounded 2-player Constraint Logic (2CL)
- each edge is either white or black
- each edge can be reversed only once
- goal: each player has target edge & wins if they reverse it

- PSPACE-complete for planar constraint graphs with white AND, SPLIT, OR, CHOICE & VARIABLE vertex
- reduction from impartial game positive CNFSAT
- players take turns setting variables
- positive \(\Rightarrow\) white wants true, black wants false
- black can't win (edge irreversible)
- white wins \(\Leftrightarrow\) formula satisfied
- crossover gadget (only use of CHOICE)
- can make OR protected using free edge
 - no constraint at degree-1 end