

A General Theory of Motion Planning Complexity: Characterizing Which Gadgets Make Games Hard

Erik D. Demaine*

Dylan H. Hendrickson*

Jayson Lynch*

https://arXiv.org/abs/1812.03592

Abstract

We build a general theory for characterizing the computational complexity of motion planning of robot(s) through a graph of "gadgets", where each gadget has its own state defining a set of allowed traversals which in turn modify the gadget's state. We study two families of such

	1-Player Game	2-Player Game	Team Game
Polynomially Bounded (DAG)	NL vs. NP-complete: full characterization [§5]	P vs. PSPACE- complete: full characterization [§6]	P vs. NEXPTIME: full characterization [§7]
Polynomially Unbounded (reversible, deterministic gadgets)	NL vs. PSPACE- complete: full characterization [§2] Planar: equivalent [§2.3]	P vs. EXPTIME- complete: partial characterization [§3]	P vs. RE-complete $(\Rightarrow Undecidable)$: partial characterization [§4]