

PSPACE

∃**ℝ-complete Problems**

Computational Geometry Column 62

Jean Cardinal*

November 4, 2015

Other complete problems for the existential theory of the reals include:

- the <u>art gallery problem</u> of finding the smallest number of points from which all points of a given polygon are visible.^[22]
- recognition of <u>unit distance graphs</u>, and testing whether the <u>dimension</u> or Euclidean dimension of a graph is at most a given value.^[9]
- stretchability of pseudolines (that is, given a family of curves in the plane, determining whether they are <u>homeomorphic</u> to a <u>line arrangement</u>);^{[4][23][24]}
- both weak and strong satisfiability of geometric <u>quantum logic</u> in any fixed dimension >2;[25]
- the algorithmic <u>Steinitz problem</u> (given a <u>lattice</u>, determine whether it is the face lattice of a <u>convex polytope</u>), even when restricted to 4-dimensional polytopes;^{[26][27]}
- realization spaces of arrangements of certain convex bodies^[28]
- various properties of <u>Nash equilibria</u> of multi-player games^{[29][30][31]}
- embedding a given abstract complex of triangles and quadrilaterals into three-dimensional Euclidean space;[17]
- embedding multiple graphs on a shared vertex set into the plane so that all the graphs are drawn without crossings;^[17]
- recognizing the visibility graphs of planar point sets;[17]
- (projective or non-trivial affine) satisfiability of an equation between two terms over the cross product;[32]
- determining the minimum <u>slope number</u> of a non-crossing drawing of a <u>planar graph</u>.^[33]

Based on this, the <u>complexity class</u> $\exists \mathbb{R}$ has been defined as the set of problems having a polynomial-time many-one reduction to the existential theory of the reals.^[4]

https://en.wikipedia.org/wiki/Existential_theory_of_the_reals#Complete_problems

A General Theory of Motion Planning Complexity: Characterizing Which Gadgets Make Games Hard

Erik D. Demaine^{*} Dylan H. Hendrickson^{*} Jayson Lynch^{*}

https://arXiv.org/abs/1812.03592

Abstract

We build a general theory for characterizing the computational complexity of motion planning of robot(s) through a graph of "gadgets", where each gadget has its own state defining a set of allowed traversals which in turn modify the gadget's state. We study two families of such

	1-Player Game	2-Player Game	Team Game
Polynomially Bounded (DAG)	NL vs. NP-complete : full characterization [§5]	P vs. PSPACE- complete : full characterization [§6]	P vs. NEXPTIME : full characterization [§7]
Polynomially Unbounded (reversible, deterministic gadgets)	NL vs. PSPACE- complete: full characterization [§2] Planar: equivalent [§2.3]	P vs. EXPTIME- complete : partial characterization [§3]	P vs. RE-complete (\Rightarrow Undecidable): partial characterization [§4]

[Demaine, Hendrickson, Lynch 2018]